Suppose that for a potential u ( x ) {\displaystyle u(x)} for the Schrödinger operator L = − d 2 d x 2 + u ( x ) {\displaystyle L=-{\frac {d^{2}}{dx^{2}}}+u(x)} , one has the scattering data ( r ( k ) , { χ 1 , ⋯ , χ N } ) {\displaystyle (r(k),\{\chi _{1},\cdots ,\chi _{N}\})} , where r ( k ) {\displaystyle r(k)} are the reflection coefficients from continuous scattering, given as a function r : R → C {\displaystyle r:\mathbb {R} \rightarrow \mathbb {C} } , and the real parameters χ 1 , ⋯ , χ N > 0 {\displaystyle \chi _{1},\cdots ,\chi _{N}>0} are from the discrete bound spectrum.1
Then defining F ( x ) = ∑ n = 1 N β n e − χ n x + 1 2 π ∫ R r ( k ) e i k x d k , {\displaystyle F(x)=\sum _{n=1}^{N}\beta _{n}e^{-\chi _{n}x}+{\frac {1}{2\pi }}\int _{\mathbb {R} }r(k)e^{ikx}dk,} where the β n {\displaystyle \beta _{n}} are non-zero constants, solving the GLM equation K ( x , y ) + F ( x + y ) + ∫ x ∞ K ( x , z ) F ( z + y ) d z = 0 {\displaystyle K(x,y)+F(x+y)+\int _{x}^{\infty }K(x,z)F(z+y)dz=0} for K {\displaystyle K} allows the potential to be recovered using the formula u ( x ) = − 2 d d x K ( x , x ) . {\displaystyle u(x)=-2{\frac {d}{dx}}K(x,x).}
Dunajski 2009, pp. 30–31. - Dunajski, Maciej (2009). Solitons, Instantons, and Twistors. Oxford; New York: OUP Oxford. ISBN 978-0-19-857063-9. OCLC 320199531. https://search.worldcat.org/oclc/320199531 ↩