In mathematical physics, more specifically the one-dimensional inverse scattering problem, the Marchenko equation (or Gelfand-Levitan-Marchenko equation or GLM equation), named after Israel Gelfand, Boris Levitan and Vladimir Marchenko, is derived by computing the Fourier transform of the scattering relation:
K ( r , r ′ ) + g ( r , r ′ ) + ∫ r ∞ K ( r , r ′ ′ ) g ( r ′ ′ , r ′ ) d r ′ ′ = 0 {\displaystyle K(r,r^{\prime })+g(r,r^{\prime })+\int _{r}^{\infty }K(r,r^{\prime \prime })g(r^{\prime \prime },r^{\prime })\mathrm {d} r^{\prime \prime }=0}Where g ( r , r ′ ) {\displaystyle g(r,r^{\prime })\,} is a symmetric kernel, such that g ( r , r ′ ) = g ( r ′ , r ) , {\displaystyle g(r,r^{\prime })=g(r^{\prime },r),\,} which is computed from the scattering data. Solving the Marchenko equation, one obtains the kernel of the transformation operator K ( r , r ′ ) {\displaystyle K(r,r^{\prime })} from which the potential can be read off. This equation is derived from the Gelfand–Levitan integral equation, using the Povzner–Levitan representation.
Application to scattering theory
Suppose that for a potential u ( x ) {\displaystyle u(x)} for the Schrödinger operator L = − d 2 d x 2 + u ( x ) {\displaystyle L=-{\frac {d^{2}}{dx^{2}}}+u(x)} , one has the scattering data ( r ( k ) , { χ 1 , ⋯ , χ N } ) {\displaystyle (r(k),\{\chi _{1},\cdots ,\chi _{N}\})} , where r ( k ) {\displaystyle r(k)} are the reflection coefficients from continuous scattering, given as a function r : R → C {\displaystyle r:\mathbb {R} \rightarrow \mathbb {C} } , and the real parameters χ 1 , ⋯ , χ N > 0 {\displaystyle \chi _{1},\cdots ,\chi _{N}>0} are from the discrete bound spectrum.1
Then defining F ( x ) = ∑ n = 1 N β n e − χ n x + 1 2 π ∫ R r ( k ) e i k x d k , {\displaystyle F(x)=\sum _{n=1}^{N}\beta _{n}e^{-\chi _{n}x}+{\frac {1}{2\pi }}\int _{\mathbb {R} }r(k)e^{ikx}dk,} where the β n {\displaystyle \beta _{n}} are non-zero constants, solving the GLM equation K ( x , y ) + F ( x + y ) + ∫ x ∞ K ( x , z ) F ( z + y ) d z = 0 {\displaystyle K(x,y)+F(x+y)+\int _{x}^{\infty }K(x,z)F(z+y)dz=0} for K {\displaystyle K} allows the potential to be recovered using the formula u ( x ) = − 2 d d x K ( x , x ) . {\displaystyle u(x)=-2{\frac {d}{dx}}K(x,x).}
See also
Notes
- Dunajski, Maciej (2009). Solitons, Instantons, and Twistors. Oxford; New York: OUP Oxford. ISBN 978-0-19-857063-9. OCLC 320199531.
- Marchenko, V. A. (2011). Sturm–Liouville Operators and Applications (2nd ed.). Providence: American Mathematical Society. ISBN 978-0-8218-5316-0. MR 2798059.
- Kay, Irvin W. (1955). The inverse scattering problem. New York: Courant Institute of Mathematical Sciences, New York University. OCLC 1046812324.
- Levinson, Norman (1953). "Certain Explicit Relationships between Phase Shift and Scattering Potential". Physical Review. 89 (4): 755–757. Bibcode:1953PhRv...89..755L. doi:10.1103/PhysRev.89.755. ISSN 0031-899X.
References
Dunajski 2009, pp. 30–31. - Dunajski, Maciej (2009). Solitons, Instantons, and Twistors. Oxford; New York: OUP Oxford. ISBN 978-0-19-857063-9. OCLC 320199531. https://search.worldcat.org/oclc/320199531 ↩