Most chloroplasts have their entire chloroplast genome combined into a single large ring, though those of dinophyte algae are a notable exception—their genome is broken up into about forty small plasmids, each 2,000–10,000 base pairs long. Each minicircle contains one to three genes, but blank plasmids, with no coding DNA, have also been found.
Chloroplast DNA has long been thought to have a circular structure, but some evidence suggests that chloroplast DNA more commonly takes a linear shape. Over 95% of the chloroplast DNA in corn chloroplasts has been observed to be in branched linear form rather than individual circles.
Each chloroplast contains around 100 copies of its DNA in young leaves, declining to 15–20 copies in older leaves. They are usually packed into nucleoids which can contain several identical chloroplast DNA rings. Many nucleoids can be found in each chloroplast.
In most plant species, the chloroplast genome encodes approximately 120 genes. The genes primarily encode core components of the photosynthetic machinery and factors involved in their expression and assembly. Across species of land plants, the set of genes encoded by the chloroplast genome is fairly conserved. This includes four ribosomal RNAs, approximately 30 tRNAs, 21 ribosomal proteins, and 4 subunits of the plastid-encoded RNA polymerase complex that are involved in plastid gene expression. The large Rubisco subunit and 28 photosynthetic thylakoid proteins are encoded within the chloroplast genome.
In land plants, some 11–14% of the DNA in their nuclei can be traced back to the chloroplast, up to 18% in Arabidopsis, corresponding to about 4,500 protein-coding genes. There have been a few recent transfers of genes from the chloroplast DNA to the nuclear genome in land plants.
Of the approximately three-thousand proteins found in chloroplasts, some 95% of them are encoded by nuclear genes. Many of the chloroplast's protein complexes consist of subunits from both the chloroplast genome and the host's nuclear genome. As a result, protein synthesis must be coordinated between the chloroplast and the nucleus. The chloroplast is mostly under nuclear control, though chloroplasts can also give out signals regulating gene expression in the nucleus, called retrograde signaling.
The editosome recognizes and binds to cis sequence upstream of the editing site. The distance between the binding site and editing site varies by gene and proteins involved in the editosome. Hundreds of different PPR proteins from the nuclear genome are involved in the RNA editing process. These proteins consist of 35-mer repeated amino acids, the sequence of which determines the cis binding site for the edited transcript.
Basal land plants such as liverworts, mosses and ferns have hundreds of different editing sites while flowering plants typically have between thirty and forty. Parasitic plants such as Epifagus virginiana show a loss of RNA editing resulting in a loss of function for photosynthesis genes.
The mechanism for chloroplast DNA (cpDNA) replication has not been conclusively determined, but two main models have been proposed. Scientists have attempted to observe chloroplast replication via electron microscopy since the 1970s. The results of the microscopy experiments led to the idea that chloroplast DNA replicates using a double displacement loop (D-loop). As the D-loop moves through the circular DNA, it adopts a theta intermediary form, also known as a Cairns replication intermediate, and completes replication with a rolling circle mechanism. Replication starts at specific points of origin. Multiple replication forks open up, allowing replication machinery to replicate the DNA. As replication continues, the forks grow and eventually converge. The new cpDNA structures separate, creating daughter cpDNA chromosomes.
In addition to the early microscopy experiments, this model is also supported by the amounts of deamination seen in cpDNA. Deamination occurs when an amino group is lost and is a mutation that often results in base changes. When adenine is deaminated, it becomes hypoxanthine (H). Hypoxanthine can bind to cytosine, and when the HC base pair is replicated, it becomes a GC (thus, an A → G base change).
In cpDNA, there are several A → G deamination gradients. DNA becomes susceptible to deamination events when it is single stranded. When replication forks form, the strand not being copied is single stranded, and thus at risk for A → G deamination. Therefore, gradients in deamination indicate that replication forks were most likely present and the direction that they initially opened (the highest gradient is most likely nearest the start site because it was single stranded for the longest amount of time). This mechanism is still the leading theory today; however, a second theory suggests that most cpDNA is actually linear and replicates through homologous recombination. It further contends that only a minority of the genetic material is kept in circular chromosomes while the rest is in branched, linear, or other complex structures.
One of the main competing models for cpDNA asserts that most cpDNA is linear and participates in homologous recombination and replication structures similar to bacteriophage T4. It has been established that some plants have linear cpDNA, such as maize, and that more still contain complex structures that scientists do not yet understand; however, the predominant view today is that most cpDNA is circular. When the original experiments on cpDNA were performed, scientists did notice linear structures; however, they attributed these linear forms to broken circles. If the branched and complex structures seen in cpDNA experiments are real and not artifacts of concatenated circular DNA or broken circles, then a D-loop mechanism of replication is insufficient to explain how those structures would replicate. At the same time, homologous recombination does not explain the multiple A → G gradients seen in plastomes. This shortcoming is one of the biggest for the linear structure theory.
The movement of so many chloroplast genes to the nucleus means that many chloroplast proteins that were supposed to be translated in the chloroplast are now synthesized in the cytoplasm. This means that these proteins must be directed back to the chloroplast, and imported through at least two chloroplast membranes.
Curiously, around half of the protein products of transferred genes aren't even targeted back to the chloroplast. Many became exaptations, taking on new functions like participating in cell division, protein routing, and even disease resistance. A few chloroplast genes found new homes in the mitochondrial genome—most became nonfunctional pseudogenes, though a few tRNA genes still work in the mitochondrion. Some transferred chloroplast DNA protein products get directed to the secretory pathway (though many secondary plastids are bounded by an outermost membrane derived from the host's cell membrane, and therefore topologically outside of the cell, because to reach the chloroplast from the cytosol, you have to cross the cell membrane, just like if you were headed for the extracellular space. In those cases, chloroplast-targeted proteins do initially travel along the secretory pathway).
Not all chloroplast proteins include a N-terminal cleavable transit peptide though. Some include the transit sequence within the functional part of the protein itself. A few have their transit sequence appended to their C-terminus instead. Most of the polypeptides that lack N-terminal targeting sequences are the ones that are sent to the outer chloroplast membrane, plus at least one sent to the inner chloroplast membrane.
The heat shock protein and the 14-3-3 proteins together form a cytosolic guidance complex that makes it easier for the chloroplast polypeptide to get imported into the chloroplast.
Alternatively, if a chloroplast preprotein's transit peptide is not phosphorylated, a chloroplast preprotein can still attach to a heat shock protein or Toc159. These complexes can bind to the TOC complex on the outer chloroplast membrane using GTP energy.
The first three proteins form a core complex that consists of one Toc159, four to five Toc34s, and four Toc75s that form four holes in a disk 13 nanometers across. The whole core complex weighs about 500 kilodaltons. The other two proteins, Toc64 and Toc12, are associated with the core complex but are not part of it.
Toc159 probably works a lot like Toc34, recognizing proteins in the cytosol using GTP. It can be regulated through phosphorylation, but by a different protein kinase than the one that phosphorylates Toc34. Its M-domain forms part of the tunnel that chloroplast preproteins travel through, and seems to provide the force that pushes preproteins through, using the energy from GTP.
Toc159 is not always found as part of the TOC complex—it has also been found dissolved in the cytosol. This suggests that it might act as a shuttle that finds chloroplast preproteins in the cytosol and carries them back to the TOC complex. There isn't a lot of direct evidence for this behavior though.
A family of Toc159 proteins, Toc159, Toc132, Toc120, and Toc90 have been found in Arabidopsis thaliana. They vary in the length of their A-domains, which is completely gone in Toc90. Toc132, Toc120, and Toc90 seem to have specialized functions in importing stuff like nonphotosynthetic preproteins, and can't replace Toc159.
Toc75 can also bind to chloroplast preproteins, but is a lot worse at this than Toc34 or Toc159.
Tic214 is another TIC core complex protein, named because it weighs just under 214 kilodaltons. It is 1786 amino acids long and is thought to have six transmembrane domains on its N-terminal end. Tic214 is notable for being coded for by chloroplast DNA, more specifically the first open reading frame ycf1. Tic214 and Tic20 together probably make up the part of the one million dalton TIC complex that spans the entire membrane. Tic20 is buried inside the complex while Tic214 is exposed on both sides of the inner chloroplast membrane.
Stocking, C. R. & Gifford, E. M. (1959). "Incorporation of thymidine into chloroplasts of Spirogyra". Biochemical and Biophysical Research Communications. 1 (3): 159–164. doi:10.1016/0006-291X(59)90010-5. /wiki/Doi_(identifier)
Ris, H. & Plaut, W. (1962). "Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas". J. Cell Biol. 13 (3): 383–91. doi:10.1083/jcb.13.3.383. PMC 2106071. PMID 14492436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106071
Lyttleton, J. W. (1962). "Isolation of ribosomes from spinach chloroplasts". Exp. Cell Res. 26 (1): 312–317. doi:10.1016/0014-4827(62)90183-0. PMID 14467684. /wiki/Doi_(identifier)
Heber, U. (1962). "Protein synthesis in chloroplasts during photosynthesis". Nature. 195 (1): 91–92. Bibcode:1962Natur.195...91H. doi:10.1038/195091a0. PMID 13905812. S2CID 4265095. /wiki/Bibcode_(identifier)
Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; Ohto, C. (1986). "The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression". The EMBO Journal. 5 (9): 2043–2049. doi:10.1002/j.1460-2075.1986.tb04464.x. ISSN 0261-4189. PMC 1167080. PMID 16453699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167080
Ohyama, Kanji; Fukuzawa, Hideya; Kohchi, Takayuki; Shirai, Hiromasa; Sano, Tohru; Sano, Satoshi; Umesono, Kazuhiko; Shiki, Yasuhiko; Takeuchi, Masayuki; Chang, Zhen; Aota, Shin-ichi (1986). "Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA". Nature. 322 (6079): 572–574. Bibcode:1986Natur.322..572O. doi:10.1038/322572a0. ISSN 1476-4687. S2CID 4311952. https://www.nature.com/articles/322572a0
Dann L (2002). Bioscience—Explained (PDF). Green DNA: BIOSCIENCE EXPLAINED. http://www.bioscience-explained.org/ENvol1_2/pdf/ctDNAEN.pdf
Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285
Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)
Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 62. ISBN 978-0-521-31611-8. 978-0-521-31611-8
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)
Kolodner R, Tewari KK (January 1979). "Inverted repeats in chloroplast DNA from higher plants". Proceedings of the National Academy of Sciences of the United States of America. 76 (1): 41–5. Bibcode:1979PNAS...76...41K. doi:10.1073/pnas.76.1.41. PMC 382872. PMID 16592612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382872
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)
Kolodner R, Tewari KK (January 1979). "Inverted repeats in chloroplast DNA from higher plants". Proceedings of the National Academy of Sciences of the United States of America. 76 (1): 41–5. Bibcode:1979PNAS...76...41K. doi:10.1073/pnas.76.1.41. PMC 382872. PMID 16592612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382872
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Kolodner R, Tewari KK (January 1979). "Inverted repeats in chloroplast DNA from higher plants". Proceedings of the National Academy of Sciences of the United States of America. 76 (1): 41–5. Bibcode:1979PNAS...76...41K. doi:10.1073/pnas.76.1.41. PMC 382872. PMID 16592612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382872
Palmer JD, Thompson WF (June 1982). "Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost". Cell. 29 (2): 537–50. doi:10.1016/0092-8674(82)90170-2. PMID 6288261. S2CID 11571695. /wiki/Doi_(identifier)
Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5
Palmer JD, Thompson WF (June 1982). "Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost". Cell. 29 (2): 537–50. doi:10.1016/0092-8674(82)90170-2. PMID 6288261. S2CID 11571695. /wiki/Doi_(identifier)
Plant Biochemistry (3rd ed.). Academic Press. 2005. p. 517. ISBN 9780120883912. number of copies of ctDNA per chloroplast. 9780120883912
Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 62. ISBN 978-0-521-31611-8. 978-0-521-31611-8
Biology 8th Edition Campbell & Reece. Benjamin Cummings (Pearson). 2009. p. 516.
Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T (July 2002). "Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids". The Plant Cell. 14 (7): 1579–89. doi:10.1105/tpc.002717. PMC 150708. PMID 12119376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150708
Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T (July 2002). "Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids". The Plant Cell. 14 (7): 1579–89. doi:10.1105/tpc.002717. PMC 150708. PMID 12119376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150708
"NCBI Organelle Genome Resources". National Institute of Health. Retrieved August 18, 2021. https://www.ncbi.nlm.nih.gov/genome/organelle/
Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J. & Yamaguchi-Shinozaki, K. (1986). "The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression". EMBO J. 5 (9): 2043–2049. doi:10.1002/j.1460-2075.1986.tb04464.x. PMC 1167080. PMID 16453699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167080
Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z. & Aota, S. (1986). "Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA". Nature. 322 (6079): 572–574. Bibcode:1986Natur.322..572O. doi:10.1038/322572a0. S2CID 4311952. /wiki/Bibcode_(identifier)
Kaneko, T. & Tabata, S. (1997). "Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803". Plant Cell Physiol. 38 (11): 1171–1176. doi:10.1093/oxfordjournals.pcp.a029103. PMID 9435137. https://doi.org/10.1093%2Foxfordjournals.pcp.a029103
Sato, S.; Nakamura, Y.; Kaneko, T.; Asamizu, E. & Tabata, S. (1999). "Complete structure of the chloroplast genome of Arabidopsis thaliana". DNA Res. 6 (5): 283–290. doi:10.1093/dnares/6.5.283. PMID 10574454. https://doi.org/10.1093%2Fdnares%2F6.5.283
Daniell, H.; Lin, C.; Yu, M. & Chang, W (2016). "Chloroplast genomes: diversity, evolution, and applications in genetic engineering". Genome Biol. 17 (1): 134. doi:10.1186/s13059-016-1004-2. PMC 4918201. PMID 27339192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918201
Clegg, M. T.; Gaut, B. S.; Learn, G. H. & Morton, B. R. (1994). "Rates and patterns of chloroplast DNA evolution". PNAS. 91 (15): 6795–6801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285
Berry, J. O.; Yerramsetty, P.; Zielinski, A. M. & Mure, C. M. (2013). "Photosynthetic gene expression in higher plants". Photosynth. Res. 117 (1): 91–120. Bibcode:2013PhoRe.117...91B. doi:10.1007/s11120-013-9880-8. PMID 23839301. S2CID 16536768. /wiki/Bibcode_(identifier)
Berry, J. O.; Yerramsetty, P.; Zielinski, A. M. & Mure, C. M. (2013). "Photosynthetic gene expression in higher plants". Photosynth. Res. 117 (1): 91–120. Bibcode:2013PhoRe.117...91B. doi:10.1007/s11120-013-9880-8. PMID 23839301. S2CID 16536768. /wiki/Bibcode_(identifier)
Berry, J. O.; Yerramsetty, P.; Zielinski, A. M. & Mure, C. M. (2013). "Photosynthetic gene expression in higher plants". Photosynth. Res. 117 (1): 91–120. Bibcode:2013PhoRe.117...91B. doi:10.1007/s11120-013-9880-8. PMID 23839301. S2CID 16536768. /wiki/Bibcode_(identifier)
Dann L (2002). Bioscience—Explained (PDF). Green DNA: BIOSCIENCE EXPLAINED. http://www.bioscience-explained.org/ENvol1_2/pdf/ctDNAEN.pdf
Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285
Huang CY, Ayliffe MA, Timmis JN (March 2003). "Direct measurement of the transfer rate of chloroplast DNA into the nucleus". Nature. 422 (6927): 72–6. Bibcode:2003Natur.422...72H. doi:10.1038/nature01435. PMID 12594458. S2CID 4319507. /wiki/Bibcode_(identifier)
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430
Bellot, Sidonie; Renner, Susanne S. (2016). "The Plastomes of Two Species in the Endoparasite Genus Pilostyles (Apodanthaceae) Each Retain Just Five or Six Possibly Functional Genes". Genome Biology and Evolution. 8 (1): 189–201. doi:10.1093/gbe/evv251. PMC 4758247. PMID 26660355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758247
Mackiewicz P, Bodył A, Moszczyński K (July 2013). "The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome". Mobile Genetic Elements. 3 (4): e25845. doi:10.4161/mge.25845. PMC 3812789. PMID 24195014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812789
Leliaert F, Lopez-Bautista JM (March 2015). "The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin". BMC Genomics. 16 (1): 204. doi:10.1186/s12864-015-1418-3. PMC 4487195. PMID 25879186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487195
Robison, TA, Grusz AL, Wolf PG, Mower, JP, Fauskee BD, Sosa K, and Schuettpelz E (October 2018). "Mobile Elements Shape Plastome Evolution in Ferns". Genome Biology and Evolution. 10 (10): 2669–2571. doi:10.1093/gbe/evy189. PMC 6166771. PMID 30165616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166771
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (June 2009). "Genomic footprints of a cryptic plastid endosymbiosis in diatoms" (PDF). Science. 324 (5935): 1724–6. Bibcode:2009Sci...324.1724M. doi:10.1126/science.1172983. PMID 19556510. S2CID 11408339. https://epic.awi.de/id/eprint/20816/1/Mou2009a.pdf
Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (January 2011). "Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora". Molecular Biology and Evolution. 28 (1): 407–22. doi:10.1093/molbev/msq209. PMID 20702568. https://doi.org/10.1093%2Fmolbev%2Fmsq209
Archibald JM (December 2006). "Algal genomics: exploring the imprint of endosymbiosis". Current Biology. 16 (24): R1033-5. Bibcode:2006CBio...16R1033A. doi:10.1016/j.cub.2006.11.008. PMID 17174910. S2CID 17830745. https://doi.org/10.1016%2Fj.cub.2006.11.008
Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285
Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (May 2007). "Signals from chloroplasts converge to regulate nuclear gene expression". Science. 316 (5825): 715–9. Bibcode:2007Sci...316..715K. doi:10.1126/science.1140516. PMID 17395793. https://www.science.org/doi/10.1126/science.1140516
Hedtke B, Börner T, Weihe A (August 1997). "Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis". Science. 277 (5327): 809–11. doi:10.1126/science.277.5327.809. PMID 9242608. /wiki/Doi_(identifier)
Harris EH, Boynton JE, Gillham NW (December 1994). "Chloroplast ribosomes and protein synthesis". Microbiological Reviews. 58 (4): 700–54. doi:10.1128/MMBR.58.4.700-754.1994. PMC 372988. PMID 7854253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372988
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013). "RNA editing in plants and its evolution". Annual Review of Genetics. 47 (1): 335–52. doi:10.1146/annurev-genet-111212-133519. PMID 24274753. /wiki/Doi_(identifier)
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013). "RNA editing in plants and its evolution". Annual Review of Genetics. 47 (1): 335–52. doi:10.1146/annurev-genet-111212-133519. PMID 24274753. /wiki/Doi_(identifier)
Tillich M, Krause K (July 2010). "The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants". New Biotechnology. Special Issue: Biotechnology Annual Review 2010RNA Basics and Biotechnology Applications. 27 (3): 256–66. doi:10.1016/j.nbt.2010.02.020. PMID 20206308. /wiki/Doi_(identifier)
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
Heinhorst, Gordon C. Cannon, Sabine (1993). "DNA replication in chloroplasts". Journal of Cell Science. 104: 1–9. doi:10.1242/jcs.104.1.1. https://aquila.usm.edu/cgi/viewcontent.cgi?article=7560&context=fac_pubs
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
"Effect of chemical mutagens on nucleotide sequence". Biocyclopedia. Retrieved 24 October 2015. http://www.biocyclopedia.com/index/genetics/mutations_molecular_level_mechanism/effect_of_chemical_mutagens_on_nucleotide_sequence.php
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151
Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430
Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Biology 8th edition—Campbell & Reece. Benjamin Cummings. 2008. p. 340. ISBN 978-0-321-54325-7. 978-0-321-54325-7
Wise RR, Hoober JK (2007). Structure and function of plastids. Berlin: Springer. pp. 53–74. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (February 2006). "Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco". Plant Physiology. 140 (2): 466–83. doi:10.1104/pp.105.074575. PMC 1361317. PMID 16384899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361317
May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Biology 8th edition—Campbell & Reece. Benjamin Cummings. 2008. p. 340. ISBN 978-0-321-54325-7. 978-0-321-54325-7
Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (February 2006). "Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco". Plant Physiology. 140 (2): 466–83. doi:10.1104/pp.105.074575. PMC 1361317. PMID 16384899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361317
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (February 2006). "Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco". Plant Physiology. 140 (2): 466–83. doi:10.1104/pp.105.074575. PMC 1361317. PMID 16384899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361317
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (February 2006). "Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco". Plant Physiology. 140 (2): 466–83. doi:10.1104/pp.105.074575. PMC 1361317. PMID 16384899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361317
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Lung SC, Chuong SD (April 2012). "A transit peptide-like sorting signal at the C terminus directs the Bienertia sinuspersici preprotein receptor Toc159 to the chloroplast outer membrane". The Plant Cell. 24 (4): 1560–78. doi:10.1105/tpc.112.096248. PMC 3398564. PMID 22517318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398564
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Waegemann K, Soll J (March 1996). "Phosphorylation of the transit sequence of chloroplast precursor proteins". The Journal of Biological Chemistry. 271 (11): 6545–54. doi:10.1074/jbc.271.11.6545. PMID 8626459. S2CID 26014578. https://doi.org/10.1074%2Fjbc.271.11.6545
May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214
Waegemann K, Soll J (March 1996). "Phosphorylation of the transit sequence of chloroplast precursor proteins". The Journal of Biological Chemistry. 271 (11): 6545–54. doi:10.1074/jbc.271.11.6545. PMID 8626459. S2CID 26014578. https://doi.org/10.1074%2Fjbc.271.11.6545
Waegemann K, Soll J (March 1996). "Phosphorylation of the transit sequence of chloroplast precursor proteins". The Journal of Biological Chemistry. 271 (11): 6545–54. doi:10.1074/jbc.271.11.6545. PMID 8626459. S2CID 26014578. https://doi.org/10.1074%2Fjbc.271.11.6545
Waegemann K, Soll J (March 1996). "Phosphorylation of the transit sequence of chloroplast precursor proteins". The Journal of Biological Chemistry. 271 (11): 6545–54. doi:10.1074/jbc.271.11.6545. PMID 8626459. S2CID 26014578. https://doi.org/10.1074%2Fjbc.271.11.6545
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Wise RR, Hoober JK (2007). Structure and function of plastids. Berlin: Springer. pp. 53–74. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5
Wise RR, Hoober JK (2007). Structure and function of plastids. Berlin: Springer. pp. 53–74. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F (July 2010). "The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein". Plant Physiology. 153 (3): 1016–30. doi:10.1104/pp.110.158048. PMC 2899928. PMID 20457805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899928
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. /wiki/Doi_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F (July 2010). "The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein". Plant Physiology. 153 (3): 1016–30. doi:10.1104/pp.110.158048. PMC 2899928. PMID 20457805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899928
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F (July 2010). "The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein". Plant Physiology. 153 (3): 1016–30. doi:10.1104/pp.110.158048. PMC 2899928. PMID 20457805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899928
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F (July 2010). "The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein". Plant Physiology. 153 (3): 1016–30. doi:10.1104/pp.110.158048. PMC 2899928. PMID 20457805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899928
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Agne B, Andrès C, Montandon C, Christ B, Ertan A, Jung F, Infanger S, Bischof S, Baginsky S, Kessler F (July 2010). "The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein". Plant Physiology. 153 (3): 1016–30. doi:10.1104/pp.110.158048. PMC 2899928. PMID 20457805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899928
Wise RR, Hoober JK (2007). Structure and function of plastids. Berlin: Springer. pp. 53–74. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Curran SP, Koehler CM (2004). Mitochondrial Function and Biogenesis. Springer. p. 59. ISBN 9783540214892. 9783540214892
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Soll J, Schleiff E (March 2004). "Protein import into chloroplasts" (PDF). Nature Reviews. Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. https://epub.ub.uni-muenchen.de/3587/1/3587.pdf
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)
Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (February 2013). "Uncovering the protein translocon at the chloroplast inner envelope membrane". Science. 339 (6119): 571–4. Bibcode:2013Sci...339..571K. doi:10.1126/science.1229262. PMID 23372012. S2CID 5062593. /wiki/Bibcode_(identifier)