Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Chloroplast
Plant organelle that conducts photosynthesis

A chloroplast is a plastid organelle primarily responsible for photosynthesis in plant and algal cells. It contains chlorophyll to capture sunlight energy, converting it to chemical energy that fuels the Calvin cycle, producing sugars and organic molecules while releasing oxygen. Chloroplasts also play roles in fatty acid synthesis and amino acid synthesis. Originating from a photosynthetic cyanobacterium engulfed by an early eukaryotic cell, chloroplasts carry their own DNA and must be inherited during cell division. Their presence spans diverse species due to multiple secondary and tertiary endosymbiotic events.

Related Image Collections Add Image
We don't have any YouTube videos related to Chloroplast yet.
We don't have any PDF documents related to Chloroplast yet.
We don't have any Books related to Chloroplast yet.
We don't have any archived web articles related to Chloroplast yet.

Discovery and etymology

The first definitive description of a chloroplast (Chlorophyllkörnen, "grain of chlorophyll") was given by Hugo von Mohl in 1837 as discrete bodies within the green plant cell.4 In 1883, Andreas Franz Wilhelm Schimper named these bodies as "chloroplastids" (Chloroplastiden).5 In 1884, Eduard Strasburger adopted the term "chloroplasts" (Chloroplasten).678

The word chloroplast is derived from the Greek words chloros (χλωρός), which means green, and plastes (πλάστης), which means "the one who forms".9

Endosymbiotic origin of chloroplasts

Main article: Plastid evolution

See also: Cyanobacteria and Symbiogenesis

Chloroplasts are one of many types of organelles in photosynthetic eukaryotic cells. They evolved from cyanobacteria through a process called organellogenesis.10 Cyanobacteria are a diverse phylum of gram-negative bacteria capable of carrying out oxygenic photosynthesis. Like chloroplasts, they have thylakoids.11 The thylakoid membranes contain photosynthetic pigments, including chlorophyll a.1213 This origin of chloroplasts was first suggested by the Russian biologist Konstantin Mereschkowski in 190514 after Andreas Franz Wilhelm Schimper observed in 1883 that chloroplasts closely resemble cyanobacteria.15 Chloroplasts are only found in plants, algae,16 and some species of the amoeboid Paulinella.17

Mitochondria are thought to have come from a similar endosymbiosis event, where an aerobic prokaryote was engulfed.18

Primary endosymbiosis

Approximately two billion years ago,192021 a free-living cyanobacterium entered an early eukaryotic cell, either as food or as an internal parasite,22 but managed to escape the phagocytic vacuole it was contained in and persist inside the cell.23 This event is called endosymbiosis, or "cell living inside another cell with a mutual benefit for both". The external cell is commonly referred to as the host while the internal cell is called the endosymbiont.24 The engulfed cyanobacteria provided an advantage to the host by providing sugar from photosynthesis.25 Over time, the cyanobacterium was assimilated, and many of its genes were lost or transferred to the nucleus of the host.26 Some of the cyanobacterial proteins were then synthesized by host cell and imported back into the chloroplast (formerly the cyanobacterium), allowing the host to control the chloroplast.2728

Chloroplasts which can be traced back directly to a cyanobacterial ancestor (i.e. without a subsequent endosymbiotic event) are known as primary plastids ("plastid" in this context means almost the same thing as chloroplast29).30 Chloroplasts that can be traced back to another photosynthetic eukaryotic endosymbiont are called secondary plastids or tertiary plastids (discussed below).

Whether primary chloroplasts came from a single endosymbiotic event or multiple independent engulfments across various eukaryotic lineages was long debated. It is now generally held that with one exception (the amoeboid Paulinella chromatophora), chloroplasts arose from a single endosymbiotic event around two billion years ago and these chloroplasts all share a single ancestor.31 It has been proposed this the closest living relative of the ancestral engulfed cyanobacterium is Gloeomargarita lithophora.323334 Separately, somewhere about 90–140 million years ago, this process happened again in the amoeboid Paulinella with a cyanobacterium in the genus Prochlorococcus. This independently evolved chloroplast is often called a chromatophore instead of a chloroplast.3536

Chloroplasts are believed to have arisen after mitochondria, since all eukaryotes contain mitochondria, but not all have chloroplasts.3738 This is called serial endosymbiosis—where an early eukaryote engulfed the mitochondrion ancestor, and then descendants of it then engulfed the chloroplast ancestor, creating a cell with both chloroplasts and mitochondria.39

Secondary and tertiary endosymbiosis

Many other organisms obtained chloroplasts from the primary chloroplast lineages through secondary endosymbiosis—engulfing a red or green alga with a primary chloroplast. These chloroplasts are known as secondary plastids.40

As a result of the secondary endosymbiotic event, secondary chloroplasts have additional membranes outside of the original two in primary chloroplasts.41 In secondary plastids, typically only the chloroplast, and sometimes its cell membrane and nucleus remain, forming a chloroplast with three or four membranes42—the two cyanobacterial membranes, sometimes the eaten alga's cell membrane, and the phagosomal vacuole from the host's cell membrane.43

The genes in the phagocytosed eukaryote's nucleus are often transferred to the secondary host's nucleus.44 Cryptomonads and chlorarachniophytes retain the phagocytosed eukaryote's nucleus, an object called a nucleomorph,45 located between the second and third membranes of the chloroplast.4647

All secondary chloroplasts come from green and red algae. No secondary chloroplasts from glaucophytes have been observed, probably because glaucophytes are relatively rare in nature, making them less likely to have been taken up by another eukaryote.48

Still other organisms, including the dinoflagellates Karlodinium and Karenia, obtained chloroplasts by engulfing an organism with a secondary plastid. These are called tertiary plastids.49

Primary chloroplast lineages

All primary chloroplasts belong to one of four chloroplast lineages—the glaucophyte chloroplast lineage, the rhodophyte ("red") chloroplast lineage, and the chloroplastidan ("green") chloroplast lineage, the amoeboid Paulinella chromatophora lineage.50 The glaucophyte, rhodophyte, and chloroplastidian lineages are all descended from the same ancestral endosymbiotic event and are all within the group Archaeplastida.51

Glaucophyte chloroplasts

See also: Glaucophyte

The glaucophyte chloroplast group is the smallest of the three primary chloroplast lineages as there are only 25 described glaucophyte species.52 Glaucophytes diverged first before the red and green chloroplast lineages diverged.53 Because of this, they are sometimes considered intermediates between cyanobacteria and the red and green chloroplasts.54 This early divergence is supported by both phylogenetic studies and physical features present in glaucophyte chloroplasts and cyanobacteria, but not the red and green chloroplasts. First, glaucophyte chloroplasts have a peptidoglycan wall, a type of cell wall otherwise only in bacteria (including cyanobacteria).55 Second, glaucophyte chloroplasts contain concentric unstacked thylakoids which surround a carboxysome – an icosahedral structure that contains the enzyme RuBisCO responsible for carbon fixation. Third, starch created by the chloroplast is collected outside the chloroplast.56 Additionally, like cyanobacteria, both glaucophyte and rhodophyte thylakoids are studded with light collecting structures called phycobilisomes.

Rhodophyta (red chloroplasts)

See also: Red algae

The rhodophyte, or red algae, group is a large and diverse lineage.57 Rhodophyte chloroplasts are also called rhodoplasts,58 literally "red chloroplasts".59 Rhodoplasts have a double membrane with an intermembrane space and phycobilin pigments organized into phycobilisomes on the thylakoid membranes, preventing their thylakoids from stacking.60 Some contain pyrenoids.61 Rhodoplasts have chlorophyll a and phycobilins62 for photosynthetic pigments; the phycobilin phycoerythrin is responsible for giving many red algae their distinctive red color.63 However, since they also contain the blue-green chlorophyll a and other pigments, many are reddish to purple from the combination.64[dubious – discuss] The red phycoerytherin pigment is an adaptation to help red algae catch more sunlight in deep water65—as such, some red algae that live in shallow water have less phycoerythrin in their rhodoplasts, and can appear more greenish.66 Rhodoplasts synthesize a form of starch called floridean starch,67 which collects into granules outside the rhodoplast, in the cytoplasm of the red alga.68

Chloroplastida (green chloroplasts)

See also: Chloroplastida

The chloroplastida group is another large, highly diverse lineage that includes both green algae and land plants.69 This group is also called Viridiplantae, which includes two core clades—Chlorophyta and Streptophyta.

Most green chloroplasts are green in color, though some aren't due to accessory pigments that override the green from chlorophylls, such as in the resting cells of Haematococcus pluvialis. Green chloroplasts differ from glaucophyte and red algal chloroplasts in that they have lost their phycobilisomes, and contain chlorophyll b.70 They have also lost the peptidoglycan wall between their double membrane, leaving an intermembrane space.71 Some plants have kept some genes required the synthesis of peptidoglycan, but have repurposed them for use in chloroplast division instead.72 Chloroplastida lineages also keep their starch inside their chloroplasts.737475 In plants and some algae, the chloroplast thylakoids are arranged in grana stacks. Some green algal chloroplasts, as well as those of hornworts, contain a structure called a pyrenoid,76 that concentrate RuBisCO and CO2 in the chloroplast, functionally similar to the glaucophyte carboxysome.7778

There are some lineages of non-photosynthetic parasitic green algae that have lost their chloroplasts entirely, such as Prototheca,79 or have no chloroplast while retaining the separate chloroplast genome, as in Helicosporidium.80 Morphological and physiological similarities, as well as phylogenetics, confirm that these are lineages that ancestrally had chloroplasts but have since lost them.8182

Paulinella chromatophora

See also: Paulinella

The photosynthetic amoeboids in the genus Paulinella—P. chromatophora, P. micropora, and marine P. longichromatophora—have the only known independently evolved chloroplast, often called a chromatophore.83 While all other chloroplasts originate from a single ancient endosymbiotic event, Paulinella independently acquired an endosymbiotic cyanobacterium from the genus Synechococcus around 90 - 140 million years ago.8485 Each Paulinella cell contains one or two sausage-shaped chloroplasts;8687 they were first described in 1894 by German biologist Robert Lauterborn.88

The chromatophore is highly reduced compared to its free-living cyanobacterial relatives and has limited functions. For example, it has a genome of about 1 million base pairs, one third the size of Synechococcus genomes, and only encodes around 850 proteins.89 However, this is still much larger than other chloroplast genomes, which are typically around 150,000 base pairs. Chromatophores have also transferred much less of their DNA to the nucleus of their hosts. About 0.3–0.8% of the nuclear DNA in Paulinella is from the chromatophore, compared with 11–14% from the chloroplast in plants.90 Similar to other chloroplasts, Paulinella provides specific proteins to the chromatophore using a specific targeting sequence.91 Because chromatophores are much younger compared to the canoncial chloroplasts, Paulinella chromatophora is studied to understand how early chloroplasts evolved.92

Secondary and tertiary chloroplast lineages

Green algal derived chloroplasts

Green algae have been taken up by many groups in three or four separate events.93 Primarily, secondary chloroplasts derived from green algae are in the euglenids and chlorarachniophytes. They are also found in one lineage of dinoflagellates94 and possibly the ancestor of the CASH lineage (cryptomonads, alveolates, stramenopiles and haptophytes)95 Many green algal derived chloroplasts contain pyrenoids, but unlike chloroplasts in their green algal ancestors, storage product collects in granules outside the chloroplast.96

Euglenophytes

See also: Euglenophyceae

The euglenophytes are a group of common flagellated protists that contain chloroplasts derived from a green alga.97 Euglenophytes are the only group outside Diaphoretickes that have chloroplasts without performing kleptoplasty.9899 Euglenophyte chloroplasts have three membranes. It is thought that the membrane of the primary endosymbiont host was lost (e.g. the green algal membrane), leaving the two cyanobacterial membranes and the secondary host's phagosomal membrane.100 Euglenophyte chloroplasts have a pyrenoid and thylakoids stacked in groups of three. The carbon fixed through photosynthesis is stored in the form of paramylon, which is contained in membrane-bound granules in the cytoplasm of the euglenophyte.101102

Chlorarachniophytes

See also: Chlorarachniophyte

Chlorarachniophytes are a rare group of organisms that also contain chloroplasts derived from green algae,103 though their story is more complicated than that of the euglenophytes. The ancestor of chlorarachniophytes is thought to have been a eukaryote with a red algal derived chloroplast. It is then thought to have lost its first red algal chloroplast, and later engulfed a green alga, giving it its second, green algal derived chloroplast.104

Chlorarachniophyte chloroplasts are bounded by four membranes, except near the cell membrane, where the chloroplast membranes fuse into a double membrane.105 Their thylakoids are arranged in loose stacks of three.106 Chlorarachniophytes have a form of polysaccharide called chrysolaminarin, which they store in the cytoplasm,107 often collected around the chloroplast pyrenoid, which bulges into the cytoplasm.108

Chlorarachniophyte chloroplasts are notable because the green alga they are derived from has not been completely broken down—its nucleus still persists as a nucleomorph109 found between the second and third chloroplast membranes110—the periplastid space, which corresponds to the green alga's cytoplasm.111

Prasinophyte-derived chloroplast

See also: Lepidodinium

Dinoflagellates in the genus Lepidodinium have lost their original peridinin chloroplast and replaced it with a green algal derived chloroplast (more specifically, a prasinophyte).112113 Lepidodinium is the only dinoflagellate that has a chloroplast that's not from the rhodoplast lineage. The chloroplast is surrounded by two membranes and has no nucleomorph—all the nucleomorph genes have been transferred to the dinophyte nucleus.114 The endosymbiotic event that led to this chloroplast was serial secondary endosymbiosis rather than tertiary endosymbiosis—the endosymbiont was a green alga containing a primary chloroplast (making a secondary chloroplast).115

Tripartite symbiosis

The ciliate Pseudoblepharisma tenue has two bacterial symbionts, one pink, one green. In 2021, both symbionts were confirmed to be photosynthetic: Ca. Thiodictyon intracellulare (Chromatiaceae), a purple sulfur bacterium with a genome just half the size of their closest known relatives; and Chlorella sp. K10, a green alga.116 There is also a variant of Pseudoblepharisma tenue that only contains chloroplasts from green algae and no endosymbiotic purple bacteria.117

Red algal derived chloroplasts

Secondary chloroplasts derived from red algae appear to have only been taken up only once, which then diversified into a large group called chromists or chromalveolates. Today they are found in the haptophytes, cryptomonads, heterokonts, dinoflagellates and apicomplexans (the CASH lineage).118 Red algal secondary chloroplasts usually contain chlorophyll c and are surrounded by four membranes.119

However, chromist monophyly has been rejected, and it is considered more likely that some chromists acquired their plastids by incorporating another chromist instead of inheriting them from a common ancestor. Cryptophytes seem to have acquired plastids from red algae, which were then transmitted from them to both the Heterokontophytes and the Haptophytes, and then from these last to the Myzozoa.120

Cryptophytes

See also: Cryptomonad

Cryptophytes, or cryptomonads, are a group of algae that contain a red-algal derived chloroplast. Cryptophyte chloroplasts contain a nucleomorph that superficially resembles that of the chlorarachniophytes.121 Cryptophyte chloroplasts have four membranes. The outermost membrane is continuous with the rough endoplasmic reticulum. They synthesize ordinary starch, which is stored in granules found in the periplastid space—outside the original double membrane, in the place that corresponds to the ancestral red alga's cytoplasm. Inside cryptophyte chloroplasts is a pyrenoid and thylakoids in stacks of two.122 Cryptophyte chloroplasts do not have phycobilisomes,123 but they do have phycobilin pigments which they keep in the thylakoid space, rather than anchored on the outside of their thylakoid membranes.124125

Cryptophytes may have played a key role in the spreading of red algal based chloroplasts.126127

Haptophytes

See also: Haptophyte

Haptophytes are similar and closely related to cryptophytes or heterokontophytes.128 Their chloroplasts lack a nucleomorph,129130 their thylakoids are in stacks of three, and they synthesize chrysolaminarin sugar, which are stored in granules completely outside of the chloroplast, in the cytoplasm of the haptophyte.131

Stramenopiles (heterokontophytes)

See also: Stramenopile

The stramenopiles, also known as heterokontophytes, are a very large and diverse group of eukaryotes. It inlcludes Ochrophyta—which includes diatoms, brown algae (seaweeds), and golden algae (chrysophytes)132— and Xanthophyceae (also called yellow-green algae).133

Heterokont chloroplasts are very similar to haptophyte chloroplasts. They have a pyrenoid, triplet thylakoids, and, with some exceptions,134 four layer plastidic envelope with the outermost membrane connected to the endoplasmic reticulum. Like haptophytes, stramenopiles store sugar in chrysolaminarin granules in the cytoplasm.135 Stramenopile chloroplasts contain chlorophyll a and, with a few exceptions,136 chlorophyll c.137 They also have carotenoids which give them their many colors.138

Apicomplexans, chromerids, and dinophytes

See also: Alveolate and Myzozoa

The alveolates are a major clade of unicellular eukaryotes of both autotrophic and heterotrophic members. Many members contain a red-algal derived plastid. One notable characteristic of this diverse group is the frequent loss of photosynthesis. However, a majority of these heterotrophs continue to process a non-photosynthetic plastid.139

Apicomplexans

Apicomplexans are a group of alveolates. Like the helicosproidia, they're parasitic, and have a nonphotosynthetic chloroplast.140 They were once thought to be related to the helicosproidia, but it is now known that the helicosproida are green algae rather than part of the CASH lineage.141 The apicomplexans include Plasmodium, the malaria parasite. Many apicomplexans keep a vestigial red algal derived chloroplast142143 called an apicoplast, which they inherited from their ancestors. Apicoplasts have lost all photosynthetic function, and contain no photosynthetic pigments or true thylakoids. They are bounded by four membranes, but the membranes are not connected to the endoplasmic reticulum.144 Other apicomplexans like Cryptosporidium have lost the chloroplast completely.145 Apicomplexans store their energy in amylopectin granules that are located in their cytoplasm, even though they are nonphotosynthetic.146

The fact that apicomplexans still keep their nonphotosynthetic chloroplast around demonstrates how the chloroplast carries out important functions other than photosynthesis. Plant chloroplasts provide plant cells with many important things besides sugar, and apicoplasts are no different—they synthesize fatty acids, isopentenyl pyrophosphate, iron-sulfur clusters, and carry out part of the heme pathway.147 The most important apicoplast function is isopentenyl pyrophosphate synthesis—in fact, apicomplexans die when something interferes with this apicoplast function, and when apicomplexans are grown in an isopentenyl pyrophosphate-rich medium, they dump the organelle.148

Chromerids

The chromerids are a group of algae known from Australian corals which comprise some close photosynthetic relatives of the apicomplexans. The first member, Chromera velia, was discovered and first isolated in 2001. The discovery of Chromera velia with similar structure to the apicomplexans, provides an important link in the evolutionary history of the apicomplexans and dinophytes. Their plastids have four membranes, lack chlorophyll c and use the type II form of RuBisCO obtained from a horizontal transfer event.149

Dinophytes

The dinoflagellates are yet another very large and diverse group, around half of which are at least partially photosynthetic (i.e. mixotrophic).150151 Dinoflagellate chloroplasts have relatively complex history. Most dinoflagellate chloroplasts are secondary red algal derived chloroplasts. Many dinoflagellates have lost the chloroplast (becoming nonphotosynthetic), some of these have replaced it though tertiary endosymbiosis.152 Others replaced their original chloroplast with a green algal derived chloroplast.153154155 The peridinin chloroplast is thought to be the dinophytes' "original" chloroplast,156 which has been lost, reduced, replaced, or has company in several other dinophyte lineages.157

The most common dinophyte chloroplast is the peridinin-type chloroplast, characterized by the carotenoid pigment peridinin in their chloroplasts, along with chlorophyll a and chlorophyll c2.158159 Peridinin is not found in any other group of chloroplasts.160 The peridinin chloroplast is bounded by three membranes (occasionally two),161 having lost the red algal endosymbiont's original cell membrane.162163 The outermost membrane is not connected to the endoplasmic reticulum.164165 They contain a pyrenoid, and have triplet-stacked thylakoids. Starch is found outside the chloroplast.166 Peridinin chloroplasts also have DNA that is highly reduced and fragmented into many small circles.167 Most of the genome has migrated to the nucleus, and only critical photosynthesis-related genes remain in the chloroplast.

Most dinophyte chloroplasts contain form II RuBisCO, at least the photosynthetic pigments chlorophyll a, chlorophyll c2, beta-carotene, and at least one dinophyte-unique xanthophyll (peridinin, dinoxanthin, or diadinoxanthin), giving many a golden-brown color.168169 All dinophytes store starch in their cytoplasm, and most have chloroplasts with thylakoids arranged in stacks of three.170

Haptophyte-derived chloroplasts

The fucoxanthin dinophyte lineages (including Karlodinium and Karenia)171 lost their original red algal derived chloroplast, and replaced it with a new chloroplast derived from a haptophyte endosymbiont, making these tertiary plastids. Karlodinium and Karenia probably took up different endosymbionts.172 Because the haptophyte chloroplast has four membranes, tertiary endosymbiosis would be expected to create a six membraned chloroplast, adding the haptophyte's cell membrane and the dinophyte's phagosomal vacuole.173 However, the haptophyte was heavily reduced, stripped of a few membranes and its nucleus, leaving only its chloroplast (with its original double membrane), and possibly one or two additional membranes around it.174175

Fucoxanthin-containing chloroplasts are characterized by having the pigment fucoxanthin (actually 19′-hexanoyloxy-fucoxanthin and/or 19′-butanoyloxy-fucoxanthin) and no peridinin. Fucoxanthin is also found in haptophyte chloroplasts, providing evidence of ancestry.176

Diatom-derived chloroplasts

Some dinophytes, like Kryptoperidinium and Durinskia,177 have a diatom (heterokontophyte)-derived chloroplast.178 These chloroplasts are bounded by up to five membranes,179 (depending on whether the entire diatom endosymbiont is counted as the chloroplast, or just the red algal derived chloroplast inside it). The diatom endosymbiont has been reduced relatively little—it still retains its original mitochondria,180 and has endoplasmic reticulum, ribosomes, a nucleus, and of course, red algal derived chloroplasts—practically a complete cell,181 all inside the host's endoplasmic reticulum lumen.182 However the diatom endosymbiont can't store its own food—its storage polysaccharide is found in granules in the dinophyte host's cytoplasm instead.183184 The diatom endosymbiont's nucleus is present, but it probably can't be called a nucleomorph because it shows no sign of genome reduction, and might have even been expanded.185 Diatoms have been engulfed by dinoflagellates at least three times.186

The diatom endosymbiont is bounded by a single membrane,187 inside it are chloroplasts with four membranes. Like the diatom endosymbiont's diatom ancestor, the chloroplasts have triplet thylakoids and pyrenoids.188

In some of these genera, the diatom endosymbiont's chloroplasts aren't the only chloroplasts in the dinophyte. The original three-membraned peridinin chloroplast is still around, converted to an eyespot.189190

Kleptoplasty

Main article: Kleptoplasty

In some groups of mixotrophic protists, like some dinoflagellates (e.g. Dinophysis), chloroplasts are separated from a captured alga and used temporarily. These klepto chloroplasts may only have a lifetime of a few days and are then replaced.191192

Cryptophyte-derived dinophyte chloroplast

Members of the genus Dinophysis have a phycobilin-containing193 chloroplast taken from a cryptophyte.194 However, the cryptophyte is not an endosymbiont—only the chloroplast seems to have been taken, and the chloroplast has been stripped of its nucleomorph and outermost two membranes, leaving just a two-membraned chloroplast. Cryptophyte chloroplasts require their nucleomorph to maintain themselves, and Dinophysis species grown in cell culture alone cannot survive, so it is possible (but not confirmed) that the Dinophysis chloroplast is a kleptoplast—if so, Dinophysis chloroplasts wear out and Dinophysis species must continually engulf cryptophytes to obtain new chloroplasts to replace the old ones.195

Chloroplast DNA

Main article: Chloroplast DNA

See also: List of sequenced plastomes

Chloroplasts, like other endosymbiotic organelles, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA (cpDNA) was identified biochemically in 1959,196 and confirmed by electron microscopy in 1962.197 The discoveries that the chloroplast contains ribosomes198 and performs protein synthesis199 revealed that the chloroplast is genetically semi-autonomous. Chloroplast DNA was first sequenced in 1986.200 Since then, hundreds of chloroplast genomes from various species have been sequenced, but they are mostly those of land plants and green algaeglaucophytes, red algae, and other algal groups are extremely underrepresented, potentially introducing some bias in views of "typical" chloroplast DNA structure and content.201

cytochrome photosystem I acetyl-CoA carboxylase rubisco tRNAs tRNA photosystem II tRNAs tRNAs photosystem II ribosomalproteins tRNA tRNA nadh dehydrogenase ribosomal proteins tRNA replication origin regions tRNA small RNA ribosomal protein replication origin regions ribosomal RNA tRNAs ribosomal RNA tRNA cytochromes photosystem II ribosomal proteins photosystem I cytochromes photosystem II atp synthase tRNAs nadh dehydrogenase tRNA ribosomal proteins photosystem I tRNAs photosystem II RNA polymerase ribosomal protein atp synthase tRNAs ribosomal protein tRNA photosystem II tRNA tRNA ribosomal RNA tRNA ribosomal RNA tRNA ribosomal protein photosystem I nadh dehydrogenase tRNA ribosomal protein nadh dehydrogenase tRNA tRNA ribosomal proteins initiation factor 1 ribosomal proteins RNA polymerase atp-dependent protease ribosomal proteins tRNAs nicotiana tabacum edit · image Chloroplast DNA Interactive gene map of chloroplast DNA from Nicotiana tabacum. Segments with labels on the inside are on the B strand of DNA, segments with labels on the outside are on the A strand. Notches indicate introns.

Molecular structure

With few exceptions, most chloroplasts have their entire chloroplast genome combined into a single large circular DNA molecule,202 typically 120,000–170,000 base pairs long203204205206 and a mass of about 80–130 million daltons.207 While chloroplast genomes can almost always be assembled into a circular map, the physical DNA molecules inside cells take on a variety of linear and branching forms.208209 New chloroplasts may contain up to 100 copies of their genome,210 though the number of copies decreases to about 15–20 as the chloroplasts age.211

Chloroplast DNA is usually condensed into nucleoids, which can contain multiple copies of the chloroplast genome. Many nucleoids can be found in each chloroplast.212 In primitive red algae, the chloroplast DNA nucleoids are clustered in the center of the chloroplast, while in green plants and green algae, the nucleoids are dispersed throughout the stroma.213 Chloroplast DNA is not associated with true histones, proteins that are used to pack DNA molecules tightly in eukaryote nuclei.214 Though in red algae, similar proteins tightly pack each chloroplast DNA ring in a nucleoid.215

Many chloroplast genomes contain two inverted repeats, which separate a long single copy section (LSC) from a short single copy section (SSC).216 A given pair of inverted repeats are rarely identical, but they are always very similar to each other, apparently resulting from concerted evolution.217 The inverted repeats vary wildly in length, ranging from 4,000 to 25,000 base pairs long each and containing as few as four or as many as over 150 genes.218 The inverted repeat regions are highly conserved in land plants, and accumulate few mutations.219220

Similar inverted repeats exist in the genomes of cyanobacteria and the other two chloroplast lineages (glaucophyta and rhodophyceae), suggesting that they predate the chloroplast.221 Some chloroplast genomes have since lost222223 or flipped the inverted repeats (making them direct repeats).224 It is possible that the inverted repeats help stabilize the rest of the chloroplast genome, as chloroplast genomes which have lost some of the inverted repeat segments tend to get rearranged more.225

DNA repair and replication

In chloroplasts of the moss Physcomitrella patens, the DNA mismatch repair protein Msh1 interacts with the recombinational repair proteins RecA and RecG to maintain chloroplast genome stability.226 In chloroplasts of the plant Arabidopsis thaliana the RecA protein maintains the integrity of the chloroplast's DNA by a process that likely involves the recombinational repair of DNA damage.227

The mechanism for chloroplast DNA (cpDNA) replication has not been conclusively determined, but two main models have been proposed. Scientists have attempted to observe chloroplast replication via electron microscopy since the 1970s.228229 The results of the microscopy experiments led to the idea that chloroplast DNA replicates using a double displacement loop (D-loop). As the D-loop moves through the circular DNA, it adopts a theta intermediary form, also known as a Cairns replication intermediate, and completes replication with a rolling circle mechanism.230231 Transcription starts at specific points of origin. Multiple replication forks open up, allowing replication machinery to transcribe the DNA. As replication continues, the forks grow and eventually converge. The new cpDNA structures separate, creating daughter cpDNA chromosomes.

In addition to the early microscopy experiments, this model is also supported by the amounts of deamination seen in cpDNA.232 Deamination occurs when an amino group is lost and is a mutation that often results in base changes. When adenine is deaminated, it becomes hypoxanthine. Hypoxanthine can bind to cytosine, and when the XC base pair is replicated, it becomes a GC (thus, an A → G base change).233

In cpDNA, there are several A → G deamination gradients. DNA becomes susceptible to deamination events when it is single stranded. When replication forks form, the strand not being copied is single stranded, and thus at risk for A → G deamination. Therefore, gradients in deamination indicate that replication forks were most likely present and the direction that they initially opened (the highest gradient is most likely nearest the start site because it was single stranded for the longest amount of time).234 This mechanism is still the leading theory today; however, a second theory suggests that most cpDNA is actually linear and replicates through homologous recombination. It further contends that only a minority of the genetic material is kept in circular chromosomes while the rest is in branched, linear, or other complex structures.235236

One of competing model for cpDNA replication asserts that most cpDNA is linear and participates in homologous recombination and replication structures similar to the linear and circular DNA structures of bacteriophage T4.237238 It has been established that some plants have linear cpDNA, such as maize, and that more species still contain complex structures that scientists do not yet understand.239 When the original experiments on cpDNA were performed, scientists did notice linear structures; however, they attributed these linear forms to broken circles.240 If the branched and complex structures seen in cpDNA experiments are real and not artifacts of concatenated circular DNA or broken circles, then a D-loop mechanism of replication is insufficient to explain how those structures would replicate.241 At the same time, homologous recombination does not expand the multiple A --> G gradients seen in plastomes.242 Because of the failure to explain the deamination gradient as well as the numerous plant species that have been shown to have circular cpDNA, the predominant theory continues to hold that most cpDNA is circular and most likely replicates via a D loop mechanism.

Gene content and protein synthesis

The ancestral cyanobacteria that led to chloroplasts probably had a genome that contained over 3000 genes, but only approximately 100 genes remain in contemporary chloroplast genomes.243244245 These genes code for a variety of things, mostly to do with the protein pipeline and photosynthesis. As in prokaryotes, genes in chloroplast DNA are organized into operons.246 Unlike prokaryotic DNA molecules, chloroplast DNA molecules contain introns (plant mitochondrial DNAs do too, but not human mtDNAs).247

Among land plants, the contents of the chloroplast genome are fairly similar.248

Chloroplast genome reduction and gene transfer

Over time, many parts of the chloroplast genome were transferred to the nuclear genome of the host,249250251 a process called endosymbiotic gene transfer. As a result, the chloroplast genome is heavily reduced compared to that of free-living cyanobacteria. Chloroplasts may contain 60–100 genes whereas cyanobacteria often have more than 1500 genes in their genome.252 Recently, a plastid without a genome was found, demonstrating chloroplasts can lose their genome during endosymbiotic the gene transfer process.253

Endosymbiotic gene transfer is how we know about the lost chloroplasts in many CASH lineages. Even if a chloroplast is eventually lost, the genes it donated to the former host's nucleus persist, providing evidence for the lost chloroplast's existence. For example, while diatoms (a heterokontophyte) now have a red algal derived chloroplast, the presence of many green algal genes in the diatom nucleus provide evidence that the diatom ancestor had a green algal derived chloroplast at some point, which was subsequently replaced by the red chloroplast.254

In land plants, some 11–14% of the DNA in their nuclei can be traced back to the chloroplast,255 up to 18% in Arabidopsis, corresponding to about 4,500 protein-coding genes.256 There have been a few recent transfers of genes from the chloroplast DNA to the nuclear genome in land plants.257

Of the approximately 3000 proteins found in chloroplasts, some 95% of them are encoded by nuclear genes. Many of the chloroplast's protein complexes consist of subunits from both the chloroplast genome and the host's nuclear genome. As a result, protein synthesis must be coordinated between the chloroplast and the nucleus. The chloroplast is mostly under nuclear control, though chloroplasts can also give out signals regulating gene expression in the nucleus, called retrograde signaling.258 Recent research indicates that parts of the retrograde signaling network once considered characteristic for land plants emerged already in an algal progenitor,259260261 integrating into co-expressed cohorts of genes in the closest algal relatives of land plants.262

Protein synthesis

See also: Transcription and translation

Protein synthesis within chloroplasts relies on two RNA polymerases. One is coded by the chloroplast DNA, the other is of nuclear origin. The two RNA polymerases may recognize and bind to different kinds of promoters within the chloroplast genome.263 The ribosomes in chloroplasts are similar to bacterial ribosomes.264

Protein targeting and import

See also: Translation

Because so many chloroplast genes have been moved to the nucleus, many proteins that would originally have been translated in the chloroplast are now synthesized in the cytoplasm of the plant cell. These proteins must be directed back to the chloroplast, and imported through at least two chloroplast membranes.265

Curiously, around half of the protein products of transferred genes aren't even targeted back to the chloroplast. Many became exaptations, taking on new functions like participating in cell division, protein routing, and even disease resistance. A few chloroplast genes found new homes in the mitochondrial genome—most became nonfunctional pseudogenes, though a few tRNA genes still work in the mitochondrion.266 Some transferred chloroplast DNA protein products get directed to the secretory pathway,267 though many secondary plastids are bounded by an outermost membrane derived from the host's cell membrane, and therefore topologically outside of the cell because to reach the chloroplast from the cytosol, the cell membrane must be crossed, which signifies entrance into the extracellular space. In those cases, chloroplast-targeted proteins do initially travel along the secretory pathway.268

Because the cell acquiring a chloroplast already had mitochondria (and peroxisomes, and a cell membrane for secretion), the new chloroplast host had to develop a unique protein targeting system to avoid having chloroplast proteins being sent to the wrong organelle.269

In most, but not all cases, nuclear-encoded chloroplast proteins are translated with a cleavable transit peptide that's added to the N-terminus of the protein precursor. Sometimes the transit sequence is found on the C-terminus of the protein,270 or within the functional part of the protein.271

Transport proteins and membrane translocons

After a chloroplast polypeptide is synthesized on a ribosome in the cytosol, an enzyme specific to chloroplast proteins272 phosphorylates, or adds a phosphate group to many (but not all) of them in their transit sequences.273 Phosphorylation helps many proteins bind the polypeptide, keeping it from folding prematurely.274 This is important because it prevents chloroplast proteins from assuming their active form and carrying out their chloroplast functions in the wrong place—the cytosol.275276 At the same time, they have to keep just enough shape so that they can be recognized by the chloroplast.277 These proteins also help the polypeptide get imported into the chloroplast.278

From here, chloroplast proteins bound for the stroma must pass through two protein complexes—the TOC complex, or translocon on the outer chloroplast membrane, and the TIC translocon, or translocon on the inner chloroplast membrane translocon.279 Chloroplast polypeptide chains probably often travel through the two complexes at the same time, but the TIC complex can also retrieve preproteins lost in the intermembrane space.280

Structure

In land plants, chloroplasts are generally lens-shaped, 3–10 μm in diameter and 1–3 μm thick.281282 Corn seedling chloroplasts are ≈20 μm3 in volume.283 Greater diversity in chloroplast shapes exists among the algae, which often contain a single chloroplast284 that can be shaped like a net (e.g., Oedogonium),285 a cup (e.g., Chlamydomonas),286 a ribbon-like spiral around the edges of the cell (e.g., Spirogyra),287 or slightly twisted bands at the cell edges (e.g., Sirogonium).288 Some algae have two chloroplasts in each cell; they are star-shaped in Zygnema,289 or may follow the shape of half the cell in order Desmidiales.290 In some algae, the chloroplast takes up most of the cell, with pockets for the nucleus and other organelles,291 for example, some species of Chlorella have a cup-shaped chloroplast that occupies much of the cell.292

All chloroplasts have at least three membrane systems—the outer chloroplast membrane, the inner chloroplast membrane, and the thylakoid system. The two innermost lipid-bilayer membranes293 that surround all chloroplasts correspond to the outer and inner membranes of the ancestral cyanobacterium's gram negative cell wall,294295296 and not the phagosomal membrane from the host, which was probably lost.297 Chloroplasts that are the product of secondary endosymbiosis may have additional membranes surrounding these three.298 Inside the outer and inner chloroplast membranes is the chloroplast stroma, a semi-gel-like fluid299 that makes up much of a chloroplast's volume, and in which the thylakoid system floats.

See also: Chloroplast membrane

There are some common misconceptions about the outer and inner chloroplast membranes. The fact that chloroplasts are surrounded by a double membrane is often cited as evidence that they are the descendants of endosymbiotic cyanobacteria. This is often interpreted as meaning the outer chloroplast membrane is the product of the host's cell membrane infolding to form a vesicle to surround the ancestral cyanobacterium—which is not true—both chloroplast membranes are homologous to the cyanobacterium's original double membranes.300

The chloroplast double membrane is also often compared to the mitochondrial double membrane. This is not a valid comparison—the inner mitochondria membrane is used to run proton pumps and carry out oxidative phosphorylation across to generate ATP energy. The only chloroplast structure that can be considered analogous to it is the internal thylakoid system. Even so, in terms of "in-out", the direction of chloroplast H+ ion flow is in the opposite direction compared to oxidative phosphorylation in mitochondria.301302 In addition, in terms of function, the inner chloroplast membrane, which regulates metabolite passage and synthesizes some materials, has no counterpart in the mitochondrion.303

Outer chloroplast membrane

Main article: Chloroplast membrane

The outer chloroplast membrane is a semi-porous membrane that small molecules and ions can easily diffuse across.304 However, it is not permeable to larger proteins, so chloroplast polypeptides being synthesized in the cell cytoplasm must be transported across the outer chloroplast membrane by the TOC complex, or translocon on the outer chloroplast membrane.305

The chloroplast membranes sometimes protrude out into the cytoplasm, forming a stromule, or stroma-containing tubule. Stromules are very rare in chloroplasts, and are much more common in other plastids like chromoplasts and amyloplasts in petals and roots, respectively.306307 They may exist to increase the chloroplast's surface area for cross-membrane transport, because they are often branched and tangled with the endoplasmic reticulum.308 When they were first observed in 1962, some plant biologists dismissed the structures as artifactual, claiming that stromules were just oddly shaped chloroplasts with constricted regions or dividing chloroplasts.309 However, there is a growing body of evidence that stromules are functional, integral features of plant cell plastids, not merely artifacts.310

Intermembrane space and peptidoglycan wall

Usually, a thin intermembrane space about 10–20 nanometers thick exists between the outer and inner chloroplast membranes.311

Glaucophyte algal chloroplasts have a peptidoglycan layer between the chloroplast membranes. It corresponds to the peptidoglycan cell wall of their cyanobacterial ancestors, which is located between their two cell membranes. These chloroplasts are called muroplasts (from Latin "mura", meaning "wall"). Other chloroplasts were assumed to have lost the cyanobacterial wall, leaving an intermembrane space between the two chloroplast envelope membranes,312 but has since been found also in moss, lycophytes and ferns.313

Inner chloroplast membrane

Main article: Chloroplast membrane

The inner chloroplast membrane borders the stroma and regulates passage of materials in and out of the chloroplast. After passing through the TOC complex in the outer chloroplast membrane, polypeptides must pass through the TIC complex (translocon on the inner chloroplast membrane) which is located in the inner chloroplast membrane.314

In addition to regulating the passage of materials, the inner chloroplast membrane is where fatty acids, lipids, and carotenoids are synthesized.315

Peripheral reticulum

Some chloroplasts contain a structure called the chloroplast peripheral reticulum.316 It is often found in the chloroplasts of C4 plants, though it has also been found in some C3 angiosperms,317 and even some gymnosperms.318 The chloroplast peripheral reticulum consists of a maze of membranous tubes and vesicles continuous with the inner chloroplast membrane that extends into the internal stromal fluid of the chloroplast. Its purpose is thought to be to increase the chloroplast's surface area for cross-membrane transport between its stroma and the cell cytoplasm. The small vesicles sometimes observed may serve as transport vesicles to shuttle stuff between the thylakoids and intermembrane space.319

Stroma

Main article: Stroma

The protein-rich,320 alkaline,321 aqueous fluid within the inner chloroplast membrane and outside of the thylakoid space is called the stroma,322 which corresponds to the cytosol of the original cyanobacterium. Nucleoids of chloroplast DNA, chloroplast ribosomes, the thylakoid system with plastoglobuli, starch granules, and many proteins can be found floating around in it. The Calvin cycle, which fixes CO2 into G3P takes place in the stroma.

Chloroplast ribosomes

Chloroplasts have their own ribosomes, which they use to synthesize a small fraction of their proteins. Chloroplast ribosomes are about two-thirds the size of cytoplasmic ribosomes (around 17 nm vs 25 nm).323 They take mRNAs transcribed from the chloroplast DNA and translate them into protein. While similar to bacterial ribosomes,324 chloroplast translation is more complex than in bacteria, so chloroplast ribosomes include some chloroplast-unique features.325326

Small subunit ribosomal RNAs in several Chlorophyta and euglenid chloroplasts lack motifs for Shine-Dalgarno sequence recognition,327 which is considered essential for translation initiation in most chloroplasts and prokaryotes.328329 Such loss is also rarely observed in other plastids and prokaryotes.330331 An additional 4.5S rRNA with homology to the 3' tail of 23S is found in "higher" plants.332

Plastoglobuli

Plastoglobuli (singular plastoglobulus, sometimes spelled plastoglobule(s)), are spherical bubbles of lipids and proteins333 about 45–60 nanometers across.334 They are surrounded by a lipid monolayer.335 Plastoglobuli are found in all chloroplasts,336 but become more common when the chloroplast is under oxidative stress,337 or when it ages and transitions into a gerontoplast.338 Plastoglobuli also exhibit a greater size variation under these conditions.339 They are also common in etioplasts, but decrease in number as the etioplasts mature into chloroplasts.340

Plastoglobuli contain both structural proteins and enzymes involved in lipid synthesis and metabolism. They contain many types of lipids including plastoquinone, vitamin E, carotenoids and chlorophylls.341

Plastoglobuli were once thought to be free-floating in the stroma, but it is now thought that they are permanently attached either to a thylakoid or to another plastoglobulus attached to a thylakoid, a configuration that allows a plastoglobulus to exchange its contents with the thylakoid network.342 In normal green chloroplasts, the vast majority of plastoglobuli occur singularly, attached directly to their parent thylakoid. In old or stressed chloroplasts, plastoglobuli tend to occur in linked groups or chains, still always anchored to a thylakoid.343

Plastoglobuli form when a bubble appears between the layers of the lipid bilayer of the thylakoid membrane, or bud from existing plastoglobuli—though they never detach and float off into the stroma.344 Practically all plastoglobuli form on or near the highly curved edges of the thylakoid disks or sheets. They are also more common on stromal thylakoids than on granal ones.345

Starch granules

Starch granules are very common in chloroplasts, typically taking up 15% of the organelle's volume,346 though in some other plastids like amyloplasts, they can be big enough to distort the shape of the organelle.347 Starch granules are simply accumulations of starch in the stroma, and are not bounded by a membrane.348

Starch granules appear and grow throughout the day, as the chloroplast synthesizes sugars, and are consumed at night to fuel respiration and continue sugar export into the phloem,349 though in mature chloroplasts, it is rare for a starch granule to be completely consumed or for a new granule to accumulate.350

Starch granules vary in composition and location across different chloroplast lineages. In red algae, starch granules are found in the cytoplasm rather than in the chloroplast.351 In C4 plants, mesophyll chloroplasts, which do not synthesize sugars, lack starch granules.352

RuBisCO

Main article: RuBisCO

The chloroplast stroma contains many proteins, though the most common and important is RuBisCO, which is probably also the most abundant protein on the planet.353 RuBisCO is the enzyme that fixes CO2 into sugar molecules. In C3 plants, RuBisCO is abundant in all chloroplasts, though in C4 plants, it is confined to the bundle sheath chloroplasts, where the Calvin cycle is carried out in C4 plants.354

Pyrenoids

Main article: Pyrenoid

The chloroplasts of some hornworts355 and algae contain structures called pyrenoids. They are not found in higher plants.356 Pyrenoids are roughly spherical and highly refractive bodies which are a site of starch accumulation in plants that contain them. They consist of a matrix opaque to electrons, surrounded by two hemispherical starch plates. The starch is accumulated as the pyrenoids mature.357 In algae with carbon concentrating mechanisms, the enzyme RuBisCO is found in the pyrenoids. Starch can also accumulate around the pyrenoids when CO2 is scarce.358 Pyrenoids can divide to form new pyrenoids, or be produced "de novo".359360

Thylakoid system

Main article: Thylakoid

Thylakoids (sometimes spelled thylakoïds),361 are small interconnected sacks which contain the membranes that the light reactions of photosynthesis take place on. The word thylakoid comes from the Greek word thylakos which means "sack".362

Suspended within the chloroplast stroma is the thylakoid system, a highly dynamic collection of membranous sacks called thylakoids where chlorophyll is found and the light reactions of photosynthesis happen.363 In most vascular plant chloroplasts, the thylakoids are arranged in stacks called grana,364 though in certain C4 plant chloroplasts365 and some algal chloroplasts, the thylakoids are free floating.366

Thylakoid structure

Using a light microscope, it is just barely possible to see tiny green granules—which were named grana.367 With electron microscopy, it became possible to see the thylakoid system in more detail, revealing it to consist of stacks of flat thylakoids which made up the grana, and long interconnecting stromal thylakoids which linked different grana.368 In the transmission electron microscope, thylakoid membranes appear as alternating light-and-dark bands, 8.5 nanometers thick.369

The three-dimensional structure of the thylakoid membrane system has been disputed. Many models have been proposed, the most prevalent being the helical model, in which granum stacks of thylakoids are wrapped by helical stromal thylakoids.370 Another model known as the 'bifurcation model', which was based on the first electron tomography study of plant thylakoid membranes, depicts the stromal membranes as wide lamellar sheets perpendicular to the grana columns which bifurcates into multiple parallel discs forming the granum-stroma assembly.371 The helical model was supported by several additional works,372373 but ultimately it was determined in 2019 that features from both the helical and bifurcation models are consolidated by newly discovered left-handed helical membrane junctions.374 Likely for ease, the thylakoid system is still commonly depicted by older "hub and spoke" models where the grana are connected to each other by tubes of stromal thylakoids.375

Grana consist of a stacks of flattened circular granal thylakoids that resemble pancakes. Each granum can contain anywhere from two to a hundred thylakoids,376 though grana with 10–20 thylakoids are most common.377 Wrapped around the grana are multiple parallel right-handed helical stromal thylakoids, also known as frets or lamellar thylakoids. The helices ascend at an angle of ~20°, connecting to each granal thylakoid at a bridge-like slit junction.378379380

The stroma lamellae extend as large sheets perpendicular to the grana columns. These sheets are connected to the right-handed helices either directly or through bifurcations that form left-handed helical membrane surfaces.381 The left-handed helical surfaces have a similar tilt angle to the right-handed helices (~20°), but ¼ the pitch. Approximately 4 left-handed helical junctions are present per granum, resulting in a pitch-balanced array of right- and left-handed helical membrane surfaces of different radii and pitch that consolidate the network with minimal surface and bending energies.382 While different parts of the thylakoid system contain different membrane proteins, the thylakoid membranes are continuous and the thylakoid space they enclose form a single continuous labyrinth.383

Thylakoid composition

Embedded in the thylakoid membranes are important protein complexes which carry out the light reactions of photosynthesis. Photosystem II and photosystem I contain light-harvesting complexes with chlorophyll and carotenoids that absorb light energy and use it to energize electrons. Molecules in the thylakoid membrane use the energized electrons to pump hydrogen ions into the thylakoid space, decreasing the pH and turning it acidic. ATP synthase is a large protein complex that harnesses the concentration gradient of the hydrogen ions in the thylakoid space to generate ATP energy as the hydrogen ions flow back out into the stroma—much like a dam turbine.384

There are two types of thylakoids—granal thylakoids, which are arranged in grana, and stromal thylakoids, which are in contact with the stroma. Granal thylakoids are pancake-shaped circular disks about 300–600 nanometers in diameter. Stromal thylakoids are helicoid sheets that spiral around grana.385 The flat tops and bottoms of granal thylakoids contain only the relatively flat photosystem II protein complex. This allows them to stack tightly, forming grana with many layers of tightly appressed membrane, called granal membrane, increasing stability and surface area for light capture.386

In contrast, photosystem I and ATP synthase are large protein complexes which jut out into the stroma. They can't fit in the appressed granal membranes, and so are found in the stromal thylakoid membrane—the edges of the granal thylakoid disks and the stromal thylakoids. These large protein complexes may act as spacers between the sheets of stromal thylakoids.387

The number of thylakoids and the total thylakoid area of a chloroplast is influenced by light exposure. Shaded chloroplasts contain larger and more grana with more thylakoid membrane area than chloroplasts exposed to bright light, which have smaller and fewer grana and less thylakoid area. Thylakoid extent can change within minutes of light exposure or removal.388

Pigments and chloroplast colors

Inside the photosystems embedded in chloroplast thylakoid membranes are various photosynthetic pigments, which absorb and transfer light energy. The types of pigments found are different in various groups of chloroplasts, and are responsible for a wide variety of chloroplast colorations. Other plastid types, such as the leucoplast and the chromoplast, contain little chlorophyll and do not carry out photosynthesis.

Paper chromatography of some spinach leaf extract shows the various pigments present in their chloroplasts. Xanthophylls Chlorophyll a Chlorophyll b

Chlorophylls

Chlorophyll a is found in all chloroplasts, as well as their cyanobacterial ancestors. Chlorophyll a is a blue-green pigment389 partially responsible for giving most cyanobacteria and chloroplasts their color. Other forms of chlorophyll exist, such as the accessory pigments chlorophyll b, chlorophyll c, chlorophyll d,390 and chlorophyll f.

Chlorophyll b is an olive green pigment found only in the chloroplasts of plants, green algae, any secondary chloroplasts obtained through the secondary endosymbiosis of a green alga, and a few cyanobacteria.391 It is the chlorophylls a and b together that make most plant and green algal chloroplasts green.392

Chlorophyll c is mainly found in secondary endosymbiotic chloroplasts that originated from a red alga, although it is not found in chloroplasts of red algae themselves. Chlorophyll c is also found in some green algae and cyanobacteria.393

Chlorophylls d and f are pigments found only in some cyanobacteria.394395

Carotenoids

In addition to chlorophylls, another group of yelloworange396 pigments called carotenoids are also found in the photosystems. There are about thirty photosynthetic carotenoids.397 They help transfer and dissipate excess energy,398 and their bright colors sometimes override the chlorophyll green, like during the fall, when the leaves of some land plants change color.399 β-carotene is a bright red-orange carotenoid found in nearly all chloroplasts, like chlorophyll a.400 Xanthophylls, especially the orange-red zeaxanthin, are also common.401 Many other forms of carotenoids exist that are only found in certain groups of chloroplasts.402

Phycobilins

Phycobilins are a third group of pigments found in cyanobacteria, and glaucophyte, red algal, and cryptophyte chloroplasts.403404 Phycobilins come in all colors, though phycoerytherin is one of the pigments that makes many red algae red.405 Phycobilins often organize into relatively large protein complexes about 40 nanometers across called phycobilisomes.406 Like photosystem I and ATP synthase, phycobilisomes jut into the stroma, preventing thylakoid stacking in red algal chloroplasts.407 Cryptophyte chloroplasts and some cyanobacteria don't have their phycobilin pigments organized into phycobilisomes, and keep them in their thylakoid space instead.408

Photosynthetic pigments. Presence of pigments across chloroplast groups and cyanobacteria.

Colored cells represent pigment presence. Chl = chlorophyll409410411

Chl aChl bChl cChl d and fXanthophyllsα-caroteneβ-carotenePhycobilins
Land plants
Green algae
Euglenophytes and Chlorarachniophytes
Multicellular red algae
Unicellular red algae
Haptophytes and Dinophytes
Cryptophytes
Glaucophytes
Cyanobacteria

Specialized chloroplasts in C4 plants

See also: Photosynthesis and C4 photosynthesis

To fix carbon dioxide into sugar molecules in the process of photosynthesis, chloroplasts use an enzyme called RuBisCO. RuBisCO has trouble distinguishing between carbon dioxide and oxygen, so at high oxygen concentrations, RuBisCO starts accidentally adding oxygen to sugar precursors. This has the result of ATP energy being wasted and CO2 being released, all with no sugar being produced. This is a big problem, since O2 is produced by the initial light reactions of photosynthesis, causing issues down the line in the Calvin cycle which uses RuBisCO.412

C4 plants evolved a way to solve this—by spatially separating the light reactions and the Calvin cycle. The light reactions, which store light energy in ATP and NADPH, are done in the mesophyll cells of a C4 leaf. The Calvin cycle, which uses the stored energy to make sugar using RuBisCO, is done in the bundle sheath cells, a layer of cells surrounding a vein in a leaf.413

As a result, chloroplasts in C4 mesophyll cells and bundle sheath cells are specialized for each stage of photosynthesis. In mesophyll cells, chloroplasts are specialized for the light reactions, so they lack RuBisCO, and have normal grana and thylakoids,414 which they use to make ATP and NADPH, as well as oxygen. They store CO2 in a four-carbon compound, which is why the process is called C4 photosynthesis. The four-carbon compound is then transported to the bundle sheath chloroplasts, where it drops off CO2 and returns to the mesophyll. Bundle sheath chloroplasts do not carry out the light reactions, preventing oxygen from building up in them and disrupting RuBisCO activity.415 Because of this, they lack thylakoids organized into grana stacks—though bundle sheath chloroplasts still have free-floating thylakoids in the stroma where they still carry out cyclic electron flow, a light-driven method of synthesizing ATP to power the Calvin cycle without generating oxygen. They lack photosystem II, and only have photosystem I—the only protein complex needed for cyclic electron flow.416417 Because the job of bundle sheath chloroplasts is to carry out the Calvin cycle and make sugar, they often contain large starch grains.418

Both types of chloroplast contain large amounts of chloroplast peripheral reticulum,419 which they use to get more surface area to transport stuff in and out of them.420421 Mesophyll chloroplasts have a little more peripheral reticulum than bundle sheath chloroplasts.422

Function and chemistry

Guard cell chloroplasts

Unlike most epidermal cells, the guard cells of plant stomata contain relatively well-developed chloroplasts.423 However, exactly what they do is controversial.424

Plant innate immunity

Plants lack specialized immune cells—all plant cells participate in the plant immune response. Chloroplasts, along with the nucleus, cell membrane, and endoplasmic reticulum,425 are key players in pathogen defense. Due to its role in a plant cell's immune response, pathogens frequently target the chloroplast.426

Plants have two main immune responses—the hypersensitive response, in which infected cells seal themselves off and undergo programmed cell death, and systemic acquired resistance, where infected cells release signals warning the rest of the plant of a pathogen's presence. Chloroplasts stimulate both responses by purposely damaging their photosynthetic system, producing reactive oxygen species. High levels of reactive oxygen species will cause the hypersensitive response. The reactive oxygen species also directly kill any pathogens within the cell. Lower levels of reactive oxygen species initiate systemic acquired resistance, triggering defense-molecule production in the rest of the plant.427

In some plants, chloroplasts are known to move closer to the infection site and the nucleus during an infection.428

Chloroplasts can serve as cellular sensors. After detecting stress in a cell, which might be due to a pathogen, chloroplasts begin producing molecules like salicylic acid, jasmonic acid, nitric oxide and reactive oxygen species which can serve as defense-signals. As cellular signals, reactive oxygen species are unstable molecules, so they probably don't leave the chloroplast, but instead pass on their signal to an unknown second messenger molecule. All these molecules initiate retrograde signaling—signals from the chloroplast that regulate gene expression in the nucleus.429

In addition to defense signaling, chloroplasts, with the help of the peroxisomes,430 help synthesize an important defense molecule, jasmonate. Chloroplasts synthesize all the fatty acids in a plant cell431432linoleic acid, a fatty acid, is a precursor to jasmonate.433

Photosynthesis

Main article: Photosynthesis

One of the main functions of the chloroplast is its role in photosynthesis, the process by which light is transformed into chemical energy, to subsequently produce food in the form of sugars. Water (H2O) and carbon dioxide (CO2) are used in photosynthesis, and sugar and oxygen (O2) are made, using light energy. Photosynthesis is divided into two stages—the light reactions, where water is split to produce oxygen, and the dark reactions, or Calvin cycle, which builds sugar molecules from carbon dioxide. The two phases are linked by the energy carriers adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADP+).434435

Light reactions

Main article: Light reactions

The light reactions take place on the thylakoid membranes. They take light energy and store it in NADPH, a form of NADP+, and ATP to fuel the dark reactions.

Energy carriers

Main articles: Adenosine triphosphate and NADPH

ATP is the phosphorylated version of adenosine diphosphate (ADP), which stores energy in a cell and powers most cellular activities. ATP is the energized form, while ADP is the (partially) depleted form. NADP+ is an electron carrier which ferries high energy electrons. In the light reactions, it gets reduced, meaning it picks up electrons, becoming NADPH.

Photophosphorylation

Main article: Photophosphorylation

Like mitochondria, chloroplasts use the potential energy stored in an H+, or hydrogen ion, gradient to generate ATP energy. The two photosystems capture light energy to energize electrons taken from water, and release them down an electron transport chain. The molecules between the photosystems harness the electrons' energy to pump hydrogen ions into the thylakoid space, creating a concentration gradient, with more hydrogen ions (up to a thousand times as many)436 inside the thylakoid system than in the stroma. The hydrogen ions in the thylakoid space then diffuse back down their concentration gradient, flowing back out into the stroma through ATP synthase. ATP synthase uses the energy from the flowing hydrogen ions to phosphorylate adenosine diphosphate into adenosine triphosphate, or ATP.437438 Because chloroplast ATP synthase projects out into the stroma, the ATP is synthesized there, in position to be used in the dark reactions.439

NADP+ reduction

See also: Redox reaction

Electrons are often removed from the electron transport chains to charge NADP+ with electrons, reducing it to NADPH. Like ATP synthase, ferredoxin-NADP+ reductase, the enzyme that reduces NADP+, releases the NADPH it makes into the stroma, right where it is needed for the dark reactions.440

Because NADP+ reduction removes electrons from the electron transport chains, they must be replaced—the job of photosystem II, which splits water molecules (H2O) to obtain the electrons from its hydrogen atoms.441442

Cyclic photophosphorylation

Main article: Cyclic photophosphorylation

While photosystem II photolyzes water to obtain and energize new electrons, photosystem I simply reenergizes depleted electrons at the end of an electron transport chain. Normally, the reenergized electrons are taken by NADP+, though sometimes they can flow back down more H+-pumping electron transport chains to transport more hydrogen ions into the thylakoid space to generate more ATP. This is termed cyclic photophosphorylation because the electrons are recycled. Cyclic photophosphorylation is common in C4 plants, which need more ATP than NADPH.443

Dark reactions

Main article: Dark reactions

The Calvin cycle, also known as the dark reactions, is a series of biochemical reactions that fixes CO2 into G3P sugar molecules and uses the energy and electrons from the ATP and NADPH made in the light reactions. The Calvin cycle takes place in the stroma of the chloroplast.444

While named "the dark reactions", in most plants, they take place in the light, since the dark reactions are dependent on the products of the light reactions.445

Carbon fixation and G3P synthesis

The Calvin cycle starts by using the enzyme RuBisCO to fix CO2 into five-carbon Ribulose bisphosphate (RuBP) molecules. The result is unstable six-carbon molecules that immediately break down into three-carbon molecules called 3-phosphoglyceric acid, or 3-PGA. The ATP and NADPH made in the light reactions is used to convert the 3-PGA into glyceraldehyde-3-phosphate, or G3P sugar molecules. Most of the G3P molecules are recycled back into RuBP using energy from more ATP, but one out of every six produced leaves the cycle—the end product of the dark reactions.446

Sugars and starches

Glyceraldehyde-3-phosphate can double up to form larger sugar molecules like glucose and fructose. These molecules are processed, and from them, the still larger sucrose, a disaccharide commonly known as table sugar, is made, though this process takes place outside of the chloroplast, in the cytoplasm.447

Alternatively, glucose monomers in the chloroplast can be linked together to make starch, which accumulates into the starch grains found in the chloroplast.448 Under conditions such as high atmospheric CO2 concentrations, these starch grains may grow very large, distorting the grana and thylakoids. The starch granules displace the thylakoids, but leave them intact.449 Waterlogged roots can also cause starch buildup in the chloroplasts, possibly due to less sucrose being exported out of the chloroplast (or more accurately, the plant cell). This depletes a plant's free phosphate supply, which indirectly stimulates chloroplast starch synthesis.450 While linked to low photosynthesis rates, the starch grains themselves may not necessarily interfere significantly with the efficiency of photosynthesis,451 and might simply be a side effect of another photosynthesis-depressing factor.452

Photorespiration

Photorespiration can occur when the oxygen concentration is too high. RuBisCO cannot distinguish between oxygen and carbon dioxide very well, so it can accidentally add O2 instead of CO2 to RuBP. This process reduces the efficiency of photosynthesis—it consumes ATP and oxygen, releases CO2, and produces no sugar. It can waste up to half the carbon fixed by the Calvin cycle.453 Several mechanisms have evolved in different lineages that raise the carbon dioxide concentration relative to oxygen within the chloroplast, increasing the efficiency of photosynthesis. These mechanisms are called carbon dioxide concentrating mechanisms, or CCMs. These include Crassulacean acid metabolism, C4 carbon fixation,454 and pyrenoids. Chloroplasts in C4 plants are notable as they exhibit a distinct chloroplast dimorphism.

pH

Because of the H+ gradient across the thylakoid membrane, the interior of the thylakoid is acidic, with a pH around 4,455 while the stroma is slightly basic, with a pH of around 8.456 The optimal stroma pH for the Calvin cycle is 8.1, with the reaction nearly stopping when the pH falls below 7.3.457

CO2 in water can form carbonic acid, which can disturb the pH of isolated chloroplasts, interfering with photosynthesis, even though CO2 is used in photosynthesis. However, chloroplasts in living plant cells are not affected by this as much.458

Chloroplasts can pump K+ and H+ ions in and out of themselves using a poorly understood light-driven transport system.459

In the presence of light, the pH of the thylakoid lumen can drop up to 1.5 pH units, while the pH of the stroma can rise by nearly one pH unit.460

Amino acid synthesis

Chloroplasts alone make almost all of a plant cell's amino acids in their stroma461 except the sulfur-containing ones like cysteine and methionine.462463 Cysteine is made in the chloroplast (the proplastid too) but it is also synthesized in the cytosol and mitochondria, probably because it has trouble crossing membranes to get to where it is needed.464 The chloroplast is known to make the precursors to methionine but it is unclear whether the organelle carries out the last leg of the pathway or if it happens in the cytosol.465

Other nitrogen compounds

Chloroplasts make all of a cell's purines and pyrimidines—the nitrogenous bases found in DNA and RNA.466 They also convert nitrite (NO2−) into ammonia (NH3) which supplies the plant with nitrogen to make its amino acids and nucleotides.467

Other chemical products

The plastid is the site of diverse and complex lipid synthesis in plants.468469 The carbon used to form the majority of the lipid is from acetyl-CoA, which is the decarboxylation product of pyruvate.470 Pyruvate may enter the plastid from the cytosol by passive diffusion through the membrane after production in glycolysis.471 Pyruvate is also made in the plastid from phosphoenolpyruvate, a metabolite made in the cytosol from pyruvate or PGA.472 Acetate in the cytosol is unavailable for lipid biosynthesis in the plastid.473 The typical length of fatty acids produced in the plastid are 16 or 18 carbons, with 0-3 cis double bonds.474

The biosynthesis of fatty acids from acetyl-CoA primarily requires two enzymes. Acetyl-CoA carboxylase creates malonyl-CoA, used in both the first step and the extension steps of synthesis. Fatty acid synthase (FAS) is a large complex of enzymes and cofactors including acyl carrier protein (ACP) which holds the acyl chain as it is synthesized. The initiation of synthesis begins with the condensation of malonyl-ACP with acetyl-CoA to produce ketobutyryl-ACP. 2 reductions involving the use of NADPH and one dehydration creates butyryl-ACP. Extension of the fatty acid comes from repeated cycles of malonyl-ACP condensation, reduction, and dehydration.475

Other lipids are derived from the methyl-erythritol phosphate (MEP) pathway and consist of gibberelins, sterols, abscisic acid, phytol, and innumerable secondary metabolites.476

Location

Distribution in a plant

Not all cells in a multicellular plant contain chloroplasts. All green parts of a plant contain chloroplasts as the color comes from the chlorophyll.477 The plant cells which contain chloroplasts are usually parenchyma cells, though chloroplasts can also be found in collenchyma tissue.478 A plant cell which contains chloroplasts is known as a chlorenchyma cell. A typical chlorenchyma cell of a land plant contains about 10 to 100 chloroplasts.

In some plants such as cacti, chloroplasts are found in the stems,479 though in most plants, chloroplasts are concentrated in the leaves. One square millimeter of leaf tissue can contain half a million chloroplasts.480 Within a leaf, chloroplasts are mainly found in the mesophyll layers of a leaf, and the guard cells of stomata. Palisade mesophyll cells can contain 30–70 chloroplasts per cell, while stomatal guard cells contain only around 8–15 per cell, as well as much less chlorophyll. Chloroplasts can also be found in the bundle sheath cells of a leaf, especially in C4 plants, which carry out the Calvin cycle in their bundle sheath cells. They are often absent from the epidermis of a leaf.481

Cellular location

Chloroplast movement

See also: Cytoplasmic streaming

The chloroplasts of plant and algal cells can orient themselves to best suit the available light. In low-light conditions, they will spread out in a sheet—maximizing the surface area to absorb light. Under intense light, they will seek shelter by aligning in vertical columns along the plant cell's cell wall or turning sideways so that light strikes them edge-on. This reduces exposure and protects them from photooxidative damage.482 This ability to distribute chloroplasts so that they can take shelter behind each other or spread out may be the reason why land plants evolved to have many small chloroplasts instead of a few big ones.483 Chloroplast movement is considered one of the most closely regulated stimulus-response systems that can be found in plants.484 Mitochondria have also been observed to follow chloroplasts as they move.485

In higher plants, chloroplast movement is run by phototropins, blue light photoreceptors also responsible for plant phototropism. In some algae, mosses, ferns, and flowering plants, chloroplast movement is influenced by red light in addition to blue light,486 though very long red wavelengths inhibit movement rather than speeding it up. Blue light generally causes chloroplasts to seek shelter, while red light draws them out to maximize light absorption.487

Studies of Vallisneria gigantea, an aquatic flowering plant, have shown that chloroplasts can get moving within five minutes of light exposure, though they don't initially show any net directionality. They may move along microfilament tracks, and the fact that the microfilament mesh changes shape to form a honeycomb structure surrounding the chloroplasts after they have moved suggests that microfilaments may help to anchor chloroplasts in place.488489

Differentiation, replication, and inheritance

Main article: Plastid

Chloroplasts are a special type of a plant cell organelle called a plastid, though the two terms are sometimes used interchangeably. There are many other types of plastids, which carry out various functions. All chloroplasts in a plant are descended from undifferentiated proplastids found in the zygote,490 or fertilized egg. Proplastids are commonly found in an adult plant's apical meristems. Chloroplasts do not normally develop from proplastids in root tip meristems491—instead, the formation of starch-storing amyloplasts is more common.492

In shoots, proplastids from shoot apical meristems can gradually develop into chloroplasts in photosynthetic leaf tissues as the leaf matures, if exposed to the required light.493 This process involves invaginations of the inner plastid membrane, forming sheets of membrane that project into the internal stroma. These membrane sheets then fold to form thylakoids and grana.494

If angiosperm shoots are not exposed to the required light for chloroplast formation, proplastids may develop into an etioplast stage before becoming chloroplasts. An etioplast is a plastid that lacks chlorophyll, and has inner membrane invaginations that form a lattice of tubes in their stroma, called a prolamellar body. While etioplasts lack chlorophyll, they have a yellow chlorophyll precursor stocked.495 Within a few minutes of light exposure, the prolamellar body begins to reorganize into stacks of thylakoids, and chlorophyll starts to be produced. This process, where the etioplast becomes a chloroplast, takes several hours.496 Gymnosperms do not require light to form chloroplasts.497

Light, however, does not guarantee that a proplastid will develop into a chloroplast. Whether a proplastid develops into a chloroplast some other kind of plastid is mostly controlled by the nucleus498 and is largely influenced by the kind of cell it resides in.499

Plastid interconversion

Plastid differentiation is not permanent, in fact many interconversions are possible. Chloroplasts may be converted to chromoplasts, which are pigment-filled plastids responsible for the bright colors seen in flowers and ripe fruit. Starch storing amyloplasts can also be converted to chromoplasts, and it is possible for proplastids to develop straight into chromoplasts. Chromoplasts and amyloplasts can also become chloroplasts, like what happens when a carrot or a potato is illuminated. If a plant is injured, or something else causes a plant cell to revert to a meristematic state, chloroplasts and other plastids can turn back into proplastids. Chloroplast, amyloplast, chromoplast, proplastid are not absolute; state—intermediate forms are common.500

Division

Most chloroplasts in a photosynthetic cell do not develop directly from proplastids or etioplasts. In fact, a typical shoot meristematic plant cell contains only 7–20 proplastids. These proplastids differentiate into chloroplasts, which divide to create the 30–70 chloroplasts found in a mature photosynthetic plant cell. If the cell divides, chloroplast division provides the additional chloroplasts to partition between the two daughter cells.501

In single-celled algae, chloroplast division is the only way new chloroplasts are formed. There is no proplastid differentiation—when an algal cell divides, its chloroplast divides along with it, and each daughter cell receives a mature chloroplast.502

Almost all chloroplasts in a cell divide, rather than a small group of rapidly dividing chloroplasts.503 Chloroplasts have no definite S-phase—their DNA replication is not synchronized or limited to that of their host cells.504 Much of what we know about chloroplast division comes from studying organisms like Arabidopsis and the red alga Cyanidioschyzon merolæ.505

Most chloroplasts in plant cells, and all chloroplasts in algae arise from chloroplast division.506 Picture references,507508

The division process starts when the proteins FtsZ1 and FtsZ2 assemble into filaments, and with the help of a protein ARC6, form a structure called a Z-ring within the chloroplast's stroma.509510 The Min system manages the placement of the Z-ring, ensuring that the chloroplast is cleaved more or less evenly. The protein MinD prevents FtsZ from linking up and forming filaments. Another protein ARC3 may also be involved, but it is not very well understood. These proteins are active at the poles of the chloroplast, preventing Z-ring formation there, but near the center of the chloroplast, MinE inhibits them, allowing the Z-ring to form.511

Next, the two plastid-dividing rings, or PD rings form. The inner plastid-dividing ring is located in the inner side of the chloroplast's inner membrane, and is formed first.512 The outer plastid-dividing ring is found wrapped around the outer chloroplast membrane. It consists of filaments about 5 nanometers across,513 arranged in rows 6.4 nanometers apart, and shrinks to squeeze the chloroplast. This is when chloroplast constriction begins.514 In a few species like Cyanidioschyzon merolæ, chloroplasts have a third plastid-dividing ring located in the chloroplast's intermembrane space.515516

Late into the constriction phase, dynamin proteins assemble around the outer plastid-dividing ring,517 helping provide force to squeeze the chloroplast.518 Meanwhile, the Z-ring and the inner plastid-dividing ring break down.519 During this stage, the many chloroplast DNA plasmids floating around in the stroma are partitioned and distributed to the two forming daughter chloroplasts.520

Later, the dynamins migrate under the outer plastid dividing ring, into direct contact with the chloroplast's outer membrane,521 to cleave the chloroplast in two daughter chloroplasts.522

A remnant of the outer plastid dividing ring remains floating between the two daughter chloroplasts, and a remnant of the dynamin ring remains attached to one of the daughter chloroplasts.523

Of the five or six rings involved in chloroplast division, only the outer plastid-dividing ring is present for the entire constriction and division phase—while the Z-ring forms first, constriction does not begin until the outer plastid-dividing ring forms.524

Regulation

In species of algae that contain a single chloroplast, regulation of chloroplast division is extremely important to ensure that each daughter cell receives a chloroplast—chloroplasts can't be made from scratch.525526 In organisms like plants, whose cells contain multiple chloroplasts, coordination is looser and less important. It is likely that chloroplast and cell division are somewhat synchronized, though the mechanisms for it are mostly unknown.527

Light has been shown to be a requirement for chloroplast division. Chloroplasts can grow and progress through some of the constriction stages under poor quality green light, but are slow to complete division—they require exposure to bright white light to complete division. Spinach leaves grown under green light have been observed to contain many large dumbbell-shaped chloroplasts. Exposure to white light can stimulate these chloroplasts to divide and reduce the population of dumbbell-shaped chloroplasts.528529

Chloroplast inheritance

Like mitochondria, chloroplasts are usually inherited from a single parent. Biparental chloroplast inheritance—where plastid genes are inherited from both parent plants—occurs in very low levels in some flowering plants.530

Many mechanisms prevent biparental chloroplast DNA inheritance, including selective destruction of chloroplasts or their genes within the gamete or zygote, and chloroplasts from one parent being excluded from the embryo. Parental chloroplasts can be sorted so that only one type is present in each offspring.531

Gymnosperms, such as pine trees, mostly pass on chloroplasts paternally,532 while flowering plants often inherit chloroplasts maternally.533534 Flowering plants were once thought to only inherit chloroplasts maternally. However, there are now many documented cases of angiosperms inheriting chloroplasts paternally.535

Angiosperms, which pass on chloroplasts maternally, have many ways to prevent paternal inheritance. Most of them produce sperm cells that do not contain any plastids. There are many other documented mechanisms that prevent paternal inheritance in these flowering plants, such as different rates of chloroplast replication within the embryo.536

Among angiosperms, paternal chloroplast inheritance is observed more often in hybrids than in offspring from parents of the same species. This suggests that incompatible hybrid genes might interfere with the mechanisms that prevent paternal inheritance.537

Transplastomic plants

Recently, chloroplasts have caught attention by developers of genetically modified crops. Since, in most flowering plants, chloroplasts are not inherited from the male parent, transgenes in these plastids cannot be disseminated by pollen. This makes plastid transformation a valuable tool for the creation and cultivation of genetically modified plants that are biologically contained, thus posing significantly lower environmental risks. This biological containment strategy is therefore suitable for establishing the coexistence of conventional and organic agriculture. While the reliability of this mechanism has not yet been studied for all relevant crop species, recent results in tobacco plants are promising, showing a failed containment rate of transplastomic plants at 3 in 1,000,000.538

Footnotes

Wikimedia Commons has media related to Chloroplasts.

References

  1. Jones D (2003) [1917]. Roach P, Hartmann J, Setter J (eds.). English Pronouncing Dictionary. Cambridge: Cambridge University Press. ISBN 3-12-539683-2. 3-12-539683-2

  2. "Chloroplast". Merriam-Webster.com Dictionary. Merriam-Webster. https://www.merriam-webster.com/dictionary/Chloroplast

  3. Basic Biology (18 March 2016). "Bacteria". https://basicbiology.net/micro/microorganisms/bacteria

  4. von Mohl, H. (1835/1837). Ueber die Vermehrung der Pflanzen-Zellen durch Teilung. Dissert. Tubingen 1835. Flora 1837, . https://www.biodiversitylibrary.org/item/928#page/3/mode/1up

  5. Schimper, AF (1883). "Über die Entwicklung der Chlorophyllkörner und Farbkörper" [About the development of the chlorophyll grains and stains]. Bot. Zeitung (in German). 41: 105–14, 121–31, 137–46, 153–62. Archived from the original on 19 October 2013. /wiki/Andreas_Franz_Wilhelm_Schimper

  6. Strasburger E (1884). Das botanische Praktikum (1st ed.). Jena: Gustav Fischer. https://archive.org/details/b28101455

  7. Gunning B, Koenig F, Govindjee P (2006). "A dedication to pioneers of research on chloroplast structure". In Wise RR, Hoober JK (eds.). The structure and function of plastids. Netherlands: Springer. pp. xxiii–xxxi. ISBN 9781402065705. 9781402065705

  8. Hoober JK (1984). Chloroplasts. New York: Plenum. ISBN 9781461327677. 9781461327677

  9. "chloroplast". Online Etymology Dictionary. http://www.etymonline.com/index.php?term=chloroplast&allowed_in_frame=0

  10. Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP (2019). "An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids". Frontiers in Microbiology. 10: 1612. doi:10.3389/fmicb.2019.01612. PMC 6640209. PMID 31354692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640209

  11. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 186–187. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  12. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  13. Bryant DA, Guglielmi G, de Marsac NT, Castets AM, Cohen-Bazire G (1979). "The structure of cyanobacterial phycobilisomes: A model". Archives of Microbiology. 123 (2): 311–34. Bibcode:1979ArMic.123..113B. doi:10.1007/BF00446810. S2CID 1589428. /wiki/Bibcode_(identifier)

  14. Mereschkowsky K (1905). "Über Natur und Ursprung der Chromatophoren im Pflanzenreiche" [About the nature and origin of chromatophores in the vegetable kingdom]. Biol Centralbl (in German). 25: 593–604. /wiki/Konstantin_Mereschkowski

  15. Schimper, AF (1883). "Über die Entwicklung der Chlorophyllkörner und Farbkörper" [About the development of the chlorophyll grains and stains]. Bot. Zeitung (in German). 41: 105–14, 121–31, 137–46, 153–62. Archived from the original on 19 October 2013. /wiki/Andreas_Franz_Wilhelm_Schimper

  16. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  17. Gabr A, Grossman AR, Bhattacharya D (August 2020). "Paulinella, a model for understanding plastid primary endosymbiosis". J Phycol. 56 (4): 837–843. Bibcode:2020JPcgy..56..837G. doi:10.1111/jpy.13003. PMC 7734844. PMID 32289879. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734844

  18. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  19. Milo R, Phillips R. "Cell Biology by the Numbers: How large are chloroplasts?". book.bionumbers.org. Retrieved 7 February 2017. http://book.bionumbers.org/how-large-are-chloroplasts/

  20. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (September 2017). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): E7737 – E7745. Bibcode:2017PNAS..114E7737S. doi:10.1073/pnas.1620089114. PMC 5603991. PMID 28808007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603991

  21. Falcón, Luisa I; Magallón, Susana; Castillo, Amanda (4 March 2010). "Dating the cyanobacterial ancestor of the chloroplast". The ISME Journal. 4 (6): 777–783. Bibcode:2010ISMEJ...4..777F. doi:10.1038/ismej.2010.2. ISSN 1751-7362. PMID 20200567. https://academic.oup.com/ismej/article/4/6/777/7588052

  22. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  23. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  24. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  25. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  26. Nakayama T, Archibald JM (April 2012). "Evolving a photosynthetic organelle". BMC Biology. 10 (1): 35. doi:10.1186/1741-7007-10-35. PMC 3337241. PMID 22531210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337241

  27. Nakayama T, Archibald JM (April 2012). "Evolving a photosynthetic organelle". BMC Biology. 10 (1): 35. doi:10.1186/1741-7007-10-35. PMC 3337241. PMID 22531210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337241

  28. McFadden GI (January 2001). "Chloroplast origin and integration". Plant Physiology. 125 (1): 50–3. doi:10.1104/pp.125.1.50. PMC 1539323. PMID 11154294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539323

  29. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  30. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  31. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (September 2017). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): E7737 – E7745. Bibcode:2017PNAS..114E7737S. doi:10.1073/pnas.1620089114. PMC 5603991. PMID 28808007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603991

  32. Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D (February 2017). "An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids". Current Biology. 27 (3): 386–391. Bibcode:2017CBio...27..386P. doi:10.1016/j.cub.2016.11.056. PMC 5650054. PMID 28132810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650054

  33. de Vries J, Archibald JM (February 2017). "Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?". Current Biology. 27 (3): R103 – R105. Bibcode:2017CBio...27.R103D. doi:10.1016/j.cub.2016.12.006. PMID 28171752. https://doi.org/10.1016%2Fj.cub.2016.12.006

  34. López-García P, Eme L, Moreira D (December 2017). "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. 434: 20–33. Bibcode:2017JThBi.434...20L. doi:10.1016/j.jtbi.2017.02.031. PMC 5638015. PMID 28254477. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638015

  35. Macorano, Luis; Nowack, Eva C.M. (13 September 2021). "Paulinella chromatophora". Current Biology. 31 (17): R1024 – R1026. Bibcode:2021CBio...31R1024M. doi:10.1016/j.cub.2021.07.028. PMID 34520707. https://linkinghub.elsevier.com/retrieve/pii/S0960982221009830

  36. Not to be confused with chromatophore—the pigmented cells in some animals—or chromatophore—the membrane associated vesicle in some bacteria. /wiki/Chromatophore

  37. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  38. Archibald JM (January 2009). "The puzzle of plastid evolution". Current Biology. 19 (2): R81-8. Bibcode:2009CBio...19..R81A. doi:10.1016/j.cub.2008.11.067. PMID 19174147. S2CID 51989. https://doi.org/10.1016%2Fj.cub.2008.11.067

  39. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  40. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  41. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  42. Chaal BK, Green BR (February 2005). "Protein import pathways in 'complex' chloroplasts derived from secondary endosymbiosis involving a red algal ancestor". Plant Molecular Biology. 57 (3): 333–42. doi:10.1007/s11103-004-7848-y. PMID 15830125. S2CID 22619029. /wiki/Doi_(identifier)

  43. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  44. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  45. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  46. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  47. McFadden GI (January 2001). "Chloroplast origin and integration". Plant Physiology. 125 (1): 50–3. doi:10.1104/pp.125.1.50. PMC 1539323. PMID 11154294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539323

  48. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  49. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  50. Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C (March 2011). "The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis". Journal of Experimental Botany. 62 (6): 1775–801. doi:10.1093/jxb/erq411. PMID 21220783. https://doi.org/10.1093%2Fjxb%2Ferq411

  51. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  52. Guiry, Michael D. (2 January 2024). "How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing". Journal of Phycology. 60 (2): 214–228. Bibcode:2024JPcgy..60..214G. doi:10.1111/jpy.13431. ISSN 0022-3646. PMID 38245909. https://doi.org/10.1111%2Fjpy.13431

  53. Archibald, John M. (27 January 2009). "The Puzzle of Plastid Evolution". Current Biology. 19 (2): R81 – R88. Bibcode:2009CBio...19..R81A. doi:10.1016/j.cub.2008.11.067. PMID 19174147. https://linkinghub.elsevier.com/retrieve/pii/S0960982208014851

  54. Miyagishima, Shin-ya (1 March 2011). "Mechanism of Plastid Division: From a Bacterium to an Organelle". Plant Physiology. 155 (4): 1533–1544. doi:10.1104/pp.110.170688. ISSN 1532-2548. PMC 3091088. PMID 21311032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091088

  55. For this reason, glaucophyte chloroplasts are also known as 'muroplasts' from the Latin muro meaning wall.

  56. Wise, Robert R.; Hoober, J. Kenneth, eds. (2006). The Structure and Function of Plastids. Advances in Photosynthesis and Respiration. Vol. 23. Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-4061-0. ISBN 978-1-4020-4060-3. 978-1-4020-4060-3

  57. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  58. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  59. "rhodo-". The Free Dictionary. Farlex. Retrieved 7 June 2013. http://www.thefreedictionary.com/rhodo-

  60. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  61. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  62. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  63. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 582–92. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  64. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  65. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  66. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 582–92. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  67. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  68. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  69. Lewis LA, McCourt RM (October 2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–56. Bibcode:2004AmJB...91.1535L. doi:10.3732/ajb.91.10.1535. PMID 21652308. /wiki/Bibcode_(identifier)

  70. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  71. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  72. Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H, Takio S, et al. (April 2006). "Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss". Proceedings of the National Academy of Sciences of the United States of America. 103 (17): 6753–8. Bibcode:2006PNAS..103.6753M. doi:10.1073/pnas.0510693103. PMC 1458953. PMID 16618924. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458953

  73. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  74. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  75. Lewis LA, McCourt RM (October 2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–56. Bibcode:2004AmJB...91.1535L. doi:10.3732/ajb.91.10.1535. PMID 21652308. /wiki/Bibcode_(identifier)

  76. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  77. Moroney JV, Somanchi A (January 1999). "How Do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation?". Plant Physiology. 119 (1): 9–16. doi:10.1104/pp.119.1.9. PMC 1539202. PMID 9880340. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539202

  78. Robison, T. A., Oh, Z. G., Lafferty, D., Xu, X., Villarreal, J. C. A., Gunn, L. H., Li, F.-W. (3 January 2025). "Hornworts reveal a spatial model for pyrenoid-based CO2-concentrating mechanisms in land plants". Nature Plants. 11. Nature Publishing Group: 63–73. doi:10.1038/s41477-024-01871-0. ISSN 2055-0278. PMID 39753956. /wiki/Doi_(identifier)

  79. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  80. Tartar A, Boucias DG (April 2004). "The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome". FEMS Microbiology Letters. 233 (1): 153–7. doi:10.1016/j.femsle.2004.02.006. PMID 15043882. https://doi.org/10.1016%2Fj.femsle.2004.02.006

  81. Tartar A, Boucias DG (April 2004). "The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome". FEMS Microbiology Letters. 233 (1): 153–7. doi:10.1016/j.femsle.2004.02.006. PMID 15043882. https://doi.org/10.1016%2Fj.femsle.2004.02.006

  82. Ueno, Ryohei; Urano, Naoto; Suzuki, Motofumi (1 June 2003). "Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data". FEMS Microbiology Letters. 223 (2): 275–280. doi:10.1016/s0378-1097(03)00394-x. ISSN 0378-1097. PMID 12829298. https://academic.oup.com/femsle/article-abstract/223/2/275/499272?redirectedFrom=fulltext

  83. Not to be confused with chromatophore—the pigmented cells in some animals—or chromatophore—the membrane associated vesicle in some bacteria. /wiki/Chromatophore

  84. Macorano, Luis; Nowack, Eva C.M. (13 September 2021). "Paulinella chromatophora". Current Biology. 31 (17): R1024 – R1026. Bibcode:2021CBio...31R1024M. doi:10.1016/j.cub.2021.07.028. PMID 34520707. https://linkinghub.elsevier.com/retrieve/pii/S0960982221009830

  85. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  86. Nakayama T, Archibald JM (April 2012). "Evolving a photosynthetic organelle". BMC Biology. 10 (1): 35. doi:10.1186/1741-7007-10-35. PMC 3337241. PMID 22531210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337241

  87. Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (January 2011). "Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora". Molecular Biology and Evolution. 28 (1): 407–22. doi:10.1093/molbev/msq209. PMID 20702568. https://doi.org/10.1093%2Fmolbev%2Fmsq209

  88. Archibald, John M. (25 September 2017). "Evolution: Protein Import in a Nascent Photosynthetic Organelle". Current Biology. 27 (18): R1004 – R1006. Bibcode:2017CBio...27R1004A. doi:10.1016/j.cub.2017.08.013. ISSN 0960-9822. PMID 28950079. https://linkinghub.elsevier.com/retrieve/pii/S0960982217310229

  89. Nakayama T, Archibald JM (April 2012). "Evolving a photosynthetic organelle". BMC Biology. 10 (1): 35. doi:10.1186/1741-7007-10-35. PMC 3337241. PMID 22531210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337241

  90. Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (January 2011). "Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora". Molecular Biology and Evolution. 28 (1): 407–22. doi:10.1093/molbev/msq209. PMID 20702568. https://doi.org/10.1093%2Fmolbev%2Fmsq209

  91. Singer, Anna; Poschmann, Gereon; Mühlich, Cornelia; Valadez-Cano, Cecilio; Hänsch, Sebastian; Hüren, Vanessa; Rensing, Stefan A.; Stühler, Kai; Nowack, Eva C.M. (25 September 2017). "Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora". Current Biology. 27 (18): 2763–2773.e5. Bibcode:2017CBio...27E2763S. doi:10.1016/j.cub.2017.08.010. ISSN 0960-9822. PMID 28889978. https://linkinghub.elsevier.com/retrieve/pii/S0960982217310199

  92. Nakayama T, Archibald JM (April 2012). "Evolving a photosynthetic organelle". BMC Biology. 10 (1): 35. doi:10.1186/1741-7007-10-35. PMC 3337241. PMID 22531210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337241

  93. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (January 2007). "The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts". Molecular Biology and Evolution. 24 (1): 54–62. doi:10.1093/molbev/msl129. PMID 16990439. https://doi.org/10.1093%2Fmolbev%2Fmsl129

  94. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  95. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (June 2009). "Genomic footprints of a cryptic plastid endosymbiosis in diatoms" (PDF). Science. 324 (5935): 1724–6. Bibcode:2009Sci...324.1724M. doi:10.1126/science.1172983. PMID 19556510. S2CID 11408339. https://epic.awi.de/id/eprint/20816/1/Mou2009a.pdf

  96. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  97. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  98. Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G.B. (1 January 2020). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. Bibcode:2020TEcoE..35...43B. doi:10.1016/j.tree.2019.08.008. ISSN 0169-5347. PMID 31606140. https://linkinghub.elsevier.com/retrieve/pii/S0169534719302575

  99. Sibbald, Shannon J.; Archibald, John M. (20 May 2020). "Genomic Insights into Plastid Evolution". Genome Biology and Evolution. 12 (7): 978–990. doi:10.1093/gbe/evaa096. PMC 7348690. PMID 32402068. https://academic.oup.com/gbe/article/12/7/978/5836826

  100. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  101. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  102. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  103. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  104. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  105. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  106. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  107. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  108. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  109. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  110. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  111. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  112. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  113. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  114. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  115. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  116. Christian, R.; Labbancz, J.; Usadel, B.; Dhingra, A. (2023). "Understanding protein import in diverse non-green plastids". Frontiers in Genetics. 14. doi:10.3389/fgene.2023.969931. PMC 10063809. PMID 37007964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063809

  117. Hines, Hunter N.; McCarthy, Peter J.; Esteban, Genoveva F. (27 February 2022). "A Case Building Ciliate in the Genus Pseudoblepharisma Found in Subtropical Fresh Water". Diversity. 14 (3): 174. Bibcode:2022Diver..14..174H. doi:10.3390/d14030174. https://doi.org/10.3390%2Fd14030174

  118. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  119. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  120. Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (25 March 2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature Communications. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi:10.1038/s41467-021-22044-z. ISSN 2041-1723. PMC 7994803. PMID 33767194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994803

  121. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  122. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  123. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  124. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  125. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  126. Toledo RI (5 March 2018). Origins and early evolution of photosynthetic eukaryotes (Thesis). Université Paris-Saclay. https://tel.archives-ouvertes.fr/tel-01760725

  127. Bodył A (February 2018). "Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis". Biological Reviews of the Cambridge Philosophical Society. 93 (1): 201–222. doi:10.1111/brv.12340. PMID 28544184. S2CID 24613863. /wiki/Doi_(identifier)

  128. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  129. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  130. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  131. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  132. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 582–92. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  133. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  134. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  135. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  136. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  137. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  138. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 582–92. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  139. Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, et al. (January 2017). "Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics". Proceedings of the National Academy of Sciences of the United States of America. 114 (2): E171 – E180. Bibcode:2017PNAS..114E.171J. doi:10.1073/pnas.1614842114. PMC 5240707. PMID 28028238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240707

  140. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  141. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  142. Nair SC, Striepen B (August 2011). "What do human parasites do with a chloroplast anyway?". PLOS Biology. 9 (8): e1001137. doi:10.1371/journal.pbio.1001137. PMC 3166169. PMID 21912515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166169

  143. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  144. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  145. Nair SC, Striepen B (August 2011). "What do human parasites do with a chloroplast anyway?". PLOS Biology. 9 (8): e1001137. doi:10.1371/journal.pbio.1001137. PMC 3166169. PMID 21912515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166169

  146. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  147. Nair SC, Striepen B (August 2011). "What do human parasites do with a chloroplast anyway?". PLOS Biology. 9 (8): e1001137. doi:10.1371/journal.pbio.1001137. PMC 3166169. PMID 21912515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166169

  148. Nair SC, Striepen B (August 2011). "What do human parasites do with a chloroplast anyway?". PLOS Biology. 9 (8): e1001137. doi:10.1371/journal.pbio.1001137. PMC 3166169. PMID 21912515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166169

  149. Quigg A, Kotabová E, Jarešová J, Kaňa R, Setlík J, Sedivá B, et al. (10 October 2012). "Photosynthesis in Chromera velia represents a simple system with high efficiency". PLOS ONE. 7 (10): e47036. Bibcode:2012PLoSO...747036Q. doi:10.1371/journal.pone.0047036. PMC 3468483. PMID 23071705. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468483

  150. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 582–92. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  151. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  152. Dorrell RG, Smith AG (July 2011). "Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates". Eukaryotic Cell. 10 (7): 856–68. doi:10.1128/EC.00326-10. PMC 3147421. PMID 21622904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147421

  153. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  154. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  155. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  156. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  157. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  158. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  159. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  160. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  161. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  162. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  163. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  164. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  165. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  166. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  167. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  168. Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, et al. (January 2017). "Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics". Proceedings of the National Academy of Sciences of the United States of America. 114 (2): E171 – E180. Bibcode:2017PNAS..114E.171J. doi:10.1073/pnas.1614842114. PMC 5240707. PMID 28028238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240707

  169. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  170. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  171. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  172. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  173. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (May 2000). "Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin". Molecular Biology and Evolution. 17 (5): 718–29. doi:10.1093/oxfordjournals.molbev.a026350. PMID 10779532. /wiki/Dag_Klaveness_(limnologist)

  174. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  175. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (May 2000). "Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin". Molecular Biology and Evolution. 17 (5): 718–29. doi:10.1093/oxfordjournals.molbev.a026350. PMID 10779532. /wiki/Dag_Klaveness_(limnologist)

  176. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  177. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  178. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  179. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  180. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  181. Schnepf E, Elbrächter M (1999). "Dinophyte chloroplasts and phylogeny – A review". Grana. 38 (2–3): 81–97. Bibcode:1999Grana..38...81S. doi:10.1080/00173139908559217. https://doi.org/10.1080%2F00173139908559217

  182. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  183. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  184. Schnepf E, Elbrächter M (1999). "Dinophyte chloroplasts and phylogeny – A review". Grana. 38 (2–3): 81–97. Bibcode:1999Grana..38...81S. doi:10.1080/00173139908559217. https://doi.org/10.1080%2F00173139908559217

  185. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  186. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  187. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  188. Schnepf E, Elbrächter M (1999). "Dinophyte chloroplasts and phylogeny – A review". Grana. 38 (2–3): 81–97. Bibcode:1999Grana..38...81S. doi:10.1080/00173139908559217. https://doi.org/10.1080%2F00173139908559217

  189. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  190. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  191. Skovgaard A (1998). "Role of chloroplast retention in a marine dinoflagellate". Aquatic Microbial Ecology. 15: 293–301. doi:10.3354/ame015293. https://doi.org/10.3354%2Fame015293

  192. Dorrell RG, Howe CJ (August 2015). "Integration of plastids with their hosts: Lessons learned from dinoflagellates". Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10247–54. Bibcode:2015PNAS..11210247D. doi:10.1073/pnas.1421380112. PMC 4547248. PMID 25995366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547248

  193. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (May 2000). "Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin". Molecular Biology and Evolution. 17 (5): 718–29. doi:10.1093/oxfordjournals.molbev.a026350. PMID 10779532. /wiki/Dag_Klaveness_(limnologist)

  194. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  195. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (October 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307. /wiki/Doi_(identifier)

  196. Stocking, C. R. & Gifford, E. M. (1959). "Incorporation of thymidine into chloroplasts of Spirogyra". Biochemical and Biophysical Research Communications. 1 (3): 159–164. doi:10.1016/0006-291X(59)90010-5. /wiki/Doi_(identifier)

  197. Ris, H.; Plaut, W. (1962). "Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas". J. Cell Biol. 13 (3): 383–91. doi:10.1083/jcb.13.3.383. PMC 2106071. PMID 14492436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106071

  198. Lyttleton, J. W. (1962). "Isolation of ribosomes from spinach chloroplasts". Exp. Cell Res. 26 (1): 312–317. doi:10.1016/0014-4827(62)90183-0. PMID 14467684. /wiki/Doi_(identifier)

  199. Heber, U. (1962). "Protein synthesis in chloroplasts during photosynthesis". Nature. 195 (1): 91–92. Bibcode:1962Natur.195...91H. doi:10.1038/195091a0. PMID 13905812. S2CID 4265095. /wiki/Bibcode_(identifier)

  200. "Chloroplasts and Other Plastids". University of Hamburg. Archived from the original on 25 September 2012. Retrieved 27 December 2012. https://web.archive.org/web/20120925191743/http://www.biologie.uni-hamburg.de/b-online/e23/23a.htm

  201. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  202. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  203. Dann L (2002). Bioscience—Explained (PDF). Green DNA: BIOSCIENCE EXPLAINED. Archived (PDF) from the original on 14 December 2010. http://www.bioscience-explained.org/ENvol1_2/pdf/ctDNAEN.pdf

  204. Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285

  205. Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)

  206. Milo R, Phillips R. "Cell Biology by the Numbers: How large are chloroplasts?". book.bionumbers.org. Retrieved 7 February 2017. http://book.bionumbers.org/how-large-are-chloroplasts/

  207. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 62. ISBN 0-521-31611-1. 0-521-31611-1

  208. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  209. Green, Beverley R. (28 April 2011). "Chloroplast genomes of photosynthetic eukaryotes". The Plant Journal. 66 (1): 34–44. doi:10.1111/j.1365-313X.2011.04541.x. ISSN 0960-7412. PMID 21443621. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04541.x

  210. Dann L (2002). Bioscience—Explained (PDF). Green DNA: BIOSCIENCE EXPLAINED. Archived (PDF) from the original on 14 December 2010. http://www.bioscience-explained.org/ENvol1_2/pdf/ctDNAEN.pdf

  211. Plant Biochemistry (3rd ed.). Academic Press. 2005. p. 517. ISBN 978-0-12-088391-2. number of copies of ctDNA per chloroplast. 978-0-12-088391-2

  212. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 62. ISBN 0-521-31611-1. 0-521-31611-1

  213. Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, et al. (July 2002). "Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids". The Plant Cell. 14 (7): 1579–89. Bibcode:2002PlanC..14.1579K. doi:10.1105/tpc.002717. PMC 150708. PMID 12119376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150708

  214. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  215. Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, et al. (July 2002). "Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids". The Plant Cell. 14 (7): 1579–89. Bibcode:2002PlanC..14.1579K. doi:10.1105/tpc.002717. PMC 150708. PMID 12119376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150708

  216. Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)

  217. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  218. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  219. Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)

  220. Kolodner R, Tewari KK (January 1979). "Inverted repeats in chloroplast DNA from higher plants". Proceedings of the National Academy of Sciences of the United States of America. 76 (1): 41–5. Bibcode:1979PNAS...76...41K. doi:10.1073/pnas.76.1.41. PMC 382872. PMID 16592612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382872

  221. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  222. Kolodner R, Tewari KK (January 1979). "Inverted repeats in chloroplast DNA from higher plants". Proceedings of the National Academy of Sciences of the United States of America. 76 (1): 41–5. Bibcode:1979PNAS...76...41K. doi:10.1073/pnas.76.1.41. PMC 382872. PMID 16592612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382872

  223. Palmer JD, Thompson WF (June 1982). "Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost". Cell. 29 (2): 537–50. doi:10.1016/0092-8674(82)90170-2. PMID 6288261. S2CID 11571695. /wiki/Doi_(identifier)

  224. Sandelius AS (2009). The Chloroplast: Interactions with the Environment. Springer. p. 18. ISBN 978-3-540-68696-5. 978-3-540-68696-5

  225. Palmer JD, Thompson WF (June 1982). "Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost". Cell. 29 (2): 537–50. doi:10.1016/0092-8674(82)90170-2. PMID 6288261. S2CID 11571695. /wiki/Doi_(identifier)

  226. Odahara M, Kishita Y, Sekine Y (August 2017). "MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens". The Plant Journal. 91 (3): 455–465. doi:10.1111/tpj.13573. PMID 28407383. https://doi.org/10.1111%2Ftpj.13573

  227. Rowan BA, Oldenburg DJ, Bendich AJ (June 2010). "RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis". Journal of Experimental Botany. 61 (10): 2575–88. doi:10.1093/jxb/erq088. PMC 2882256. PMID 20406785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882256

  228. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  229. Heinhorst S, Cannon GC (1993). "DNA replication in chloroplasts". Journal of Cell Science. 104: 1–9. doi:10.1242/jcs.104.1.1. https://aquila.usm.edu/cgi/viewcontent.cgi?article=7560&context=fac_pubs

  230. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  231. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  232. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  233. "Effect of chemical mutagens on nucleotide sequence". Biocyclopedia. Retrieved 24 October 2015. http://www.biocyclopedia.com/index/genetics/mutations_molecular_level_mechanism/effect_of_chemical_mutagens_on_nucleotide_sequence.php

  234. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  235. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  236. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  237. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  238. Bernstein H, Bernstein C (July 1973). "Circular and branched circular concatenates as possible intermediates in bacteriophage T4 DNA replication". Journal of Molecular Biology. 77 (3): 355–61. doi:10.1016/0022-2836(73)90443-9. PMID 4580243. /wiki/Doi_(identifier)

  239. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  240. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  241. Bendich AJ (July 2004). "Circular chloroplast chromosomes: the grand illusion". The Plant Cell. 16 (7): 1661–6. Bibcode:2004PlanC..16.1661B. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151

  242. Krishnan NM, Rao BJ (May 2009). "A comparative approach to elucidate chloroplast genome replication". BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695485

  243. Milo R, Phillips R. "Cell Biology by the Numbers: How large are chloroplasts?". book.bionumbers.org. Retrieved 7 February 2017. http://book.bionumbers.org/how-large-are-chloroplasts/

  244. McFadden GI (January 2001). "Chloroplast origin and integration". Plant Physiology. 125 (1): 50–3. doi:10.1104/pp.125.1.50. PMC 1539323. PMID 11154294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539323

  245. Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285

  246. McFadden GI (January 2001). "Chloroplast origin and integration". Plant Physiology. 125 (1): 50–3. doi:10.1104/pp.125.1.50. PMC 1539323. PMID 11154294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539323

  247. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  248. Shaw J, Lickey EB, Schilling EE, Small RL (March 2007). "Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III". American Journal of Botany. 94 (3): 275–88. doi:10.3732/ajb.94.3.275. PMID 21636401. S2CID 30501148. /wiki/Doi_(identifier)

  249. Dann L (2002). Bioscience—Explained (PDF). Green DNA: BIOSCIENCE EXPLAINED. Archived (PDF) from the original on 14 December 2010. http://www.bioscience-explained.org/ENvol1_2/pdf/ctDNAEN.pdf

  250. Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285

  251. Huang CY, Ayliffe MA, Timmis JN (March 2003). "Direct measurement of the transfer rate of chloroplast DNA into the nucleus". Nature. 422 (6927): 72–6. Bibcode:2003Natur.422...72H. doi:10.1038/nature01435. PMID 12594458. S2CID 4319507. /wiki/Bibcode_(identifier)

  252. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430

  253. Smith DR, Lee RW (April 2014). "A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella". Plant Physiology. 164 (4): 1812–9. doi:10.1104/pp.113.233718. PMC 3982744. PMID 24563281. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982744

  254. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (June 2009). "Genomic footprints of a cryptic plastid endosymbiosis in diatoms" (PDF). Science. 324 (5935): 1724–6. Bibcode:2009Sci...324.1724M. doi:10.1126/science.1172983. PMID 19556510. S2CID 11408339. https://epic.awi.de/id/eprint/20816/1/Mou2009a.pdf

  255. Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (January 2011). "Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora". Molecular Biology and Evolution. 28 (1): 407–22. doi:10.1093/molbev/msq209. PMID 20702568. https://doi.org/10.1093%2Fmolbev%2Fmsq209

  256. Archibald JM (December 2006). "Algal genomics: exploring the imprint of endosymbiosis". Current Biology. 16 (24): R1033-5. Bibcode:2006CBio...16R1033A. doi:10.1016/j.cub.2006.11.008. PMID 17174910. https://doi.org/10.1016%2Fj.cub.2006.11.008

  257. Clegg MT, Gaut BS, Learn GH, Morton BR (July 1994). "Rates and patterns of chloroplast DNA evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6795–801. Bibcode:1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285

  258. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, et al. (May 2007). "Signals from chloroplasts converge to regulate nuclear gene expression". Science. 316 (5825): 715–9. Bibcode:2007Sci...316..715K. doi:10.1126/science.1140516. PMID 17395793. S2CID 245901639. Bob Grant (1 April 2009). "Communicating with chloroplasts". The Scientist. /wiki/Bibcode_(identifier)

  259. de Vries, Jan; Curtis, Bruce A.; Gould, Sven B.; Archibald, John M. (10 April 2018). "Embryophyte stress signaling evolved in the algal progenitors of land plants". Proceedings of the National Academy of Sciences. 115 (15): E3471 – E3480. Bibcode:2018PNAS..115E3471D. doi:10.1073/pnas.1719230115. ISSN 0027-8424. PMC 5899452. PMID 29581286. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899452

  260. Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa; Becker, Dirk; Lang, Daniel; Vosolsobě, Stanislav; Rombauts, Stephane; Wilhelmsson, Per K.I.; Janitza, Philipp; Kern, Ramona (July 2018). "The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization". Cell. 174 (2): 448–464.e24. doi:10.1016/j.cell.2018.06.033. PMID 30007417. S2CID 206569169. https://doi.org/10.1016%2Fj.cell.2018.06.033

  261. Zhao, Chenchen; Wang, Yuanyuan; Chan, Kai Xun; Marchant, D. Blaine; Franks, Peter J.; Randall, David; Tee, Estee E.; Chen, Guang; Ramesh, Sunita; Phua, Su Yin; Zhang, Ben; Hills, Adrian; Dai, Fei; Xue, Dawei; Gilliham, Matthew (12 March 2019). "Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land". Proceedings of the National Academy of Sciences. 116 (11): 5015–5020. Bibcode:2019PNAS..116.5015Z. doi:10.1073/pnas.1812092116. ISSN 0027-8424. PMC 6421419. PMID 30804180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421419

  262. Dadras, Armin; Fürst-Jansen, Janine M. R.; Darienko, Tatyana; Krone, Denis; Scholz, Patricia; Sun, Siqi; Herrfurth, Cornelia; Rieseberg, Tim P.; Irisarri, Iker; Steinkamp, Rasmus; Hansen, Maike; Buschmann, Henrik; Valerius, Oliver; Braus, Gerhard H.; Hoecker, Ute (28 August 2023). "Environmental gradients reveal stress hubs pre-dating plant terrestrialization". Nature Plants. 9 (9): 1419–1438. Bibcode:2023NatPl...9.1419D. doi:10.1038/s41477-023-01491-0. ISSN 2055-0278. PMC 10505561. PMID 37640935. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505561

  263. Hedtke B, Börner T, Weihe A (August 1997). "Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis". Science. 277 (5327): 809–11. doi:10.1126/science.277.5327.809. PMID 9242608. /wiki/Doi_(identifier)

  264. Harris EH, Boynton JE, Gillham NW (December 1994). "Chloroplast ribosomes and protein synthesis". Microbiological Reviews. 58 (4): 700–54. doi:10.1128/MMBR.58.4.700-754.1994. PMC 372988. PMID 7854253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372988

  265. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  266. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430

  267. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. (September 2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (19): 12246–51. Bibcode:2002PNAS...9912246M. doi:10.1073/pnas.182432999. PMC 129430. PMID 12218172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC129430

  268. Keeling PJ (March 2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1541): 729–48. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2817223

  269. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  270. Lung SC, Chuong SD (April 2012). "A transit peptide-like sorting signal at the C terminus directs the Bienertia sinuspersici preprotein receptor Toc159 to the chloroplast outer membrane". The Plant Cell. 24 (4): 1560–78. Bibcode:2012PlanC..24.1560L. doi:10.1105/tpc.112.096248. PMC 3398564. PMID 22517318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398564

  271. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  272. Waegemann K, Soll J (March 1996). "Phosphorylation of the transit sequence of chloroplast precursor proteins". The Journal of Biological Chemistry. 271 (11): 6545–54. doi:10.1074/jbc.271.11.6545. PMID 8626459. https://doi.org/10.1074%2Fjbc.271.11.6545

  273. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  274. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  275. May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. Bibcode:2000PlanC..12...53M. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214

  276. Jarvis P, Soll J (December 2001). "Toc, Tic, and chloroplast protein import". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1541 (1–2): 64–79. doi:10.1016/S0167-4889(01)00147-1. PMID 11750663. https://doi.org/10.1016%2FS0167-4889%2801%2900147-1

  277. May T, Soll J (January 2000). "14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants". The Plant Cell. 12 (1): 53–64. Bibcode:2000PlanC..12...53M. doi:10.1105/tpc.12.1.53. PMC 140214. PMID 10634907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140214

  278. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  279. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  280. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  281. Wise RR, Hoober JK (2007). The Structure and Function of Plastids. Springer. pp. 32–33. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5

  282. Milo R, Phillips R. "Cell Biology by the Numbers: How large are chloroplasts?". book.bionumbers.org. Retrieved 7 February 2017. http://book.bionumbers.org/how-large-are-chloroplasts/

  283. Milo R, Phillips R. "Cell Biology by the Numbers: How large are chloroplasts?". book.bionumbers.org. Retrieved 7 February 2017. http://book.bionumbers.org/how-large-are-chloroplasts/

  284. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  285. "Oedogonium Link ex Hirn, 1900: 17". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43424

  286. "Chlamydomonas Ehrenberg, 1833: 288". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43319

  287. "Spirogyra Link, 1820: 5". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43564

  288. "Sirogonium Kützing, 1843: 278". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43563

  289. "Zygnema C.Agardh, 1817: xxxii, 98". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43566

  290. "Micrasterias C.Agardh ex Ralfs, 1848: 68". algaeBASE. Retrieved 19 May 2013. http://www.algaebase.org/search/genus/detail/?genus_id=43536

  291. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  292. John DM, Brook AJ, Whitton BA (2002). The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press. p. 335. ISBN 978-0-521-77051-4. 978-0-521-77051-4

  293. Fuks B, Homblé F (October 1996). "Mechanism of proton permeation through chloroplast lipid membranes". Plant Physiology. 112 (2): 759–66. doi:10.1104/pp.112.2.759. PMC 158000. PMID 8883387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158000

  294. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  295. Joyard J, Block MA, Douce R (August 1991). "Molecular aspects of plastid envelope biochemistry". European Journal of Biochemistry. 199 (3): 489–509. doi:10.1111/j.1432-1033.1991.tb16148.x. PMID 1868841. https://doi.org/10.1111%2Fj.1432-1033.1991.tb16148.x

  296. "Chloroplast". Encyclopedia of Science. Retrieved 27 December 2012. http://www.daviddarling.info/encyclopedia/C/chloroplasts.html

  297. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  298. Chaal BK, Green BR (February 2005). "Protein import pathways in 'complex' chloroplasts derived from secondary endosymbiosis involving a red algal ancestor". Plant Molecular Biology. 57 (3): 333–42. doi:10.1007/s11103-004-7848-y. PMID 15830125. S2CID 22619029. /wiki/Doi_(identifier)

  299. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  300. Keeling PJ (October 2004). "Diversity and evolutionary history of plastids and their hosts". American Journal of Botany. 91 (10): 1481–93. doi:10.3732/ajb.91.10.1481. PMID 21652304. S2CID 17522125. https://doi.org/10.3732%2Fajb.91.10.1481

  301. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  302. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  303. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  304. Koike H, Yoshio M, Kashino Y, Satoh K (May 1998). "Polypeptide composition of envelopes of spinach chloroplasts: two major proteins occupy 90% of outer envelope membranes". Plant & Cell Physiology. 39 (5): 526–32. doi:10.1093/oxfordjournals.pcp.a029400. PMID 9664716. https://doi.org/10.1093%2Foxfordjournals.pcp.a029400

  305. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  306. Köhler RH, Hanson MR (January 2000). "Plastid tubules of higher plants are tissue-specific and developmentally regulated". Journal of Cell Science. 113 (Pt 1): 81–9. doi:10.1242/jcs.113.1.81. PMID 10591627. Archived from the original on 20 September 2016. http://jcs.biologists.org/cgi/pmidlookup?view=long&pmid=10591627

  307. Gray JC, Sullivan JA, Hibberd JM, Hansen MR (2001). "Stromules: mobile protrusions and interconnections between plastids". Plant Biology. 3 (3): 223–33. Bibcode:2001PlBio...3..223G. doi:10.1055/s-2001-15204. S2CID 84474739. /wiki/Bibcode_(identifier)

  308. Schattat M, Barton K, Baudisch B, Klösgen RB, Mathur J (April 2011). "Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics". Plant Physiology. 155 (4): 1667–77. doi:10.1104/pp.110.170480. PMC 3091094. PMID 21273446. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091094

  309. Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, et al. (April 2012). "Differential coloring reveals that plastids do not form networks for exchanging macromolecules". The Plant Cell. 24 (4): 1465–77. Bibcode:2012PlanC..24.1465S. doi:10.1105/tpc.111.095398. PMC 3398557. PMID 22474180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398557

  310. Brunkard JO, Runkel AM, Zambryski PC (August 2015). "Chloroplasts extend stromules independently and in response to internal redox signals". Proceedings of the National Academy of Sciences of the United States of America. 112 (32): 10044–9. Bibcode:2015PNAS..11210044B. doi:10.1073/pnas.1511570112. PMC 4538653. PMID 26150490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538653

  311. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  312. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  313. Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria https://academic.oup.com/plphys/article/190/1/165/6574362

  314. Soll J, Schleiff E (March 2004). "Protein import into chloroplasts". Nature Reviews Molecular Cell Biology. 5 (3): 198–208. doi:10.1038/nrm1333. PMID 14991000. S2CID 32453554. http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-3587-4

  315. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  316. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  317. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  318. Whatley JM (5 July 1994). "The occurrence of a peripheral reticulum in plastids of the gymnosperm Welwitschia mirabilis". New Phytologist. 74 (2): 215–220. doi:10.1111/j.1469-8137.1975.tb02608.x. https://doi.org/10.1111%2Fj.1469-8137.1975.tb02608.x

  319. Wise RR (2007). The Structure and Function of Plastids. Springer. pp. 17–18. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5

  320. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  321. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  322. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  323. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  324. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 516. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  325. Manuell AL, Quispe J, Mayfield SP (August 2007). "Structure of the chloroplast ribosome: novel domains for translation regulation". PLOS Biology. 5 (8): e209. doi:10.1371/journal.pbio.0050209. PMC 1939882. PMID 17683199. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1939882

  326. Bieri, P; Leibundgut, M; Saurer, M; Boehringer, D; Ban, N (15 February 2017). "The complete structure of the chloroplast 70S ribosome in complex with translation factor pY". The EMBO Journal. 36 (4): 475–486. doi:10.15252/embj.201695959. PMC 5694952. PMID 28007896. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694952

  327. Lim K, Kobayashi I, Nakai K (July 2014). "Alterations in rRNA-mRNA interaction during plastid evolution". Molecular Biology and Evolution. 31 (7): 1728–40. doi:10.1093/molbev/msu120. PMID 24710516. https://doi.org/10.1093%2Fmolbev%2Fmsu120

  328. Hirose T, Sugiura M (January 2004). "Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs". Plant & Cell Physiology. 45 (1): 114–7. doi:10.1093/pcp/pch002. PMID 14749493. S2CID 10774032. https://doi.org/10.1093%2Fpcp%2Fpch002

  329. Ma J, Campbell A, Karlin S (October 2002). "Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures". Journal of Bacteriology. 184 (20): 5733–45. doi:10.1128/JB.184.20.5733-5745.2002. PMC 139613. PMID 12270832. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC139613

  330. Lim K, Kobayashi I, Nakai K (July 2014). "Alterations in rRNA-mRNA interaction during plastid evolution". Molecular Biology and Evolution. 31 (7): 1728–40. doi:10.1093/molbev/msu120. PMID 24710516. https://doi.org/10.1093%2Fmolbev%2Fmsu120

  331. Lim K, Furuta Y, Kobayashi I (October 2012). "Large variations in bacterial ribosomal RNA genes". Molecular Biology and Evolution. 29 (10): 2937–48. doi:10.1093/molbev/mss101. PMC 3457768. PMID 22446745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457768

  332. Bieri, P; Leibundgut, M; Saurer, M; Boehringer, D; Ban, N (15 February 2017). "The complete structure of the chloroplast 70S ribosome in complex with translation factor pY". The EMBO Journal. 36 (4): 475–486. doi:10.15252/embj.201695959. PMC 5694952. PMID 28007896. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694952

  333. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  334. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  335. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  336. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  337. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  338. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  339. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  340. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  341. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  342. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  343. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  344. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  345. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (July 2006). "Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes". The Plant Cell. 18 (7): 1693–703. Bibcode:2006PlanC..18.1693A. doi:10.1105/tpc.105.039859. PMC 1488921. PMID 16731586. /wiki/Lucas_Andrew_Staehelin

  346. Crumpton-Taylor M, Grandison S, Png KM, Bushby AJ, Smith AM (February 2012). "Control of starch granule numbers in Arabidopsis chloroplasts". Plant Physiology. 158 (2): 905–16. doi:10.1104/pp.111.186957. PMC 3271777. PMID 22135430. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271777

  347. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  348. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  349. Zeeman SC, Delatte T, Messerli G, Umhang M, Stettler M, Mettler T, Streb S, Reinhold H, Kötting O (2007). "Starch breakdown: Recent discoveries suggest distinct pathways and novel mechanisms". Functional Plant Biology. 34 (6): 465–73. Bibcode:2007FunPB..34..465Z. doi:10.1071/FP06313. PMID 32689375. S2CID 15995416. /wiki/Bibcode_(identifier)

  350. Crumpton-Taylor M, Grandison S, Png KM, Bushby AJ, Smith AM (February 2012). "Control of starch granule numbers in Arabidopsis chloroplasts". Plant Physiology. 158 (2): 905–16. doi:10.1104/pp.111.186957. PMC 3271777. PMID 22135430. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271777

  351. Rochaix JD (1998). The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Dordrecht [u.a.]: Kluwer Acad. Publ. pp. 550–565. ISBN 978-0-7923-5174-0. 978-0-7923-5174-0

  352. Wise RR, Hoober JK (2006). The structure and function of plastids. Dordrecht: Springer. pp. 3–21. ISBN 978-1-4020-4061-0. Archived from the original on 8 March 2016. Retrieved 21 May 2013. 978-1-4020-4061-0

  353. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  354. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  355. Hanson D, Andrews TJ, Badger MR (2002). "Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta)". Functional Plant Biology. 29 (3): 407–16. Bibcode:2002FunPB..29..407H. doi:10.1071/PP01210. PMID 32689485. /wiki/Bibcode_(identifier)

  356. Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV (June 2011). "Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii". Plant Physiology. 156 (2): 884–96. doi:10.1104/pp.111.173922. PMC 3177283. PMID 21527423. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177283

  357. Retallack B, Butler RD (January 1970). "The development and structure of pyrenoids in Bulbochaete hiloensis". Journal of Cell Science. 6 (1): 229–41. doi:10.1242/jcs.6.1.229. PMID 5417694. /wiki/Doi_(identifier)

  358. Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV (June 2011). "Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii". Plant Physiology. 156 (2): 884–96. doi:10.1104/pp.111.173922. PMC 3177283. PMID 21527423. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177283

  359. Retallack B, Butler RD (January 1970). "The development and structure of pyrenoids in Bulbochaete hiloensis". Journal of Cell Science. 6 (1): 229–41. doi:10.1242/jcs.6.1.229. PMID 5417694. /wiki/Doi_(identifier)

  360. Brown MR, Arnott HJ (1970). "Structure and Function of the Algal Pyrenoid" (PDF). Journal of Phycology. 6: 14–22. doi:10.1111/j.1529-8817.1970.tb02350.x. S2CID 85604422. Archived from the original (PDF) on 31 May 2013. Retrieved 31 December 2012. https://web.archive.org/web/20130531182224/http://www.botany.utexas.edu/mbrown/papers/hreso/h26.pdf

  361. Infanger S, Bischof S, Hiltbrunner A, Agne B, Baginsky S, Kessler F (March 2011). "The chloroplast import receptor Toc90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant" (PDF). Molecular Plant. 4 (2): 252–63. doi:10.1093/mp/ssq071. PMID 21220583. http://doc.rero.ch/record/278856/files/Infanger_S.-Chloroplast_Import-20170222160947-YL.pdf

  362. "thylakoid". Merriam-Webster Dictionary. Merriam-Webster. Retrieved 19 May 2013. http://www.merriam-webster.com/dictionary/thylakoid

  363. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 186–187. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  364. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  365. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  366. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  367. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  368. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  369. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  370. Paolillo Jr, DJ (1970). "The three-dimensional arrangement of intergranal lamellae in chloroplasts". J Cell Sci. 6 (1): 243–55. doi:10.1242/jcs.6.1.243. PMID 5417695. /wiki/Doi_(identifier)

  371. Shimoni E; Rav-Hon O; Ohad I; Brumfeld V; Reich Z (2005). "Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography". Plant Cell. 17 (9): 2580–6. Bibcode:2005PlanC..17.2580S. doi:10.1105/tpc.105.035030. PMC 1197436. PMID 16055630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1197436

  372. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  373. Austin JR, Staehelin LA (April 2011). "Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography". Plant Physiology. 155 (4): 1601–11. doi:10.1104/pp.110.170647. PMC 3091084. PMID 21224341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091084

  374. Bussi Y; Shimoni E; Weiner A; Kapon R; Charuvi D; Nevo R; Efrati E; Reich Z (2019). "Fundamental helical geometry consolidates the plant photosynthetic membrane". Proc Natl Acad Sci USA. 116 (44): 22366–22375. Bibcode:2019PNAS..11622366B. doi:10.1073/pnas.1905994116. PMC 6825288. PMID 31611387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825288

  375. "Chloroplast in a plant cell". TUMEGGY / SCIENCE PHOTO LIBRARY. Retrieved 19 August 2020. https://www.sciencephoto.com/media/911533/view/chloroplast-in-a-plant-cell

  376. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 46. ISBN 0-521-31611-1. 0-521-31611-1

  377. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  378. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  379. Austin JR, Staehelin LA (April 2011). "Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography". Plant Physiology. 155 (4): 1601–11. doi:10.1104/pp.110.170647. PMC 3091084. PMID 21224341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091084

  380. Bussi Y; Shimoni E; Weiner A; Kapon R; Charuvi D; Nevo R; Efrati E; Reich Z (2019). "Fundamental helical geometry consolidates the plant photosynthetic membrane". Proc Natl Acad Sci USA. 116 (44): 22366–22375. Bibcode:2019PNAS..11622366B. doi:10.1073/pnas.1905994116. PMC 6825288. PMID 31611387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825288

  381. Bussi Y; Shimoni E; Weiner A; Kapon R; Charuvi D; Nevo R; Efrati E; Reich Z (2019). "Fundamental helical geometry consolidates the plant photosynthetic membrane". Proc Natl Acad Sci USA. 116 (44): 22366–22375. Bibcode:2019PNAS..11622366B. doi:10.1073/pnas.1905994116. PMC 6825288. PMID 31611387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825288

  382. Bussi Y; Shimoni E; Weiner A; Kapon R; Charuvi D; Nevo R; Efrati E; Reich Z (2019). "Fundamental helical geometry consolidates the plant photosynthetic membrane". Proc Natl Acad Sci USA. 116 (44): 22366–22375. Bibcode:2019PNAS..11622366B. doi:10.1073/pnas.1905994116. PMC 6825288. PMID 31611387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825288

  383. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  384. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  385. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  386. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  387. Mustárdy L, Buttle K, Steinbach G, Garab G (October 2008). "The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly". The Plant Cell. 20 (10): 2552–7. Bibcode:2008PlanC..20.2552M. doi:10.1105/tpc.108.059147. PMC 2590735. PMID 18952780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590735

  388. Wise RR (2007). The Structure and Function of Plastids. Springer. pp. 17–18. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5

  389. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 190–193. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  390. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  391. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  392. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 190–193. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  393. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  394. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  395. "Australian scientists discover first new chlorophyll in 60 years". University of Sydney. 20 August 2010. http://www.usyd.edu.au/news/84.html?newsstoryid=5463

  396. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 190–193. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  397. Takaichi S (15 June 2011). "Carotenoids in algae: distributions, biosyntheses and functions". Marine Drugs. 9 (6): 1101–18. doi:10.3390/md9061101. PMC 3131562. PMID 21747749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131562

  398. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  399. Shapley D (15 October 2012). "Why Do Leaves Change Color in Fall?". News Articles. Retrieved 21 May 2013. http://www.thedailygreen.com/environmental-news/latest/why-do-leaves-change-color-0909

  400. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  401. Takaichi S (15 June 2011). "Carotenoids in algae: distributions, biosyntheses and functions". Marine Drugs. 9 (6): 1101–18. doi:10.3390/md9061101. PMC 3131562. PMID 21747749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131562

  402. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  403. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  404. Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW (August 2008). "The origin of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1504): 2675–85. doi:10.1098/rstb.2008.0050. PMC 2606771. PMID 18468982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2606771

  405. "Introduction to the Rhodophyta". University of California Museum of Paleontology. Retrieved 20 May 2013. http://www.ucmp.berkeley.edu/protista/rhodophyta.html

  406. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  407. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  408. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  409. Kim E, Archibald JM (2009). "Diversity and Evolution of Plastids and Their Genomes". In Sandelius AS, Aronsson H (eds.). The Chloroplast. Plant Cell Monographs. Vol. 13. pp. 1–39. doi:10.1007/978-3-540-68696-5_1. ISBN 978-3-540-68692-7. S2CID 83672683. 978-3-540-68692-7

  410. Takaichi S (15 June 2011). "Carotenoids in algae: distributions, biosyntheses and functions". Marine Drugs. 9 (6): 1101–18. doi:10.3390/md9061101. PMC 3131562. PMID 21747749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131562

  411. Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW (August 2008). "The origin of plastids". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1504): 2675–85. doi:10.1098/rstb.2008.0050. PMC 2606771. PMID 18468982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2606771

  412. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  413. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  414. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  415. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  416. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  417. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  418. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  419. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 24. ISBN 0-86720-504-0. 0-86720-504-0

  420. Whatley JM (5 July 1994). "The occurrence of a peripheral reticulum in plastids of the gymnosperm Welwitschia mirabilis". New Phytologist. 74 (2): 215–220. doi:10.1111/j.1469-8137.1975.tb02608.x. https://doi.org/10.1111%2Fj.1469-8137.1975.tb02608.x

  421. Wise RR (2007). The Structure and Function of Plastids. Springer. pp. 17–18. ISBN 978-1-4020-6570-5. 978-1-4020-6570-5

  422. Lawton JR (March 1988). "Ultrastructure of Chloroplast Membranes in Leaves of Maize and Ryegrass as Revealed by Selective Staining Methods". New Phytologist. 108 (3): 277–283. Bibcode:1988NewPh.108..277L. doi:10.1111/j.1469-8137.1988.tb04163.x. JSTOR 2433294. PMID 33873933. https://doi.org/10.1111%2Fj.1469-8137.1988.tb04163.x

  423. Lawson T. and J. I. L. Morison. Essay 10.1 Guard Cell Photosynthesis. Plant Physiology and Development, Sixth Edition [1] http://6e.plantphys.net/essay10.01.html

  424. Zeiger E, Talbott LD, Frechilla S, Srivastava A, Zhu J (2002). "The guard cell chloroplast: A perspective for the twenty-first century". New Phytologist. 153 (3): 415–424. Bibcode:2002NewPh.153..415Z. doi:10.1046/j.0028-646X.2001.NPH328.doc.x. PMID 33863211. /wiki/Bibcode_(identifier)

  425. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  426. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  427. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  428. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  429. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  430. Katsir L, Chung HS, Koo AJ, Howe GA (August 2008). "Jasmonate signaling: a conserved mechanism of hormone sensing". Current Opinion in Plant Biology. 11 (4): 428–35. Bibcode:2008COPB...11..428K. doi:10.1016/j.pbi.2008.05.004. PMC 2560989. PMID 18583180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560989

  431. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  432. Schnurr JA, Shockey JM, de Boer GJ, Browse JA (August 2002). "Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis". Plant Physiology. 129 (4): 1700–9. doi:10.1104/pp.003251. PMC 166758. PMID 12177483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166758

  433. Padmanabhan MS, Dinesh-Kumar SP (November 2010). "All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity". Molecular Plant-Microbe Interactions. 23 (11): 1368–80. doi:10.1094/MPMI-05-10-0113. PMID 20923348. https://doi.org/10.1094%2FMPMI-05-10-0113

  434. Biology—Concepts and Connections. Pearson. 2009. pp. 108–118.

  435. Campbell NA, Williamson B, Heyden RJ (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7.[page needed] 978-0-13-250882-7

  436. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  437. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  438. Jagendorf AT, Uribe E (January 1966). "ATP formation caused by acid-base transition of spinach chloroplasts". Proceedings of the National Academy of Sciences of the United States of America. 55 (1): 170–7. Bibcode:1966PNAS...55..170J. doi:10.1073/pnas.55.1.170. PMC 285771. PMID 5220864. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285771

  439. Berg JM, Tymoczko JL, Stryer L (2002). Biochemistry (5. ed., 4. print. ed.). New York, NY [u.a.]: W. H. Freeman. pp. Section 19.4. ISBN 0-7167-3051-0. 0-7167-3051-0

  440. Berg JM, Tymoczko JL, Stryer L (2002). Biochemistry (5. ed., 4. print. ed.). New York, NY [u.a.]: W. H. Freeman. pp. Section 19.4. ISBN 0-7167-3051-0. 0-7167-3051-0

  441. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 196–197. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  442. Biology—Concepts and Connections. Pearson. 2009. pp. 108–118.

  443. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  444. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  445. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 186–187. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  446. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 200–201. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  447. Berg JM, Tymoczko JL, Stryer L (2002). Biochemistry (5. ed., 4. print. ed.). New York, NY [u.a.]: W. H. Freeman. pp. Section 20.1. ISBN 0-7167-3051-0. 0-7167-3051-0

  448. Berg JM, Tymoczko JL, Stryer L (2002). Biochemistry (5. ed., 4. print. ed.). New York, NY [u.a.]: W. H. Freeman. pp. Section 20.1. ISBN 0-7167-3051-0. 0-7167-3051-0

  449. Wample RL, Davis RW (September 1983). "Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.)". Plant Physiology. 73 (1): 195–8. doi:10.1104/pp.73.1.195. PMC 1066435. PMID 16663176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066435

  450. Wample RL, Davis RW (September 1983). "Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.)". Plant Physiology. 73 (1): 195–8. doi:10.1104/pp.73.1.195. PMC 1066435. PMID 16663176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066435

  451. Carmi A, Shomer I (1979). "Starch Accumulation and Photosynthetic Activity in Primary Leaves of Bean (Phaseolus vulgaris L.)". Annals of Botany. 44 (4): 479–484. doi:10.1093/oxfordjournals.aob.a085756. /wiki/Doi_(identifier)

  452. Wample RL, Davis RW (September 1983). "Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.)". Plant Physiology. 73 (1): 195–8. doi:10.1104/pp.73.1.195. PMC 1066435. PMID 16663176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066435

  453. Biology—Concepts and Connections. Pearson. 2009. pp. 108–118.

  454. Biology—Concepts and Connections. Pearson. 2009. pp. 108–118.

  455. Berg JM, Tymoczko JL, Stryer L (2002). Biochemistry (5th ed.). W H Freeman. pp. Section 19.4. Retrieved 30 October 2012. https://www.ncbi.nlm.nih.gov/books/NBK22519/

  456. Hauser M, Eichelmann H, Oja V, Heber U, Laisk A (July 1995). "Stimulation by Light of Rapid pH Regulation in the Chloroplast Stroma in Vivo as Indicated by CO2 Solubilization in Leaves". Plant Physiology. 108 (3): 1059–1066. doi:10.1104/pp.108.3.1059. PMC 157457. PMID 12228527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157457

  457. Werdan K, Heldt HW, Milovancev M (August 1975). "The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 396 (2): 276–92. doi:10.1016/0005-2728(75)90041-9. PMID 239746. /wiki/Doi_(identifier)

  458. Hauser M, Eichelmann H, Oja V, Heber U, Laisk A (July 1995). "Stimulation by Light of Rapid pH Regulation in the Chloroplast Stroma in Vivo as Indicated by CO2 Solubilization in Leaves". Plant Physiology. 108 (3): 1059–1066. doi:10.1104/pp.108.3.1059. PMC 157457. PMID 12228527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157457

  459. Hauser M, Eichelmann H, Oja V, Heber U, Laisk A (July 1995). "Stimulation by Light of Rapid pH Regulation in the Chloroplast Stroma in Vivo as Indicated by CO2 Solubilization in Leaves". Plant Physiology. 108 (3): 1059–1066. doi:10.1104/pp.108.3.1059. PMC 157457. PMID 12228527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157457

  460. Werdan K, Heldt HW, Milovancev M (August 1975). "The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 396 (2): 276–92. doi:10.1016/0005-2728(75)90041-9. PMID 239746. /wiki/Doi_(identifier)

  461. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  462. Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, et al. (August 2002). "Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters". Proceedings of the National Academy of Sciences of the United States of America. 99 (17): 11487–92. Bibcode:2002PNAS...9911487F. doi:10.1073/pnas.172390399. PMC 123283. PMID 12177442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC123283

  463. Rolland N, Droux M, Douce R (March 1992). "Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence". Plant Physiology. 98 (3): 927–35. doi:10.1104/pp.98.3.927. PMC 1080289. PMID 16668766. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080289

  464. Rolland N, Droux M, Douce R (March 1992). "Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence". Plant Physiology. 98 (3): 927–35. doi:10.1104/pp.98.3.927. PMC 1080289. PMID 16668766. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080289

  465. Ravanel S, Gakière B, Job D, Douce R (June 1998). "The specific features of methionine biosynthesis and metabolism in plants". Proceedings of the National Academy of Sciences of the United States of America. 95 (13): 7805–12. Bibcode:1998PNAS...95.7805R. doi:10.1073/pnas.95.13.7805. PMC 22764. PMID 9636232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22764

  466. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  467. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  468. Buchanan BB, Gruissem W, Jones RL (Eds.). 2015. Biochemistry & Molecular Biology of Plants. Wiley Blackwell.

  469. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (April 2010). "Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism". Progress in Lipid Research. 49 (2): 128–58. doi:10.1016/j.plipres.2009.10.003. PMID 19879895. /wiki/Doi_(identifier)

  470. Buchanan BB, Gruissem W, Jones RL (Eds.). 2015. Biochemistry & Molecular Biology of Plants. Wiley Blackwell.

  471. Proudlove MO, Thurman DA (1981). "The uptake of 2-oxoglutarate and pyruvate by isolated pea chloroplasts". New Phytologist. 88 (2): 255–264. Bibcode:1981NewPh..88..255P. doi:10.1111/j.1469-8137.1981.tb01722.x. https://doi.org/10.1111%2Fj.1469-8137.1981.tb01722.x

  472. Buchanan BB, Gruissem W, Jones RL (Eds.). 2015. Biochemistry & Molecular Biology of Plants. Wiley Blackwell.

  473. Bao X, Focke M, Pollard M, Ohlrogge J. 2000. Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant Journal 22, 39–50.

  474. Ohlrogge J, Browse J (1995). "Lipid Biosynthesis". The Plant Cell. 7 (7): 957–970. doi:10.1105/tpc.7.7.957. PMC 160893. PMID 7640528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160893

  475. Buchanan BB, Gruissem W, Jones RL (Eds.). 2015. Biochemistry & Molecular Biology of Plants. Wiley Blackwell.

  476. Buchanan BB, Gruissem W, Jones RL (Eds.). 2015. Biochemistry & Molecular Biology of Plants. Wiley Blackwell.

  477. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 186–187. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  478. Roberts K (2007). Handbook of plant science. Chichester, West Sussex, England: Wiley. p. 16. ISBN 978-0-470-05723-0. 978-0-470-05723-0

  479. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). p. 742. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  480. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman, Minorsky PV, Jackson RB (2009). Biology (8th ed.). Benjamin Cummings (Pearson). pp. 186–187. ISBN 978-0-8053-6844-4. 978-0-8053-6844-4

  481. Lawson T. and J. I. L. Morison. Essay 10.1 Guard Cell Photosynthesis. Plant Physiology and Development, Sixth Edition [1] http://6e.plantphys.net/essay10.01.html

  482. Wells, C.; Balish, E. (1979). "The mitogenic activity of lipopolysaccharide for spleen cells from germfree, conventional, and gnotobiotic rats". Canadian Journal of Microbiology. 25 (9): 1087–93. doi:10.1139/m79-166. PMID 540263. /wiki/Doi_(identifier)

  483. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  484. Dong XJ, Nagai R, Takagi S (1998). "Microfilaments Anchor Chloroplasts along the Outer Periclinal Wall in Vallisneria Epidermal Cells through Cooperation of PFR and Photosynthesis". Plant and Cell Physiology. 39 (12): 1299–306. doi:10.1093/oxfordjournals.pcp.a029334. https://doi.org/10.1093%2Foxfordjournals.pcp.a029334

  485. Takagi S (June 2003). "Actin-based photo-orientation movement of chloroplasts in plant cells". The Journal of Experimental Biology. 206 (Pt 12): 1963–9. Bibcode:2003JExpB.206.1963T. doi:10.1242/jeb.00215. PMID 12756277. https://doi.org/10.1242%2Fjeb.00215

  486. Wells, C.; Balish, E. (1979). "The mitogenic activity of lipopolysaccharide for spleen cells from germfree, conventional, and gnotobiotic rats". Canadian Journal of Microbiology. 25 (9): 1087–93. doi:10.1139/m79-166. PMID 540263. /wiki/Doi_(identifier)

  487. Takagi S (June 2003). "Actin-based photo-orientation movement of chloroplasts in plant cells". The Journal of Experimental Biology. 206 (Pt 12): 1963–9. Bibcode:2003JExpB.206.1963T. doi:10.1242/jeb.00215. PMID 12756277. https://doi.org/10.1242%2Fjeb.00215

  488. Dong XJ, Nagai R, Takagi S (1998). "Microfilaments Anchor Chloroplasts along the Outer Periclinal Wall in Vallisneria Epidermal Cells through Cooperation of PFR and Photosynthesis". Plant and Cell Physiology. 39 (12): 1299–306. doi:10.1093/oxfordjournals.pcp.a029334. https://doi.org/10.1093%2Foxfordjournals.pcp.a029334

  489. Takagi S (June 2003). "Actin-based photo-orientation movement of chloroplasts in plant cells". The Journal of Experimental Biology. 206 (Pt 12): 1963–9. Bibcode:2003JExpB.206.1963T. doi:10.1242/jeb.00215. PMID 12756277. https://doi.org/10.1242%2Fjeb.00215

  490. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  491. Gunning BE, Steer MW (1996). Plant cell biology: structure and function. Boston, Mass.: Jones and Bartlett Publishers. p. 20. ISBN 0-86720-504-0. 0-86720-504-0

  492. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  493. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  494. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. pp. 54–55. ISBN 0-521-31611-1. 0-521-31611-1

  495. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  496. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. pp. 54–55. ISBN 0-521-31611-1. 0-521-31611-1

  497. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. pp. 54–55. ISBN 0-521-31611-1. 0-521-31611-1

  498. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  499. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  500. Burgess J (1989). An introduction to plant cell development. Cambridge: Cambridge university press. p. 56. ISBN 0-521-31611-1. 0-521-31611-1

  501. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. p. 57. ISBN 0-521-31611-1. 0-521-31611-1

  502. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. pp. 54–55. ISBN 0-521-31611-1. 0-521-31611-1

  503. Possingham JV, Rose RJ (1976). "Chloroplast Replication and Chloroplast DNA Synthesis in Spinach Leaves". Proceedings of the Royal Society B: Biological Sciences. 193 (1112): 295–305. Bibcode:1976RSPSB.193..295P. doi:10.1098/rspb.1976.0047. S2CID 2691108. /wiki/Bibcode_(identifier)

  504. Cannon GC, Heinhorst S (1 January 1993). "DNA replication in chloroplasts". Journal of Cell Science. 104 (1): 1–9. CiteSeerX 10.1.1.1026.3732. doi:10.1242/jcs.104.1.1. http://jcs.biologists.org/content/104/1/1

  505. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  506. Burgess J (1989). An introduction to plant cell development (Pbk. ed.). Cambridge: Cambridge university press. pp. 54–55. ISBN 0-521-31611-1. 0-521-31611-1

  507. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  508. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  509. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  510. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  511. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  512. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  513. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  514. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  515. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  516. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  517. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  518. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  519. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  520. Hashimoto H, Possingham JV (April 1989). "Effect of light on the chloroplast division cycle and DNA synthesis in cultured leaf discs of spinach". Plant Physiology. 89 (4): 1178–83. doi:10.1104/pp.89.4.1178. PMC 1055993. PMID 16666681. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1055993

  521. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  522. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  523. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  524. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (March 2003). "A plant-specific dynamin-related protein forms a ring at the chloroplast division site". The Plant Cell. 15 (3): 655–65. Bibcode:2003PlanC..15..655M. doi:10.1105/tpc.009373. PMC 150020. PMID 12615939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150020

  525. Alberts B (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. ISBN 0-8153-4072-9. 0-8153-4072-9

  526. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  527. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (May 2007). "Chloroplast division". Traffic. 8 (5): 451–61. doi:10.1111/j.1600-0854.2007.00545.x. PMID 17451550. S2CID 2808844. https://doi.org/10.1111%2Fj.1600-0854.2007.00545.x

  528. Possingham JV, Rose RJ (1976). "Chloroplast Replication and Chloroplast DNA Synthesis in Spinach Leaves". Proceedings of the Royal Society B: Biological Sciences. 193 (1112): 295–305. Bibcode:1976RSPSB.193..295P. doi:10.1098/rspb.1976.0047. S2CID 2691108. /wiki/Bibcode_(identifier)

  529. Hashimoto H, Possingham JV (April 1989). "Effect of light on the chloroplast division cycle and DNA synthesis in cultured leaf discs of spinach". Plant Physiology. 89 (4): 1178–83. doi:10.1104/pp.89.4.1178. PMC 1055993. PMID 16666681. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1055993

  530. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (January 2007). "Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies". American Journal of Botany. 94 (1): 42–6. doi:10.3732/ajb.94.1.42. PMID 21642206. /wiki/Doi_(identifier)

  531. Birky CW (December 1995). "Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution". Proceedings of the National Academy of Sciences of the United States of America. 92 (25): 11331–8. Bibcode:1995PNAS...9211331B. doi:10.1073/pnas.92.25.11331. PMC 40394. PMID 8524780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40394

  532. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (August 1995). "Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines". Proceedings of the National Academy of Sciences of the United States of America. 92 (17): 7759–63. Bibcode:1995PNAS...92.7759P. doi:10.1073/pnas.92.17.7759. PMC 41225. PMID 7644491. In the pines, the chloroplast genome is transmitted through pollen https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41225

  533. Stegemann S, Hartmann S, Ruf S, Bock R (July 2003). "High-frequency gene transfer from the chloroplast genome to the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 100 (15): 8828–33. Bibcode:2003PNAS..100.8828S. doi:10.1073/pnas.1430924100. PMC 166398. PMID 12817081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166398

  534. Ruf S, Karcher D, Bock R (April 2007). "Determining the transgene containment level provided by chloroplast transformation". Proceedings of the National Academy of Sciences of the United States of America. 104 (17): 6998–7002. Bibcode:2007PNAS..104.6998R. doi:10.1073/pnas.0700008104. PMC 1849964. PMID 17420459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1849964

  535. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (January 2007). "Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies". American Journal of Botany. 94 (1): 42–6. doi:10.3732/ajb.94.1.42. PMID 21642206. /wiki/Doi_(identifier)

  536. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (January 2007). "Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies". American Journal of Botany. 94 (1): 42–6. doi:10.3732/ajb.94.1.42. PMID 21642206. /wiki/Doi_(identifier)

  537. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (January 2007). "Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies". American Journal of Botany. 94 (1): 42–6. doi:10.3732/ajb.94.1.42. PMID 21642206. /wiki/Doi_(identifier)

  538. Ruf S, Karcher D, Bock R (April 2007). "Determining the transgene containment level provided by chloroplast transformation". Proceedings of the National Academy of Sciences of the United States of America. 104 (17): 6998–7002. Bibcode:2007PNAS..104.6998R. doi:10.1073/pnas.0700008104. PMC 1849964. PMID 17420459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1849964