An estimate of the range of distances from the Sun allowing the existence of liquid water appears in Newton's Principia (Book III, Section 1, corol. 4). The philosopher Louis Claude de Saint-Martin speculated in his 1802 work Man: His True Nature and Ministry, "... we may presume, that, being susceptible of vegetation, it [the Earth] has been placed, in the series of planets, in the rank which was necessary, and at exactly the right distance from the sun, to accomplish its secondary object of vegetation; and from this we might infer that the other planets are either too near or too remote from the sun, to vegetate."
Subsequently, some astrobiologists propose that the concept be extended to other solvents, including dihydrogen, sulfuric acid, dinitrogen, formamide, and methane, among others, which would support hypothetical life forms that use an alternative biochemistry. In 2013, further developments in habitable zone concepts were made with the proposal of a circum- planetary habitable zone, also known as the "habitable edge", to encompass the region around a planet where the orbits of natural satellites would not be disrupted, and at the same time tidal heating from the planet would not cause liquid water to boil away.
It has been noted that the current term of 'circumstellar habitable zone' poses confusion as the name suggests that planets within this region will possess a habitable environment. However, surface conditions are dependent on a host of different individual properties of that planet. This misunderstanding is reflected in excited reports of 'habitable planets'. Since it is completely unknown whether conditions on these distant HZ worlds could host life, different terminology is needed.
Whether a body is in the circumstellar habitable zone of its host star is dependent on the radius of the planet's orbit (for natural satellites, the host planet's orbit), the mass of the body itself, and the radiative flux of the host star. Given the large spread in the masses of planets within a circumstellar habitable zone, coupled with the discovery of super-Earth planets that can sustain thicker atmospheres and stronger magnetic fields than Earth, circumstellar habitable zones are now split into two separate regions—a "conservative habitable zone" in which lower-mass planets like Earth can remain habitable, complemented by a larger "extended habitable zone" in which a planet like Venus, with stronger greenhouse effects, can have the right temperature for liquid water to exist at the surface.
Estimates for the habitable zone within the Solar System range from 0.38 to 10.0 astronomical units, though arriving at these estimates has been challenging for a variety of reasons. Numerous planetary mass objects orbit within, or close to, this range and as such receive sufficient sunlight to raise temperatures above the freezing point of water. However, their atmospheric conditions vary substantially.
The aphelion of Venus, for example, touches the inner edge of the zone in most estimates and, while atmospheric pressure at the surface is sufficient for liquid water, a strong greenhouse effect raises surface temperatures to 462 °C (864 °F) at which water can only exist as vapor. The entire orbits of the Moon, Mars, and numerous asteroids also lie within various estimates of the habitable zone. Only at Mars' lowest elevations (less than 30% of the planet's surface) is atmospheric pressure and temperature sufficient for water to, if present, exist in liquid form for short periods. At Hellas Basin, for example, atmospheric pressures can reach 1,115 Pa and temperatures above zero Celsius (about the triple point for water) for 70 days in the Martian year. Despite indirect evidence in the form of seasonal flows on warm Martian slopes, no confirmation has been made of the presence of liquid water there. While other objects orbit partly within this zone, including comets, Ceres is the only one of planetary mass.
Despite this, studies indicate the strong possibility of past liquid water on the surface of Venus, the Moon, Mars, Vesta and Ceres, suggesting a more common phenomenon than previously thought. Since sustainable liquid water is thought to be essential to support complex life, most estimates, therefore, are inferred from the effect that a repositioned orbit would have on the habitability of Earth or Venus as their surface gravity allows sufficient atmosphere to be retained for several billion years.
According to the extended habitable zone concept, planetary-mass objects with atmospheres capable of inducing sufficient radiative forcing could possess liquid water farther out from the Sun. Such objects could include those whose atmospheres contain a high component of greenhouse gas and terrestrial planets much more massive than Earth (super-Earth class planets), that have retained atmospheres with surface pressures of up to 100 kbar. There are no examples of such objects in the Solar System to study; not enough is known about the nature of atmospheres of these kinds of extrasolar objects, and their position in the habitable zone cannot determine the net temperature effect of such atmospheres including induced albedo, anti-greenhouse or other possible heat sources.
For reference, the average distance from the Sun of some major bodies within the various estimates of the habitable zone is: Mercury, 0.39 AU; Venus, 0.72 AU; Earth, 1.00 AU; Mars, 1.52 AU; Vesta, 2.36 AU; Ceres and Pallas, 2.77 AU; Jupiter, 5.20 AU; Saturn, 9.58 AU. In the most conservative estimates, only Earth lies within the zone; in the most permissive estimates, even Saturn at perihelion, or Mercury at aphelion, might be included.
Estimates of the circumstellar habitable zone boundaries of the Solar SystemSome scientists argue that the concept of a circumstellar habitable zone is actually limited to stars in certain types of systems or of certain spectral types. Binary systems, for example, have circumstellar habitable zones that differ from those of single-star planetary systems, in addition to the orbital stability concerns inherent with a three-body configuration. If the Solar System were such a binary system, the outer limits of the resulting circumstellar habitable zone could extend as far as 2.4 AU.
Others maintain that circumstellar habitable zones are more common and that it is indeed possible for water to exist on planets orbiting cooler stars. Climate modeling from 2013 supports the idea that red dwarf stars can support planets with relatively constant temperatures over their surfaces despite tidal locking. Astronomy professor Eric Agol argues that even white dwarfs may support a relatively brief habitable zone through planetary migration. At the same time, others have written in similar support of semi-stable, temporary habitable zones around brown dwarfs. Also, a habitable zone in the outer parts of stellar systems may exist during the pre-main-sequence phase of stellar evolution, especially around M-dwarfs, potentially lasting for billion-year timescales.
Circumstellar habitable zones change over time with stellar evolution. For example, hot O-type stars, which may remain on the main sequence for fewer than 10 million years, would have rapidly changing habitable zones not conducive to the development of life. Red dwarf stars, on the other hand, which can live for hundreds of billions of years on the main sequence, would have planets with ample time for life to develop and evolve. Even while stars are on the main sequence, though, their energy output steadily increases, pushing their habitable zones farther out; our Sun, for example, was 75% as bright in the Archaean as it is now, and in the future, continued increases in energy output will put Earth outside the Sun's habitable zone, even before it reaches the red giant phase. In order to deal with this increase in luminosity, the concept of a continuously habitable zone has been introduced. As the name suggests, the continuously habitable zone is a region around a star in which planetary-mass bodies can sustain liquid water for a given period. Like the general circumstellar habitable zone, the continuously habitable zone of a star is divided into a conservative and extended region.
Once a star has evolved sufficiently to become a red giant, its circumstellar habitable zone will change dramatically from its main-sequence size. For example, the Sun is expected to engulf the previously habitable Earth as a red giant. However, once a red giant star reaches the horizontal branch, it achieves a new equilibrium and can sustain a new circumstellar habitable zone, which in the case of the Sun would range from 7 to 22 AU. At such stage, Saturn's moon Titan would likely be habitable in Earth's temperature sense. Given that this new equilibrium lasts for about 1 Gyr, and because life on Earth emerged by 0.7 Gyr from the formation of the Solar System at latest, life could conceivably develop on planetary mass objects in the habitable zone of red giants. However, around such a helium-burning star, important life processes like photosynthesis could only happen around planets where the atmosphere has carbon dioxide, as by the time a solar-mass star becomes a red giant, planetary-mass bodies would have already absorbed much of their free carbon dioxide. Moreover, as Ramirez and Kaltenegger (2016) showed, intense stellar winds would completely remove the atmospheres of such smaller planetary bodies, rendering them uninhabitable anyway. Thus, Titan would not be habitable even after the Sun becomes a red giant. Nevertheless, life need not originate during this stage of stellar evolution for it to be detected. Once the star becomes a red giant, and the habitable zone extends outward, the icy surface would melt, forming a temporary atmosphere that can be searched for signs of life that may have been thriving before the start of the red giant stage.
A planet's atmospheric conditions influence its ability to retain heat so that the location of the habitable zone is also specific to each type of planet: desert planets (also known as dry planets), with very little water, will have less water vapor in the atmosphere than Earth and so have a reduced greenhouse effect, meaning that a desert planet could maintain oases of water closer to its star than Earth is to the Sun. The lack of water also means there is less ice to reflect heat into space, so the outer edge of desert-planet habitable zones is further out.
Maintenance of liquid surface water also requires a sufficiently thick atmosphere. Possible origins of terrestrial atmospheres are currently theorized to outgassing, impact degassing, and ingassing. Atmospheres are thought to be maintained through similar processes along with biogeochemical cycles and the mitigation of atmospheric escape. In a 2013 study led by Italian astronomer Giovanni Vladilo, it was shown that the size of the circumstellar habitable zone increased with greater atmospheric pressure. Below an atmospheric pressure of about 15 millibars, it was found that habitability could not be maintained because even a small shift in pressure or temperature could render water unable to form as a liquid.
Although traditional definitions of the habitable zone assume that carbon dioxide and water vapor are the most important greenhouse gases (as they are on the Earth), a study led by Ramses Ramirez and co-author Lisa Kaltenegger has shown that the size of the habitable zone is greatly increased if prodigious volcanic outgassing of hydrogen is also included along with the carbon dioxide and water vapor. The outer edge in the Solar System would extend out as far as 2.4 AU in that case. Similar increases in the size of the habitable zone were computed for other stellar systems. An earlier study by Ray Pierrehumbert and Eric Gaidos had eliminated the CO2-H2O concept entirely, arguing that young planets could accrete many tens to hundreds of bars of hydrogen from the protoplanetary disc, providing enough of a greenhouse effect to extend the solar system outer edge to 10 AU. In this case, though, the hydrogen is not continuously replenished by volcanism and is lost within millions to tens of millions of years.
In the case of planets orbiting in the HZs of red dwarf stars, the extremely close distances to the stars cause tidal locking, an important factor in habitability. For a tidally locked planet, the sidereal day is as long as the orbital period, causing one side to permanently face the host star and the other side to face away. In the past, such tidal locking was thought to cause extreme heat on the star-facing side and bitter cold on the opposite side, making many red dwarf planets uninhabitable; however, three-dimensional climate models in 2013 showed that the side of a red dwarf planet facing the host star could have extensive cloud cover, increasing its bond albedo and reducing significantly temperature differences between the two sides.
Studies that have attempted to estimate the number of terrestrial planets within the circumstellar habitable zone tend to reflect the availability of scientific data. A 2013 study by Ravi Kumar Kopparapu put ηe, the fraction of stars with planets in the HZ, at 0.48, meaning that there may be roughly 95–180 billion habitable planets in the Milky Way. However, this is merely a statistical prediction; only a small fraction of these possible planets have yet been discovered.
Previous studies have been more conservative. In 2011, Seth Borenstein concluded that there are roughly 500 million habitable planets in the Milky Way. NASA's Jet Propulsion Laboratory 2011 study, based on observations from the Kepler mission, raised the number somewhat, estimating that about "1.4 to 2.7 percent" of all stars of spectral class F, G, and K are expected to have planets in their HZs.
The first discoveries of extrasolar planets in the HZ occurred just a few years after the first extrasolar planets were discovered. However, these early detections were all gas giant-sized, and many were in eccentric orbits. Despite this, studies indicate the possibility of large, Earth-like moons around these planets supporting liquid water.
One of the first discoveries was 70 Virginis b, a gas giant initially nicknamed "Goldilocks" due to it being neither "too hot" nor "too cold". Later study revealed temperatures analogous to Venus, ruling out any potential for liquid water. 16 Cygni Bb, also discovered in 1996, has an extremely eccentric orbit that spends only part of its time in the HZ, such an orbit would causes extreme seasonal effects. In spite of this, simulations have suggested that a sufficiently large companion could support surface water year-round.
Though, in theory, such giant planets could possess moons, the technology did not exist to detect moons around them, and no extrasolar moons had been discovered. Planets within the zone with the potential for solid surfaces were therefore of much higher interest.
Recent discoveries have uncovered planets that are thought to be similar in size or mass to Earth. "Earth-sized" ranges are typically defined by mass. The lower range used in many definitions of the super-Earth class is 1.9 Earth masses; likewise, sub-Earths range up to the size of Venus (~0.815 Earth masses). An upper limit of 1.5 Earth radii is also considered, given that above 1.5 R🜨 the average planet density rapidly decreases with increasing radius, indicating these planets have a significant fraction of volatiles by volume overlying a rocky core. A genuinely Earth-like planet – an Earth analog or "Earth twin" – would need to meet many conditions beyond size and mass; such properties are not observable using current technology.
The discovery of a system of three tidally locked planets orbiting the habitable zone of an ultracool dwarf star, TRAPPIST-1, was announced in May 2016. The discovery is considered significant because it dramatically increases the possibility of smaller, cooler, more numerous and closer stars possessing habitable planets.
Two potentially habitable planets, discovered by the K2 mission in July 2016 orbiting around the M dwarf K2-72 around 227 light years from the Sun: K2-72c and K2-72e are both of similar size to Earth and receive similar amounts of stellar radiation.
Discovered by radial velocity in June 2017, with approximately three times the mass of Earth, Luyten b orbits within the habitable zone of Luyten's Star just 12.2 light-years away.
Liquid-water environments have been found to exist in the absence of atmospheric pressure and at temperatures outside the HZ temperature range. For example, Saturn's moons Titan and Enceladus and Jupiter's moons Europa and Ganymede, all of which are outside the habitable zone, may hold large volumes of liquid water in subsurface oceans.
With some theorising that life on Earth may have actually originated in stable, subsurface habitats, it has been suggested that it may be common for wet subsurface extraterrestrial habitats such as these to 'teem with life'. On Earth itself, living organisms may be found more than 6 km (3.7 mi) below the surface.
Planets in the HZ remain of paramount interest to researchers looking for intelligent life elsewhere in the universe. The Drake equation, sometimes used to estimate the number of intelligent civilizations in our galaxy, contains the factor or parameter ne, which is the average number of planetary-mass objects orbiting within the HZ of each star. A low value lends support to the Rare Earth hypothesis, which posits that intelligent life is a rarity in the Universe, whereas a high value provides evidence for the Copernican mediocrity principle, the view that habitability—and therefore life—is common throughout the Universe. A 1971 NASA report by Drake and Bernard Oliver proposed the "water hole", based on the spectral absorption lines of the hydrogen and hydroxyl components of water, as a good, obvious band for communication with extraterrestrial intelligence that has since been widely adopted by astronomers involved in the search for extraterrestrial intelligence. According to Jill Tarter, Margaret Turnbull and many others, HZ candidates are the priority targets to narrow waterhole searches and the Allen Telescope Array now extends Project Phoenix to such candidates.
Su-Shu Huang, American Scientist 47, 3, pp. 397–402 (1959)
Dole, Stephen H. (1964). Habitable Planets for Man. Blaisdell Publishing Company. p. 103. https://www.rand.org/pubs/commercial_books/CB179-1.html
J. F. Kasting, D. P. Whitmire, R. T. Reynolds, Icarus 101, 108 (1993).
Kopparapu, Ravi Kumar (2013). "A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarfs". The Astrophysical Journal Letters. 767 (1): L8. arXiv:1303.2649. Bibcode:2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. S2CID 119103101. /wiki/ArXiv_(identifier)
Cruz, Maria; Coontz, Robert (2013). "Exoplanets - Introduction to Special Issue". Science. 340 (6132): 565. doi:10.1126/science.340.6132.565. PMID 23641107. https://doi.org/10.1126%2Fscience.340.6132.565
Overbye, Dennis (January 6, 2015). "As Ranks of Goldilocks Planets Grow, Astronomers Consider What's Next". The New York Times. Retrieved January 6, 2015. /wiki/Dennis_Overbye
Peale, S. J. (January 2021). "Probability of Detecting a Planetary Companion during a Microlensing Event". The Astrophysical Journal. 552 (2): 889–911. arXiv:astro-ph/0101316. doi:10.1086/320562. S2CID 17080374. https://www.researchgate.net/publication/2227681
Overbye, Dennis (November 4, 2013). "Far-Off Planets Like the Earth Dot the Galaxy". The New York Times. Retrieved November 5, 2013. https://www.nytimes.com/2013/11/05/science/cosmic-census-finds-billions-of-planets-that-could-be-like-earth.html
Petigura, Eric A.; Howard, Andrew W.; Marcy, Geoffrey W. (October 31, 2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences of the United States of America. 110 (48): 19273–19278. arXiv:1311.6806. Bibcode:2013PNAS..11019273P. doi:10.1073/pnas.1319909110. PMC 3845182. PMID 24191033. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845182
Khan, Amina (November 4, 2013). "Milky Way may host billions of Earth-size planets". Los Angeles Times. Retrieved November 5, 2013. http://www.latimes.com/science/la-sci-earth-like-planets-20131105,0,2673237.story
Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513. https://www.nature.com/articles/nature19106
Schirber, Michael (26 Oct 2009). "Detecting Life-Friendly Moons". Astrobiology Magazine. NASA. Archived from the original on 29 October 2009. Retrieved 9 May 2013. https://web.archive.org/web/20091029111850/http://www.astrobio.net/exclusive/3291/detecting-life-friendly-moons
Lammer, H.; Bredehöft, J. H.; Coustenis, A.; Khodachenko, M. L.; et al. (2009). "What makes a planet habitable?" (PDF). The Astronomy and Astrophysics Review. 17 (2): 181–249. Bibcode:2009A&ARv..17..181L. doi:10.1007/s00159-009-0019-z. S2CID 123220355. Archived from the original (PDF) on 2016-06-02. Retrieved 2016-05-03. https://web.archive.org/web/20160602235333/http://veilnebula.jorgejohnson.me/uploads/3/5/8/7/3587678/lammer_et_al_2009_astron_astro_rev-4.pdf
Edwards, Katrina J.; Becker, Keir; Colwell, Frederick (2012). "The Deep, Dark Energy Biosphere: Intraterrestrial Life on Earth". Annual Review of Earth and Planetary Sciences. 40 (1): 551–568. Bibcode:2012AREPS..40..551E. doi:10.1146/annurev-earth-042711-105500. ISSN 0084-6597. /wiki/Bibcode_(identifier)
Cowen, Ron (2008-06-07). "A Shifty Moon". Science News. Archived from the original on 2011-11-04. Retrieved 2013-04-22. https://web.archive.org/web/20111104175610/http://www.sciencenews.org/view/generic/id/32135/title/A_shifty_moon
Bryner, Jeanna (24 June 2009). "Ocean Hidden Inside Saturn's Moon". Space.com. TechMediaNetwork. Retrieved 22 April 2013. http://www.space.com/scienceastronomy/090624-enceladus-ocean.html
Abbot, D. S.; Switzer, E. R. (2011). "The Steppenwolf: A Proposal for a Habitable Planet in Interstellar Space". The Astrophysical Journal. 735 (2): L27. arXiv:1102.1108. Bibcode:2011ApJ...735L..27A. doi:10.1088/2041-8205/735/2/L27. S2CID 73631942. /wiki/ArXiv_(identifier)
"Rogue Planets Could Harbor Life in Interstellar Space, Say Astrobiologists". MIT Technology Review. MIT Technology Review. 9 February 2011. Archived from the original on 7 October 2015. Retrieved 24 June 2013. https://web.archive.org/web/20151007173209/http://www.technologyreview.com/view/422659/rogue-planets-could-harbor-life-in-interstellar-space-say-astrobiologists/
Wall, Mike (28 September 2015). "Salty Water Flows on Mars Today, Boosting Odds for Life". Space.com. Retrieved 2015-09-28. http://www.space.com/30673-water-flows-on-mars-discovery.html?adbid=10153086098981466&adbpl=fb&adbpr=17610706465
Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto (2015). "The phase diagram of high-pressure superionic ice". Nature Communications. 6: 8156. Bibcode:2015NatCo...6.8156S. doi:10.1038/ncomms9156. ISSN 2041-1723. PMC 4560814. PMID 26315260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560814
Villard, Ray (November 18, 2011). "Alien Life May Live in Various Habitable Zones: Discovery News". News.discovery.com. Discovery Communications LLC. Retrieved April 22, 2013. http://news.discovery.com/space/planetary-habitable-zones-defined-by-alien-biochemistry-111118.html
Newton, Isaac (1729). "Book III - Section I - Proposition VIII - Corol. 4". Philosophiae Naturalis Principia Mathematica (PDF) (3rd ed.). p. 739. Archived (PDF) from the original on 13 November 2023. /wiki/Isaac_Newton
de Saint-Martin, Louis Claude (1802). Man: His True Nature and Ministry. p. 78. /wiki/Louis_Claude_de_Saint-Martin
Lorenz, Ralph (2019). Exploring Planetary Climate: A History of Scientific Discovery on Earth, Mars, Venus, and Titan. Cambridge University Press. p. 53. ISBN 978-1108471541. 978-1108471541
Lorenz, Ralph (2020). "Maunder's Work on Planetary Habitability in 1913: Early Use of the term "Habitable Zone" and a "Drake Equation" Calculation". Research Notes of the American Astronomical Society. 4 (6): 79. Bibcode:2020RNAAS...4...79L. doi:10.3847/2515-5172/ab9831. S2CID 219930646. https://doi.org/10.3847%2F2515-5172%2Fab9831
Huggett, Richard J. (1995). Geoecology: An Evolutionary Approach. Routledge, Chapman & Hall. p. 10. ISBN 978-0-415-08689-9. 978-0-415-08689-9
Strughold, Hubertus (1953). The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars. University of New Mexico Press. https://books.google.com/books?id=zNbPAAAAMAAJ
Kasting, James (2010). How to Find a Habitable Planet. Princeton University Press. p. 127. ISBN 978-0-691-13805-3. Retrieved 4 May 2013. 978-0-691-13805-3
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (January 1993). "Habitable Zones around Main Sequence Stars". Icarus. 101 (1): 108–118. Bibcode:1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. /wiki/Bibcode_(identifier)
Huang, Su-Shu (1966). Extraterrestrial life: An Anthology and Bibliography. National Research Council (U.S.). Study Group on Biology and the Exploration of Mars. Washington, D. C.: National Academy of Sciences. pp. 87–93. Bibcode:1966elab.book.....S. https://books.google.com/books?id=D0UrAAAAYAAJ
Huang, Su-Shu (April 1960). "Life-Supporting Regions in the Vicinity of Binary Systems". Publications of the Astronomical Society of the Pacific. 72 (425): 106–114. Bibcode:1960PASP...72..106H. doi:10.1086/127489. https://doi.org/10.1086%2F127489
Dole, Stephen H. (1964). Habitable Planets for Man. Blaisdell Publishing Company. p. 103. https://www.rand.org/pubs/commercial_books/CB179-1.html
Gilster, Paul (2004). Centauri Dreams: Imagining and Planning Interstellar Exploration. Springer. p. 40. ISBN 978-0-387-00436-5. 978-0-387-00436-5
"The Goldilocks Zone" (Press release). NASA. October 2, 2003. Archived from the original on August 29, 2011. Retrieved April 22, 2013. https://web.archive.org/web/20110829081900/http://science.nasa.gov/science-news/science-at-nasa/2003/02oct_goldilocks/
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (January 1993). "Habitable Zones around Main Sequence Stars". Icarus. 101 (1): 108–118. Bibcode:1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. /wiki/Bibcode_(identifier)
J. F. Kasting, D. P. Whitmire, R. T. Reynolds, Icarus 101, 108 (1993).
Seager, Sara (2013). "Exoplanet Habitability". Science. 340 (577): 577–581. Bibcode:2013Sci...340..577S. doi:10.1126/science.1232226. PMID 23641111. S2CID 206546351. /wiki/Bibcode_(identifier)
Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5. 978-0-387-95289-5
Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter (July 2001). "The Galactic Habitable Zone I. Galactic Chemical Evolution". Icarus. 152 (1): 185–200. arXiv:astro-ph/0103165. Bibcode:2001Icar..152..185G. doi:10.1006/icar.2001.6617. S2CID 18179704. /wiki/ArXiv_(identifier)
Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5. 978-0-387-95289-5
Villard, Ray (November 18, 2011). "Alien Life May Live in Various Habitable Zones: Discovery News". News.discovery.com. Discovery Communications LLC. Retrieved April 22, 2013. http://news.discovery.com/space/planetary-habitable-zones-defined-by-alien-biochemistry-111118.html
Hadhazy, Adam (April 3, 2013). "The 'Habitable Edge' of Exomoons". Astrobiology Magazine. NASA. Archived from the original on May 2, 2013. Retrieved April 22, 2013. https://web.archive.org/web/20130502064349/http://www.astrobio.net/exclusive/5364/the-habitable-edge-of-exomoons
Tasker, Elizabeth; Tan, Joshua; Heng, Kevin; Kane, Stephen; Spiegel, David; Brasser, Ramon; Casey, Andrew; Desch, Steven; Dorn, Caroline; Hernlund, John; Houser, Christine (2017-02-02). "The language of exoplanet ranking metrics needs to change". Nature Astronomy. 1 (2): 0042. arXiv:1708.01363. Bibcode:2017NatAs...1E..42T. doi:10.1038/s41550-017-0042. S2CID 118952886. /wiki/ArXiv_(identifier)
Neel V. Patel (2 October 2019). "No one agrees what it means for a planet to be "habitable"". MIT Technology Review. surface conditions are dependent on a host of different individual properties of that planet, such as internal and geological processes, magnetic field evolution, climate, atmospheric escape, rotational effects, tidal forces, orbits, star formation and evolution, unusual conditions like binary star systems, and gravitational perturbations from passing bodies. https://www.technologyreview.com/s/614449/no-one-agrees-what-it-means-for-a-planet-to-be-habitable/
Tasker, Elizabeth; Tan, Joshua; Heng, Kevin; Kane, Stephen; Spiegel, David; Brasser, Ramon; Casey, Andrew; Desch, Steven; Dorn, Caroline; Hernlund, John; Houser, Christine (2017-02-02). "The language of exoplanet ranking metrics needs to change". Nature Astronomy. 1 (2): 0042. arXiv:1708.01363. Bibcode:2017NatAs...1E..42T. doi:10.1038/s41550-017-0042. S2CID 118952886. /wiki/ArXiv_(identifier)
Neel V. Patel (2 October 2019). "No one agrees what it means for a planet to be "habitable"". MIT Technology Review. surface conditions are dependent on a host of different individual properties of that planet, such as internal and geological processes, magnetic field evolution, climate, atmospheric escape, rotational effects, tidal forces, orbits, star formation and evolution, unusual conditions like binary star systems, and gravitational perturbations from passing bodies. https://www.technologyreview.com/s/614449/no-one-agrees-what-it-means-for-a-planet-to-be-habitable/
Tan, Joshua (8 February 2017). "Until we get better tools, excited reports of 'habitable planets' need to come back down to Earth". The Conversation. Retrieved 2019-10-21. https://theconversation.com/until-we-get-better-tools-excited-reports-of-habitable-planets-need-to-come-back-down-to-earth-72425
"Why just being in the habitable zone doesn't make exoplanets livable". Science News. 2019-10-04. Retrieved 2019-10-21. https://www.sciencenews.org/article/why-just-being-habitable-zone-doesnt-make-exoplanets-livable
No, the Exoplanet K2-18b Is Not Habitable. News outlets that said otherwise are just crying wolf—but they're not the only ones at fault. Laura Kreidberg, Scientific American. 23 September 2019. https://blogs.scientificamerican.com/observations/no-the-exoplanet-k2-18b-is-not-habitable/
Neel V. Patel (2 October 2019). "No one agrees what it means for a planet to be "habitable"". MIT Technology Review. surface conditions are dependent on a host of different individual properties of that planet, such as internal and geological processes, magnetic field evolution, climate, atmospheric escape, rotational effects, tidal forces, orbits, star formation and evolution, unusual conditions like binary star systems, and gravitational perturbations from passing bodies. https://www.technologyreview.com/s/614449/no-one-agrees-what-it-means-for-a-planet-to-be-habitable/
"Why just being in the habitable zone doesn't make exoplanets livable". Science News. 2019-10-04. Retrieved 2019-10-21. https://www.sciencenews.org/article/why-just-being-habitable-zone-doesnt-make-exoplanets-livable
Tasker, Elizabeth. "Let's Lose the Term "Habitable Zone" for Exoplanets". Scientific American Blog Network. Retrieved 2019-10-21. https://blogs.scientificamerican.com/observations/lets-lose-the-term-habitable-zone-for-exoplanets/
Ruher, Hugo (2019-10-20). "Exoplanètes: faut-il en finir avec la "zone d'habitabilité"? - Sciences". Numerama (in French). Retrieved 2019-10-21. https://www.numerama.com/sciences/562381-exoplanetes-faut-il-en-finir-avec-la-zone-dhabitabilite.html
Kasting, James F. (June 1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226. https://zenodo.org/record/1253896
Zsom, Andras; Seager, Sara; De Wit, Julien (2013). "Towards the Minimum Inner Edge Distance of the Habitable Zone". The Astrophysical Journal. 778 (2): 109. arXiv:1304.3714. Bibcode:2013ApJ...778..109Z. doi:10.1088/0004-637X/778/2/109. S2CID 27805994. /wiki/ArXiv_(identifier)
Pierrehumbert, Raymond; Gaidos, Eric (2011). "Hydrogen Greenhouse Planets Beyond the Habitable Zone". The Astrophysical Journal Letters. 734 (1): L13. arXiv:1105.0021. Bibcode:2011ApJ...734L..13P. doi:10.1088/2041-8205/734/1/L13. S2CID 7404376. /wiki/ArXiv_(identifier)
Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8. S2CID 119333468. https://doi.org/10.3847%2F2041-8213%2Faa60c8
"Stellar habitable zone calculator". University of Washington. Retrieved 17 December 2015. http://depts.washington.edu/naivpl/sites/default/files/hz.shtml
"Venus". Case Western Reserve University. 13 September 2006. Archived from the original on 2012-04-26. Retrieved 2011-12-21. https://web.archive.org/web/20120426064658/http://burro.cwru.edu/stu/advanced/venus.html
Sharp, Tim. "Atmosphere of the Moon". Space.com. TechMediaNetwork. Retrieved April 23, 2013. http://www.space.com/18067-moon-atmosphere.html
Bolonkin, Alexander A. (2009). Artificial Environments on Mars. Berlin Heidelberg: Springer. pp. 599–625. ISBN 978-3-642-03629-3. 978-3-642-03629-3
Haberle, Robert M.; McKay, Christopher P.; Schaeffer, James; Cabrol, Nathalie A.; Grin, Edmon A.; Zent, Aaron P.; Quinn, Richard (2001). "On the possibility of liquid water on present-day Mars". Journal of Geophysical Research. 106 (E10): 23317. Bibcode:2001JGR...10623317H. doi:10.1029/2000JE001360. ISSN 0148-0227. https://doi.org/10.1029%2F2000JE001360
Haberle, Robert M.; McKay, Christopher P.; Schaeffer, James; Cabrol, Nathalie A.; Grin, Edmon A.; Zent, Aaron P.; Quinn, Richard (2001). "On the possibility of liquid water on present-day Mars". Journal of Geophysical Research. 106 (E10): 23317. Bibcode:2001JGR...10623317H. doi:10.1029/2000JE001360. ISSN 0148-0227. https://doi.org/10.1029%2F2000JE001360
Mann, Adam (February 18, 2014). "Strange Dark Streaks on Mars Get More and More Mysterious". Wired. Retrieved February 18, 2014. https://www.wired.com/wiredscience/2014/02/flowing-lineae-water-mars/
"NASA Finds Possible Signs of Flowing Water on Mars". voanews.com. 3 August 2011. Archived from the original on September 17, 2011. Retrieved August 5, 2011. https://web.archive.org/web/20110917071451/http://www.voanews.com/english/news/science-technology/NASA-Finds-Possible-Signs-of-Flowing-Water-on-Mars-126807133.html
"Is Mars Weeping Salty Tears?". news.sciencemag.org. Archived from the original on August 14, 2011. Retrieved August 5, 2011. https://web.archive.org/web/20110814065220/http://news.sciencemag.org/sciencenow/2011/08/is-mars-weeping-salty-tears.html
Webster, Guy; Brown, Dwayne (December 10, 2013). "NASA Mars Spacecraft Reveals a More Dynamic Red Planet". NASA. Retrieved December 10, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1
A'Hearn, Michael F.; Feldman, Paul D. (1992). "Water vaporization on Ceres". Icarus. 98 (1): 54–60. Bibcode:1992Icar...98...54A. doi:10.1016/0019-1035(92)90206-M. /wiki/Bibcode_(identifier)
Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E. (2017). "The relative influence of H2 O and CO2 on the primitive surface conditions and evolution of rocky planets" (PDF). Journal of Geophysical Research: Planets. 122 (7): 1458–1486. Bibcode:2017JGRE..122.1458S. doi:10.1002/2017JE005286. ISSN 2169-9097. S2CID 135136696. https://hal-insu.archives-ouvertes.fr/insu-01540209/file/2017JE005286.pdf
"Mysteries from the moon's past". Washington State University. 23 July 2018. Retrieved 22 August 2020. https://news.wsu.edu/2018/07/23/possibility-of-moon-life/
Schulze-Makuch, Dirk; Crawford, Ian A. (2018). "Was There an Early Habitability Window for Earth's Moon?". Astrobiology. 18 (8): 985–988. Bibcode:2018AsBio..18..985S. doi:10.1089/ast.2018.1844. PMC 6225594. PMID 30035616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225594
"Flashback: Water on Mars Announced 10 Years Ago". SPACE.com. June 22, 2000. Retrieved December 19, 2010. http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html
"Flashback: Water on Mars Announced 10 Years Ago". SPACE.com. June 22, 2010. Retrieved May 13, 2018. https://www.space.com/8642-flashback-water-mars-announced-10-years.html
"Science@NASA, The Case of the Missing Mars Water". Archived from the original on March 27, 2009. Retrieved March 7, 2009. https://web.archive.org/web/20090327234049/https://science.nasa.gov/headlines/y2001/ast05jan_1.htm
Scully, Jennifer E.C.; Russell, Christopher T.; Yin, An; Jaumann, Ralf; Carey, Elizabeth; Castillo-Rogez, Julie; McSween, Harry Y.; Raymond, Carol A.; Reddy, Vishnu; Le Corre, Lucille (2015). "Geomorphological evidence for transient water flow on Vesta". Earth and Planetary Science Letters. 411: 151–163. Bibcode:2015E&PSL.411..151S. doi:10.1016/j.epsl.2014.12.004. ISSN 0012-821X. /wiki/Bibcode_(identifier)
Raponi, Andrea; De Sanctis, Maria Cristina; Frigeri, Alessandro; Ammannito, Eleonora; Ciarniello, Mauro; Formisano, Michelangelo; Combe, Jean-Philippe; Magni, Gianfranco; Tosi, Federico; Carrozzo, Filippo Giacomo; Fonte, Sergio; Giardino, Marco; Joy, Steven P.; Polanskey, Carol A.; Rayman, Marc D.; Capaccioni, Fabrizio; Capria, Maria Teresa; Longobardo, Andrea; Palomba, Ernesto; Zambon, Francesca; Raymond, Carol A.; Russell, Christopher T. (2018). "Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle". Science Advances. 4 (3): eaao3757. Bibcode:2018SciA....4.3757R. doi:10.1126/sciadv.aao3757. ISSN 2375-2548. PMC 5851659. PMID 29546238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851659
NASA.gov PIA21471: Landslides on Ceres https://photojournal.jpl.nasa.gov/catalog/PIA21471
Dole, Stephen H. (1964). Habitable Planets for Man. Blaisdell Publishing Company. p. 103. https://www.rand.org/pubs/commercial_books/CB179-1.html
Budyko, M. I. (1969). "The effect of solar radiation variations on the climate of the Earth". Tellus. 21 (5): 611–619. Bibcode:1969Tell...21..611B. CiteSeerX 10.1.1.696.824. doi:10.1111/j.2153-3490.1969.tb00466.x. /wiki/Bibcode_(identifier)
Sellers, William D. (June 1969). "A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System". Journal of Applied Meteorology. 8 (3): 392–400. Bibcode:1969JApMe...8..392S. doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. https://doi.org/10.1175%2F1520-0450%281969%29008%3C0392%3AAGCMBO%3E2.0.CO%3B2
North, Gerald R. (November 1975). "Theory of Energy-Balance Climate Models". Journal of the Atmospheric Sciences. 32 (11): 2033–2043. Bibcode:1975JAtS...32.2033N. doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2. https://doi.org/10.1175%2F1520-0469%281975%29032%3C2033%3ATOEBCM%3E2.0.CO%3B2
Rasool, I.; De Bergh, C. (13 Jun 1970). "The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere" (PDF). Nature. 226 (5250): 1037–1039. Bibcode:1970Natur.226.1037R. doi:10.1038/2261037a0. ISSN 0028-0836. PMID 16057644. S2CID 4201521. Archived (PDF) from the original on 14 November 2023. https://pubs.giss.nasa.gov/docs/1970/1970_Rasool_ra00500s.pdf
Hart, M. H. (1979). "Habitable zones about main sequence stars". Icarus. 37 (1): 351–357. Bibcode:1979Icar...37..351H. doi:10.1016/0019-1035(79)90141-6. /wiki/Bibcode_(identifier)
Fogg, M. J. (1992). "An Estimate of the Prevalence of Biocompatible and Habitable Planets". Journal of the British Interplanetary Society. 45 (1): 3–12. Bibcode:1992JBIS...45....3F. PMID 11539465. /wiki/Bibcode_(identifier)
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (January 1993). "Habitable Zones around Main Sequence Stars". Icarus. 101 (1): 108–118. Bibcode:1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. /wiki/Bibcode_(identifier)
Spiegel, D. S.; Raymond, S. N.; Dressing, C. D.; Scharf, C. A.; Mitchell, J. L. (2010). "Generalized Milankovitch Cycles and Long-Term Climatic Habitability". The Astrophysical Journal. 721 (2): 1308–1318. arXiv:1002.4877. Bibcode:2010ApJ...721.1308S. doi:10.1088/0004-637X/721/2/1308. S2CID 15899053. /wiki/ArXiv_(identifier)
Abe, Y.; Abe-Ouchi, A.; Sleep, N. H.; Zahnle, K. J. (2011). "Habitable Zone Limits for Dry Planets". Astrobiology. 11 (5): 443–460. Bibcode:2011AsBio..11..443A. doi:10.1089/ast.2010.0545. PMID 21707386. /wiki/Bibcode_(identifier)
Pierrehumbert, Raymond; Gaidos, Eric (2011). "Hydrogen Greenhouse Planets Beyond the Habitable Zone". The Astrophysical Journal Letters. 734 (1): L13. arXiv:1105.0021. Bibcode:2011ApJ...734L..13P. doi:10.1088/2041-8205/734/1/L13. S2CID 7404376. /wiki/ArXiv_(identifier)
Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio (March 2013). "The habitable zone of Earth-like planets with different levels of atmospheric pressure". The Astrophysical Journal. 767 (1): 65–?. arXiv:1302.4566. Bibcode:2013ApJ...767...65V. doi:10.1088/0004-637X/767/1/65. S2CID 49553651. /wiki/ArXiv_(identifier)
Kopparapu, Ravi Kumar (2013). "A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarfs". The Astrophysical Journal Letters. 767 (1): L8. arXiv:1303.2649. Bibcode:2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. S2CID 119103101. /wiki/ArXiv_(identifier)
Kopparapu, Ravi Kumar; et al. (10 March 2013). "Habitable Zones Around Main-Sequence Stars: New Estimates". The Astrophysical Journal. 765 (2): 131. arXiv:1301.6674. Bibcode:2013ApJ...765..131K. doi:10.1088/0004-637X/765/2/131. S2CID 76651902. /wiki/ArXiv_(identifier)
Zsom, Andras; Seager, Sara; De Wit, Julien (2013). "Towards the Minimum Inner Edge Distance of the Habitable Zone". The Astrophysical Journal. 778 (2): 109. arXiv:1304.3714. Bibcode:2013ApJ...778..109Z. doi:10.1088/0004-637X/778/2/109. S2CID 27805994. /wiki/ArXiv_(identifier)
Leconte, Jeremy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizee (2013). "Increased insolation threshold for runaway greenhouse processes on Earth-like planets". Nature. 504 (7479): 268–71. arXiv:1312.3337. Bibcode:2013Natur.504..268L. doi:10.1038/nature12827. PMID 24336285. S2CID 2115695. /wiki/ArXiv_(identifier)
Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8. S2CID 119333468. https://doi.org/10.3847%2F2041-8213%2Faa60c8
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (January 1993). "Habitable Zones around Main Sequence Stars". Icarus. 101 (1): 108–118. Bibcode:1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. /wiki/Bibcode_(identifier)
Gomez-Leal, Illeana; Kaltenegger, Lisa; Lucarini, Valerio; Lunkeit, Frank (2019). "Climate sensitivity to ozone and its relevance on the habitability of Earth-like planets". Icarus. 321: 608–618. arXiv:1901.02897. Bibcode:2019Icar..321..608G. doi:10.1016/j.icarus.2018.11.019. S2CID 119209241. /wiki/ArXiv_(identifier)
Kopparapu, Ravi Kumar (2013). "A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarfs". The Astrophysical Journal Letters. 767 (1): L8. arXiv:1303.2649. Bibcode:2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. S2CID 119103101. /wiki/ArXiv_(identifier)
Cuntz, Manfred (2013). "S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. I. Method and Applications". The Astrophysical Journal. 780 (1): 14. arXiv:1303.6645. Bibcode:2014ApJ...780...14C. doi:10.1088/0004-637X/780/1/14. S2CID 118610856. /wiki/ArXiv_(identifier)
Forget, F.; Pierrehumbert, RT (1997). "Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation". Science. 278 (5341): 1273–6. Bibcode:1997Sci...278.1273F. CiteSeerX 10.1.1.41.621. doi:10.1126/science.278.5341.1273. PMID 9360920. /wiki/Bibcode_(identifier)
Mischna, M; Kasting, JF; Pavlov, A; Freedman, R (2000). "Influence of Carbon Dioxide Clouds on Early Martian Climate". Icarus. 145 (2): 546–54. Bibcode:2000Icar..145..546M. doi:10.1006/icar.2000.6380. PMID 11543507. /wiki/Bibcode_(identifier)
Vu, Linda. "Planets Prefer Safe Neighborhoods" (Press release). Spitzer.caltech.edu. NASA/Caltech. Retrieved April 22, 2013. http://www.spitzer.caltech.edu/news/863-feature06-31-Planets-Prefer-Safe-Neighborhoods
Buccino, Andrea P.; Lemarchand, Guillermo A.; Mauas, Pablo J.D. (2006). "Ultraviolet radiation constraints around the circumstellar habitable zones". Icarus. 183 (2): 491–503. arXiv:astro-ph/0512291. Bibcode:2006Icar..183..491B. CiteSeerX 10.1.1.337.8642. doi:10.1016/j.icarus.2006.03.007. S2CID 2241081. /wiki/ArXiv_(identifier)
Barnes, Rory; Heller, René (March 2013). "Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary". Astrobiology. 13 (3): 279–291. arXiv:1203.5104. Bibcode:2013AsBio..13..279B. doi:10.1089/ast.2012.0867. PMC 3612282. PMID 23537137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612282
Yang, J.; Cowan, N. B.; Abbot, D. S. (2013). "Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets". The Astrophysical Journal. 771 (2): L45. arXiv:1307.0515. Bibcode:2013ApJ...771L..45Y. doi:10.1088/2041-8205/771/2/L45. S2CID 14119086. /wiki/ArXiv_(identifier)
Agol, Eric (April 2011). "Transit Surveys for Earths in the Habitable Zones of White Dwarfs". The Astrophysical Journal Letters. 731 (2): L31. arXiv:1103.2791. Bibcode:2011ApJ...731L..31A. doi:10.1088/2041-8205/731/2/L31. S2CID 118739494. /wiki/ArXiv_(identifier)
Barnes, Rory; Heller, René (March 2013). "Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary". Astrobiology. 13 (3): 279–291. arXiv:1203.5104. Bibcode:2013AsBio..13..279B. doi:10.1089/ast.2012.0867. PMC 3612282. PMID 23537137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612282
Ramirez, Ramses; Kaltenegger, Lisa (2014). "Habitable Zones of Pre-Main-Sequence Stars". The Astrophysical Journal Letters. 797 (2): L25. arXiv:1412.1764. Bibcode:2014ApJ...797L..25R. doi:10.1088/2041-8205/797/2/L25. S2CID 119276912. /wiki/ArXiv_(identifier)
Carroll, Bradley W.; Ostlie, Dale A. (2007). An Introduction to Modern Astrophysics (2nd ed.).
Richmond, Michael (November 10, 2004). "Late stages of evolution for low-mass stars". Rochester Institute of Technology. Retrieved 2007-09-19. http://spiff.rit.edu/classes/phys230/lectures/planneb/planneb.html
Guo, J.; Zhang, F.; Chen, X.; Han, Z. (2009). "Probability distribution of terrestrial planets in habitable zones around host stars". Astrophysics and Space Science. 323 (4): 367–373. arXiv:1003.1368. Bibcode:2009Ap&SS.323..367G. doi:10.1007/s10509-009-0081-z. S2CID 118500534. /wiki/ArXiv_(identifier)
Kasting, J.F.; Ackerman, T.P. (1986). "Climatic Consequences of Very High Carbon Dioxide Levels in the Earth's Early Atmosphere". Science. 234 (4782): 1383–1385. Bibcode:1986Sci...234.1383K. doi:10.1126/science.11539665. PMID 11539665. https://zenodo.org/record/1230890
Franck, S.; von Bloh, W.; Bounama, C.; Steffen, M.; Schönberner, D.; Schellnhuber, H.-J. (2002). "Habitable Zones and the Number of Gaia's Sisters" (PDF). In Montesinos, Benjamin; Giménez, Alvaro; Guinan, Edward F. (eds.). ASP Conference Series. The Evolving Sun and its Influence on Planetary Environments. Astronomical Society of the Pacific. pp. 261–272. Bibcode:2002ASPC..269..261F. ISBN 1-58381-109-5. Retrieved April 26, 2013. 1-58381-109-5
Franck, S.; von Bloh, W.; Bounama, C.; Steffen, M.; Schönberner, D.; Schellnhuber, H.-J. (2002). "Habitable Zones and the Number of Gaia's Sisters" (PDF). In Montesinos, Benjamin; Giménez, Alvaro; Guinan, Edward F. (eds.). ASP Conference Series. The Evolving Sun and its Influence on Planetary Environments. Astronomical Society of the Pacific. pp. 261–272. Bibcode:2002ASPC..269..261F. ISBN 1-58381-109-5. Retrieved April 26, 2013. 1-58381-109-5
Croswell, Ken (January 27, 2001). "Red, willing and able". New Scientist. Retrieved August 5, 2007. Full reprint https://www.newscientist.com/article/mg16922754.200-red-willing-and-able.html
Alekseev, I. Y.; Kozlova, O. V. (2002). "Starspots and active regions on the emission red dwarf star LQ Hydrae". Astronomy and Astrophysics. 396: 203–211. Bibcode:2002A&A...396..203A. doi:10.1051/0004-6361:20021424. https://doi.org/10.1051%2F0004-6361%3A20021424
Alpert, Mark (November 7, 2005). "Red Star Rising". Scientific American. 293 (5): 28. Bibcode:2005SciAm.293e..28A. doi:10.1038/scientificamerican1105-28. PMID 16318021. /wiki/Bibcode_(identifier)
"Andrew West: 'Fewer flares, starspots for older dwarf stars'". EarthSky. December 19, 2006. Retrieved April 27, 2013. http://earthsky.org/space/fewer-flares-starspots-for-older-dwarf-stars
Alpert, Mark (November 7, 2005). "Red Star Rising". Scientific American. 293 (5): 28. Bibcode:2005SciAm.293e..28A. doi:10.1038/scientificamerican1105-28. PMID 16318021. /wiki/Bibcode_(identifier)
Cain, Fraser; Gay, Pamela (2007). "AstronomyCast episode 40: American Astronomical Society Meeting, May 2007". Universe Today. Archived from the original on 2007-09-26. Retrieved 2007-06-17. /wiki/Pamela_L._Gay
Ray Villard (27 July 2009). "Living in a Dying Solar System, Part 1". Astrobiology. Archived from the original on 24 April 2016. Retrieved 8 April 2016. https://web.archive.org/web/20160424143742/http://www.astrobio.net/topic/solar-system/sun/living-in-a-dying-solar-system-part-1/
Christensen, Bill (April 1, 2005). "Red Giants and Planets to Live On". Space.com. TechMediaNetwork. Retrieved April 27, 2013. http://www.space.com/920-red-giants-planets-live.html
Ramirez, Ramses; Kaltenegger, Lisa (2016). "Habitable Zones of Post-Main Sequence Stars". The Astrophysical Journal. 823 (1): 6. arXiv:1605.04924. Bibcode:2016ApJ...823....6R. doi:10.3847/0004-637X/823/1/6. S2CID 119225201. https://doi.org/10.3847%2F0004-637X%2F823%2F1%2F6
Lopez, B.; Schneider, J.; Danchi, W. C. (2005). "Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?". The Astrophysical Journal. 627 (2): 974–985. arXiv:astro-ph/0503520. Bibcode:2005ApJ...627..974L. doi:10.1086/430416. S2CID 17075384. /wiki/ArXiv_(identifier)
Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). "Titan under a red giant sun: A new kind of "habitable" moon". Geophysical Research Letters. 24 (22): 2905–2908. Bibcode:1997GeoRL..24.2905L. CiteSeerX 10.1.1.683.8827. doi:10.1029/97GL52843. ISSN 0094-8276. PMID 11542268. S2CID 14172341. /wiki/Bibcode_(identifier)
Lopez, B.; Schneider, J.; Danchi, W. C. (2005). "Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?". The Astrophysical Journal. 627 (2): 974–985. arXiv:astro-ph/0503520. Bibcode:2005ApJ...627..974L. doi:10.1086/430416. S2CID 17075384. /wiki/ArXiv_(identifier)
Voisey, Jon (February 23, 2011). "Plausibility Check – Habitable Planets around Red Giants". Universe Today. Retrieved April 27, 2013. http://www.universetoday.com/83248/plausibility-check-habitable-planet-around-red-giants/
Ramirez, Ramses; Kaltenegger, Lisa (2016). "Habitable Zones of Post-Main Sequence Stars". The Astrophysical Journal. 823 (1): 6. arXiv:1605.04924. Bibcode:2016ApJ...823....6R. doi:10.3847/0004-637X/823/1/6. S2CID 119225201. https://doi.org/10.3847%2F0004-637X%2F823%2F1%2F6
Ramirez, Ramses; Kaltenegger, Lisa (2016). "Habitable Zones of Post-Main Sequence Stars". The Astrophysical Journal. 823 (1): 6. arXiv:1605.04924. Bibcode:2016ApJ...823....6R. doi:10.3847/0004-637X/823/1/6. S2CID 119225201. https://doi.org/10.3847%2F0004-637X%2F823%2F1%2F6
Ramirez, Ramses; Kaltenegger, Lisa (2016). "Habitable Zones of Post-Main Sequence Stars". The Astrophysical Journal. 823 (1): 6. arXiv:1605.04924. Bibcode:2016ApJ...823....6R. doi:10.3847/0004-637X/823/1/6. S2CID 119225201. https://doi.org/10.3847%2F0004-637X%2F823%2F1%2F6
Alien Life More Likely on 'Dune' Planets Archived December 2, 2013, at the Wayback Machine, 09/01/11, Charles Q. Choi, Astrobiology Magazine http://www.astrobio.net/exclusive/4188/alien-life-more-likely-on-%E2%80%98dune%E2%80%99-planets
Abe, Y; Abe-Ouchi, A; Sleep, NH; Zahnle, KJ (2011). "Habitable zone limits for dry planets". Astrobiology. 11 (5): 443–60. Bibcode:2011AsBio..11..443A. doi:10.1089/ast.2010.0545. PMID 21707386. /wiki/Bibcode_(identifier)
Drake, Michael J. (April 2005). "Origin of water in the terrestrial planets". Meteoritics & Planetary Science. 40 (4): 519–527. Bibcode:2005M&PS...40..519D. doi:10.1111/j.1945-5100.2005.tb00960.x. S2CID 12808812. https://doi.org/10.1111%2Fj.1945-5100.2005.tb00960.x
Drake, Michael J.; et al. (August 2005). "Origin of water in the terrestrial planets". Asteroids, Comets, and Meteors (IAU S229). 229th Symposium of the International Astronomical Union. Vol. 1. Búzios, Rio de Janeiro, Brazil: Cambridge University Press. pp. 381–394. Bibcode:2006IAUS..229..381D. doi:10.1017/S1743921305006861. ISBN 978-0-521-85200-5. 978-0-521-85200-5
Kuchner, Marc (2003). "Volatile-rich Earth-Mass Planets in the Habitable Zone". Astrophysical Journal. 596 (1): L105 – L108. arXiv:astro-ph/0303186. Bibcode:2003ApJ...596L.105K. doi:10.1086/378397. S2CID 15999168. /wiki/ArXiv_(identifier)
Charbonneau, David; Zachory K. Berta; Jonathan Irwin; Christopher J. Burke; Philip Nutzman; Lars A. Buchhave; Christophe Lovis; Xavier Bonfils; et al. (2009). "A super-Earth transiting a nearby low-mass star". Nature. 462 (17 December 2009): 891–894. arXiv:0912.3229. Bibcode:2009Natur.462..891C. doi:10.1038/nature08679. PMID 20016595. S2CID 4360404. /wiki/ArXiv_(identifier)
Kuchner, Seager; Hier-Majumder, M.; Militzer, C. A. (2007). "Mass–radius relationships for solid exoplanets". The Astrophysical Journal. 669 (2): 1279–1297. arXiv:0707.2895. Bibcode:2007ApJ...669.1279S. doi:10.1086/521346. S2CID 8369390. /wiki/ArXiv_(identifier)
Vastag, Brian (December 5, 2011). "Newest alien planet is just the right temperature for life". The Washington Post. Retrieved April 27, 2013. https://www.washingtonpost.com/national/health-science/newest-alien-planet-is-just-the-right-temperature-for-life/2011/12/05/gIQAPk1vWO_story.html
Robinson, Tyler D.; Catling, David C. (2012). "An Analytic Radiative-Convective Model for Planetary Atmospheres". The Astrophysical Journal. 757 (1): 104. arXiv:1209.1833. Bibcode:2012ApJ...757..104R. doi:10.1088/0004-637X/757/1/104. S2CID 54997095. /wiki/ArXiv_(identifier)
Shizgal, B. D.; Arkos, G. G. (1996). "Nonthermal escape of the atmospheres of Venus, Earth, and Mars". Reviews of Geophysics. 34 (4): 483–505. Bibcode:1996RvGeo..34..483S. doi:10.1029/96RG02213. S2CID 7852371. /wiki/Reviews_of_Geophysics
Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio (March 2013). "The habitable zone of Earth-like planets with different levels of atmospheric pressure". The Astrophysical Journal. 767 (1): 65–?. arXiv:1302.4566. Bibcode:2013ApJ...767...65V. doi:10.1088/0004-637X/767/1/65. S2CID 49553651. /wiki/ArXiv_(identifier)
Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio (March 2013). "The habitable zone of Earth-like planets with different levels of atmospheric pressure". The Astrophysical Journal. 767 (1): 65–?. arXiv:1302.4566. Bibcode:2013ApJ...767...65V. doi:10.1088/0004-637X/767/1/65. S2CID 49553651. /wiki/ArXiv_(identifier)
Chaplin, Martin (April 8, 2013). "Water Phase Diagram". Ices. London South Bank University. Retrieved April 27, 2013. http://www.lsbu.ac.uk/water/phase.html
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T. (January 1993). "Habitable Zones around Main Sequence Stars". Icarus. 101 (1): 108–118. Bibcode:1993Icar..101..108K. doi:10.1006/icar.1993.1010. PMID 11536936. /wiki/Bibcode_(identifier)
Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8. S2CID 119333468. https://doi.org/10.3847%2F2041-8213%2Faa60c8
Pierrehumbert, Raymond; Gaidos, Eric (2011). "Hydrogen Greenhouse Planets Beyond the Habitable Zone". The Astrophysical Journal Letters. 734 (1): L13. arXiv:1105.0021. Bibcode:2011ApJ...734L..13P. doi:10.1088/2041-8205/734/1/L13. S2CID 7404376. /wiki/ArXiv_(identifier)
Yang, J.; Cowan, N. B.; Abbot, D. S. (2013). "Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets". The Astrophysical Journal. 771 (2): L45. arXiv:1307.0515. Bibcode:2013ApJ...771L..45Y. doi:10.1088/2041-8205/771/2/L45. S2CID 14119086. /wiki/ArXiv_(identifier)
Hadhazy, Adam (April 3, 2013). "The 'Habitable Edge' of Exomoons". Astrobiology Magazine. NASA. Archived from the original on May 2, 2013. Retrieved April 22, 2013. https://web.archive.org/web/20130502064349/http://www.astrobio.net/exclusive/5364/the-habitable-edge-of-exomoons
Hadhazy, Adam (April 3, 2013). "The 'Habitable Edge' of Exomoons". Astrobiology Magazine. NASA. Archived from the original on May 2, 2013. Retrieved April 22, 2013. https://web.archive.org/web/20130502064349/http://www.astrobio.net/exclusive/5364/the-habitable-edge-of-exomoons
D.P. Hamilton; J.A. Burns (1992). "Orbital stability zones about asteroids. II – The destabilizing effects of eccentric orbits and solar radiation" (PDF). Icarus. 96 (1): 43–64. Bibcode:1992Icar...96...43H. CiteSeerX 10.1.1.488.4329. doi:10.1016/0019-1035(92)90005-R. http://www.astro.umd.edu/~hamilton/research/reprints/HamBurns91.pdf
Hadhazy, Adam (April 3, 2013). "The 'Habitable Edge' of Exomoons". Astrobiology Magazine. NASA. Archived from the original on May 2, 2013. Retrieved April 22, 2013. https://web.archive.org/web/20130502064349/http://www.astrobio.net/exclusive/5364/the-habitable-edge-of-exomoons
Becquerel P. (1950). "La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l'alun de fer dans le vide les plus eléve". C. R. Acad. Sci. Paris (in French). 231: 261–263.
Horikawa, Daiki D. (2012). "Survival of Tardigrades in Extreme Environments: A Model Animal for Astrobiology". In Alexander V. Altenbach, Joan M. Bernhard & Joseph Seckbach (ed.). Anoxia Evidence for Eukaryote Survival and Paleontological Strategies. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 21 (21 ed.). Springer Netherlands. pp. 205–217. doi:10.1007/978-94-007-1896-8_12. ISBN 978-94-007-1895-1. 978-94-007-1895-1
Kane, Stephen R.; Gelino, Dawn M. (2012). "The Habitable Zone and Extreme Planetary Orbits". Astrobiology. 12 (10): 940–945. arXiv:1205.2429. Bibcode:2012AsBio..12..940K. doi:10.1089/ast.2011.0798. PMID 23035897. S2CID 10551100. /wiki/ArXiv_(identifier)
Paul Gilster; Andrew LePage (2015-01-30). "A Review of the Best Habitable Planet Candidates". Centauri Dreams, Tau Zero Foundation. Retrieved 2015-07-24. http://www.centauri-dreams.org/?p=32470
Giovanni F. Bignami (2015). The Mystery of the Seven Spheres: How Homo sapiens will Conquer Space. Springer. p. 110. ISBN 978-3-319-17004-6. 978-3-319-17004-6
Kopparapu, Ravi Kumar (2013). "A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarfs". The Astrophysical Journal Letters. 767 (1): L8. arXiv:1303.2649. Bibcode:2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. S2CID 119103101. /wiki/ArXiv_(identifier)
Wethington, Nicholos (September 16, 2008). "How Many Stars are in the Milky Way?". Universe Today. Retrieved April 21, 2013. http://www.universetoday.com/22380/how-many-stars-are-in-the-milky-way/
Torres, Abel Mendez (April 26, 2013). "Ten potentially habitable exoplanets now". Habitable Exoplanets Catalog. University of Puerto Rico. Archived from the original on October 21, 2019. Retrieved April 29, 2013. https://web.archive.org/web/20191021202042/http://phl.upr.edu/press-releases/tenpotentiallyhabitableexoplanetsnow
Borenstein, Seth (19 February 2011). "Cosmic census finds crowd of planets in our galaxy". Associated Press. Archived from the original on 27 September 2011. Retrieved 24 April 2011. https://web.archive.org/web/20110927053134/http://apnews.excite.com/article/20110219/D9LG45NO0.html
Choi, Charles Q. (21 March 2011). "New Estimate for Alien Earths: 2 Billion in Our Galaxy Alone". Space.com. Retrieved 2011-04-24. http://www.space.com/11188-alien-earths-planets-sun-stars.html
Catanzarite, J.; Shao, M. (2011). "The Occurrence Rate of Earth Analog Planets Orbiting Sun-Like Stars". The Astrophysical Journal. 738 (2): 151. arXiv:1103.1443. Bibcode:2011ApJ...738..151C. doi:10.1088/0004-637X/738/2/151. S2CID 119290692. /wiki/ArXiv_(identifier)
Williams, D.; Pollard, D. (2002). "Earth-like worlds on eccentric orbits: excursions beyond the habitable zone". International Journal of Astrobiology. 1 (1): 61–69. Bibcode:2002IJAsB...1...61W. doi:10.1017/S1473550402001064. S2CID 37593615. /wiki/Bibcode_(identifier)
"70 Virginis b". Extrasolar Planet Guide. Extrasolar.net. Archived from the original on 2012-06-19. Retrieved 2009-04-02. https://web.archive.org/web/20120619015814/http://www.extrasolar.net/planettour.asp?PlanetID=22
Williams, D.; Pollard, D. (2002). "Earth-like worlds on eccentric orbits: excursions beyond the habitable zone". International Journal of Astrobiology. 1 (1): 61–69. Bibcode:2002IJAsB...1...61W. doi:10.1017/S1473550402001064. S2CID 37593615. /wiki/Bibcode_(identifier)
Sudarsky, David; et al. (2003). "Theoretical Spectra and Atmospheres of Extrasolar Giant Planets". The Astrophysical Journal. 588 (2): 1121–1148. arXiv:astro-ph/0210216. Bibcode:2003ApJ...588.1121S. doi:10.1086/374331. S2CID 16004653. /wiki/ArXiv_(identifier)
Jones, B. W.; Sleep, P. N.; Underwood, D. R. (2006). "Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties". The Astrophysical Journal. 649 (2): 1010–1019. arXiv:astro-ph/0603200. Bibcode:2006ApJ...649.1010J. doi:10.1086/506557. S2CID 119078585. /wiki/ArXiv_(identifier)
Butler, R. P.; Wright, J. T.; Marcy, G. W.; Fischer, D. A.; Vogt, S. S.; Tinney, C. G.; Jones, H. R. A.; Carter, B. D.; Johnson, J. A.; McCarthy, C.; Penny, A. J. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701. S2CID 119067572. /wiki/ArXiv_(identifier)
Barnes, J. W.; O'Brien, D. P. (2002). "Stability of Satellites around Close-in Extrasolar Giant Planets". The Astrophysical Journal. 575 (2): 1087–1093. arXiv:astro-ph/0205035. Bibcode:2002ApJ...575.1087B. doi:10.1086/341477. S2CID 14508244. /wiki/ArXiv_(identifier)
Canup, R. M.; Ward, W. R. (2006). "A common mass scaling for satellite systems of gaseous planets". Nature. 441 (7095): 834–839. Bibcode:2006Natur.441..834C. doi:10.1038/nature04860. PMID 16778883. S2CID 4327454. /wiki/Robin_Canup
Lovis; et al. (2006). "An extrasolar planetary system with three Neptune-mass planets". Nature. 441 (7091): 305–309. arXiv:astro-ph/0703024. Bibcode:2006Natur.441..305L. doi:10.1038/nature04828. PMID 16710412. S2CID 4343578. /wiki/Nature_(journal)
"Astronomers Discover Record Fifth Planet Around Nearby Star 55 Cancri". Sciencedaily.com. November 6, 2007. Archived from the original on 26 September 2008. Retrieved 2008-09-14. https://www.sciencedaily.com/releases/2007/11/071106133058.htm
Fischer, Debra A.; et al. (2008). "Five Planets Orbiting 55 Cancri". The Astrophysical Journal. 675 (1): 790–801. arXiv:0712.3917. Bibcode:2008ApJ...675..790F. doi:10.1086/525512. S2CID 55779685. /wiki/ArXiv_(identifier)
Ian Sample (7 November 2007). "Could this be Earth's near twin? Introducing planet 55 Cancri f". The Guardian. London. Archived from the original on 2 October 2008. Retrieved 17 October 2008. https://www.theguardian.com/science/2007/nov/07/spaceexploration
Than, Ker (2007-02-24). "Planet Hunters Edge Closer to Their Holy Grail". space.com. Retrieved 2007-04-29. http://www.space.com/scienceastronomy/070424_exoplanet_side.html
Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita (3 July 2014). "Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581". Science. 345 (6195): 440–444. arXiv:1407.1049. Bibcode:2014Sci...345..440R. CiteSeerX 10.1.1.767.2071. doi:10.1126/science.1253253. PMID 24993348. S2CID 206556796. /wiki/Suvrath_Mahadevan
"Researchers find potentially habitable planet" (in French). maxisciences.com. 2011-08-30. Archived from the original on 2019-04-13. Retrieved 2011-08-31. https://web.archive.org/web/20190413203316/https://www.maxisciences.com/planete-habitable/des-chercheurs-decouvrent-une-planete-potentiellement-habitable_art16635.html
Torres, Abel Mendez (April 26, 2013). "Ten potentially habitable exoplanets now". Habitable Exoplanets Catalog. University of Puerto Rico. Archived from the original on October 21, 2019. Retrieved April 29, 2013. https://web.archive.org/web/20191021202042/http://phl.upr.edu/press-releases/tenpotentiallyhabitableexoplanetsnow
"Kepler 22-b: Earth-like planet confirmed". BBC. December 5, 2011. Retrieved May 2, 2013. https://www.bbc.co.uk/news/science-environment-16040655
Scharf, Caleb A. (2011-12-08). "You Can't Always Tell an Exoplanet by Its Size". Scientific American. Retrieved 2012-09-20.: "If it [Kepler-22b] had a similar composition to Earth, then we're looking at a world in excess of about 40 Earth masses". http://blogs.scientificamerican.com/life-unbounded/2011/12/08/cant-always-tell-an-exoplanet-by-its-size
Anglada-Escude, Guillem; Arriagada, Pamela; Vogt, Steven; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante (2012). "A planetary system around the nearby M dwarf GJ 667C with at least one super-Earth in its habitable zone". The Astrophysical Journal. 751 (1): L16. arXiv:1202.0446. Bibcode:2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16. S2CID 16531923. /wiki/ArXiv_(identifier)
"LHS 188 – High proper-motion Star". Centre de données astronomiques de Strasbourg (Strasbourg astronomical Data Center). September 20, 2012. Retrieved September 20, 2012. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=HIP+19394
Méndez, Abel (August 29, 2012). "A Hot Potential Habitable Exoplanet around Gliese 163". University of Puerto Rico at Arecibo (Planetary Habitability Laboratory). Archived from the original on October 21, 2019. Retrieved September 20, 2012. https://web.archive.org/web/20191021202448/http://phl.upr.edu/press-releases/ahotpotentialhabitableexoplanetaroundgliese163
Redd (September 20, 2012). "Newfound Alien Planet a Top Contender to Host Life". Space.com. Retrieved September 20, 2012. http://www.space.com/17684-alien-planet-gliese-163c-extraterrestrial-life.html
"A Hot Potential Habitable Exoplanet around Gliese 163". Spacedaily.com. Retrieved 2013-02-10. http://www.spacedaily.com/reports/A_Hot_Potential_Habitable_Exoplanet_around_Gliese_163_999.html
Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307". Astronomy & Astrophysics. 549: A48. arXiv:1211.1617. Bibcode:2013A&A...549A..48T. doi:10.1051/0004-6361/201220268. S2CID 7424216. /wiki/ArXiv_(identifier)
Aron, Jacob (December 19, 2012). "Nearby Tau Ceti may host two planets suited to life". New Scientist. Reed Business Information. Retrieved April 1, 2013. https://www.newscientist.com/article/dn23021-nearby-tau-ceti-may-host-two-planets-suited-to-life.html
Tuomi, M.; Jones, H. R. A.; Jenkins, J. S.; Tinney, C. G.; Butler, R. P.; Vogt, S. S.; Barnes, J. R.; Wittenmyer, R. A.; o'Toole, S.; Horner, J.; Bailey, J.; Carter, B. D.; Wright, D. J.; Salter, G. S.; Pinfield, D. (2013). "Signals embedded in the radial velocity noise". Astronomy & Astrophysics. 551: A79. arXiv:1212.4277. Bibcode:2013A&A...551A..79T. doi:10.1051/0004-6361/201220509. S2CID 2390534. /wiki/ArXiv_(identifier)
Torres, Abel Mendez (May 1, 2013). "The Habitable Exoplanets Catalog". University of Puerto Rico. Retrieved May 1, 2013. https://phl.upr.edu/projects/habitable-exoplanets-catalog
Lauren M. Weiss, and Geoffrey W. Marcy. "The mass-radius relation for 65 exoplanets smaller than 4 Earth radii" https://arxiv.org/abs/1312.0936
"Solar Variability and Terrestrial Climate". NASA Science. 2013-01-08. https://science.nasa.gov/science-news/science-at-nasa/2013/08jan_sunclimate/
"Stellar Luminosity Calculator". University of Nebraska-Lincoln astronomy education group. http://astro.unl.edu/classaction/animations/stellarprops/stellarlum.html
Council, National Research (18 September 2012). The Effects of Solar Variability on Earth's Climate: A Workshop Report. doi:10.17226/13519. ISBN 978-0-309-26564-5. 978-0-309-26564-5
Ethan (June 5, 2013). "Most of Earth's twins aren't identical, or even close!". ScienceBlogs.com. http://scienceblogs.com/startswithabang/2013/06/05/most-of-earths-twins-arent-identical-or-even-close/
"Are there oceans on other planets?". National Oceanic and Atmospheric Administration. 6 July 2017. Retrieved 2017-10-03. https://oceanservice.noaa.gov/facts/et-oceans.html
Moskowitz, Clara (January 9, 2013). "Most Earth-Like Alien Planet Possibly Found". Space.com. Retrieved January 9, 2013. http://www.space.com/19201-most-earth-like-alien-planet.html
Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Isaacson, Howard; Jenkins, Jon M.; Kolbl, Rea; Marcy, Geoffrey W. (2013). "A Super-Earth-Sized Planet Orbiting in or Near the Habitable Zone Around a Sun-Like Star". The Astrophysical Journal. 768 (2): 101. arXiv:1304.4941. Bibcode:2013ApJ...768..101B. doi:10.1088/0004-637X/768/2/101. S2CID 51490784. /wiki/ArXiv_(identifier)
Johnson, Michele; Harrington, J.D. (18 April 2013). "NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date". NASA. Archived from the original on 8 May 2020. Retrieved 18 April 2013. https://web.archive.org/web/20200508010029/https://www.nasa.gov/mission_pages/kepler/news/kepler-62-kepler-69.html
Overbye, Dennis (18 April 2013). "Two Promising Places to Live, 1,200 Light-Years from Earth". The New York Times. Retrieved 18 April 2013. https://www.nytimes.com/2013/04/19/science/space/2-new-planets-are-most-earth-like-yet-scientists-say.html
Johnson, Michele; Harrington, J.D. (18 April 2013). "NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date". NASA. Archived from the original on 8 May 2020. Retrieved 18 April 2013. https://web.archive.org/web/20200508010029/https://www.nasa.gov/mission_pages/kepler/news/kepler-62-kepler-69.html
Overbye, Dennis (18 April 2013). "Two Promising Places to Live, 1,200 Light-Years from Earth". The New York Times. Retrieved 18 April 2013. https://www.nytimes.com/2013/04/19/science/space/2-new-planets-are-most-earth-like-yet-scientists-say.html
Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–90. arXiv:1304.7387. Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. hdl:1721.1/89668. PMID 23599262. S2CID 21029755. /wiki/William_J._Borucki
Chang, Kenneth (17 April 2014). "Scientists Find an 'Earth Twin,' or Maybe a Cousin". The New York Times. Retrieved 17 April 2014. https://www.nytimes.com/2014/04/18/science/space/scientists-find-an-earth-twin-or-maybe-a-cousin.html
Chang, Alicia (17 April 2014). "Astronomers spot most Earth-like planet yet". AP News. Retrieved 17 April 2014. http://apnews.excite.com/article/20140417/DAD832V81.html
Morelle, Rebecca (17 April 2014). "'Most Earth-like planet yet' spotted by Kepler". BBC News. Retrieved 17 April 2014. /wiki/Rebecca_Morelle
Wall, Mike (3 June 2014). "Found! Oldest Known Alien Planet That Might Support Life". Space.com. Retrieved 10 January 2015. http://www.space.com/26115-oldest-habitable-alien-planet-kapteyn-b.html
Bortle, Anna; et al. (2021), "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star", The Astronomical Journal, 161 (5): 230, arXiv:2103.02709, Bibcode:2021AJ....161..230B, doi:10.3847/1538-3881/abec89, S2CID 232110395. /wiki/ArXiv_(identifier)
Clavin, Whitney; Chou, Felicia; Johnson, Michele (6 January 2015). "NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones". NASA. Retrieved 6 January 2015. https://www.jpl.nasa.gov/news/news.php?release=2015-003
Jensen, Mari N. (16 January 2015). "Three nearly Earth-size planets found orbiting nearby star: One in 'Goldilocks' zone". Science Daily. Retrieved 25 July 2015. https://www.sciencedaily.com/releases/2015/01/150116093052.htm
Jenkins, Jon M.; Twicken, Joseph D.; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Latham, David W.; Esquerdo, Gilbert A.; Seader, Shawn; Bieryla, Allyson; Petigura, Erik; Ciardi, David R.; Marcy, Geoffrey W.; Isaacson, Howard; Huber, Daniel; Rowe, Jason F.; Torres, Guillermo; Bryson, Stephen T.; Buchhave, Lars; Ramirez, Ivan; Wolfgang, Angie; Li, Jie; Campbell, Jennifer R.; Tenenbaum, Peter; Sanderfer, Dwight; Henze, Christopher E.; Catanzarite, Joseph H.; Gilliland, Ronald L.; Borucki, William J. (23 July 2015). "Discovery and Validation of Kepler-452b: A 1.6 R🜨 Super Earth Exoplanet in the Habitable Zone of a G2 Star". The Astronomical Journal. 150 (2): 56. arXiv:1507.06723. Bibcode:2015AJ....150...56J. doi:10.1088/0004-6256/150/2/56. ISSN 1538-3881. S2CID 26447864. /wiki/ArXiv_(identifier)
"NASA telescope discovers Earth-like planet in star's habitable zone". BNO News. 23 July 2015. Retrieved 23 July 2015. http://bnonews.com/news/index.php/news/id961
"Three Potentially Habitable Worlds Found Around Nearby Ultracool Dwarf Star". European Southern Observatory. 2 May 2016. http://www.eso.org/public/news/eso1615/
Dressing, Courtney D.; Vanderburg, Andrew; Schlieder, Joshua E.; Crossfield, Ian J. M.; Knutson, Heather A.; Newton, Elisabeth R.; Ciardi, David R.; Fulton, Benjamin J.; Gonzales, Erica J.; Howard, Andrew W.; Isaacson, Howard; Livingston, John; Petigura, Erik A.; Sinukoff, Evan; Everett, Mark; Horch, Elliott; Howell, Steve B. (2017). "Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. II. Planetary Systems Observed During Campaigns 1–7" (PDF). The Astronomical Journal. 154 (5): 207. arXiv:1703.07416. Bibcode:2017AJ....154..207D. doi:10.3847/1538-3881/aa89f2. ISSN 1538-3881. S2CID 13419148. https://authors.library.caltech.edu/78341/2/Dressing_2017_AJ_154_207.pdf
Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; Berta-Thompson, Zachory K.; Newton, Elisabeth R.; Rodriguez, Joseph E.; Winters, Jennifer G.; Tan, Thiam-Guan; Almenara, Jose-Manuel; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C.; Udry, Stephane; Wünsche, Anaël; Esquerdo, Gilbert A.; Latham, David W.; Dressing, Courtney D. (2017). "A temperate rocky super-Earth transiting a nearby cool star". Nature. 544 (7650): 333–336. arXiv:1704.05556. Bibcode:2017Natur.544..333D. doi:10.1038/nature22055. PMID 28426003. S2CID 2718408. /wiki/ArXiv_(identifier)
Bradley, Sian (2017-11-16). "Astronomers are beaming techno into space for aliens to decode". Wired UK. https://www.wired.co.uk/article/sonar-sending-music-into-space-habitable-exoplanet
"In Earth's Backyard: Newfound Alien Planet May be Good Bet for Life". Space.com. 15 November 2017. https://www.space.com/38782-possibly-earth-like-alien-planet-ross-128b.html
"K2-155 d". Exoplanet Exploration. 2018. https://exoplanets.nasa.gov/newworldsatlas/6173/
Mack, Eric (March 13, 2018). "A super-Earth around a red star could be wet and wild". CNET. https://www.cnet.com/news/super-earth-exoplanet-k2-155d-found-could-be-habitable-nasa/
Whitwam, Ryan (March 14, 2018). "Kepler Spots Potentially Habitable Super-Earth Orbiting Nearby Star". ExtremeTech. https://www.extremetech.com/extreme/265576-kepler-spots-potentially-habitable-super-earth-orbiting-nearby-star
Luque, R.; Pallé, E.; Kossakowski, D.; Dreizler, S.; Kemmer, J.; Espinoza, N. (2019). "Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization". Astronomy & Astrophysics. 628: A39. arXiv:1904.12818. Bibcode:2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. ISSN 0004-6361. https://doi.org/10.1051%2F0004-6361%2F201935801
Schulze-Makuch, Dirk; Heller, Rene; Guinan, Edward (18 September 2020). "In Search for a Planet Better than Earth: Top Contenders for a Superhabitable World". Astrobiology. 20 (12): 1394–1404. Bibcode:2020AsBio..20.1394S. doi:10.1089/ast.2019.2161. PMC 7757576. PMID 32955925. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757576
Clavin, Whitney; Chou, Felicia; Johnson, Michele (6 January 2015). "NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones". NASA. Retrieved 6 January 2015. https://www.jpl.nasa.gov/news/news.php?release=2015-003
Torres, Abel (2012-06-12). "Liquid Water in the Solar System". Archived from the original on 2013-11-18. Retrieved 2013-12-15. https://web.archive.org/web/20131118034218/http://phl.upr.edu/library/media/liquidwaterinthesolarsystem
Cowen, Ron (2008-06-07). "A Shifty Moon". Science News. Archived from the original on 2011-11-04. Retrieved 2013-04-22. https://web.archive.org/web/20111104175610/http://www.sciencenews.org/view/generic/id/32135/title/A_shifty_moon
Bryner, Jeanna (24 June 2009). "Ocean Hidden Inside Saturn's Moon". Space.com. TechMediaNetwork. Retrieved 22 April 2013. http://www.space.com/scienceastronomy/090624-enceladus-ocean.html
"Rogue Planets Could Harbor Life in Interstellar Space, Say Astrobiologists". MIT Technology Review. MIT Technology Review. 9 February 2011. Archived from the original on 7 October 2015. Retrieved 24 June 2013. https://web.archive.org/web/20151007173209/http://www.technologyreview.com/view/422659/rogue-planets-could-harbor-life-in-interstellar-space-say-astrobiologists/
Munro, Margaret (2013), "Miners deep underground in northern Ontario find the oldest water ever known", National Post, retrieved 2013-10-06 https://nationalpost.com/news/canada/worlds-oldest-water-bubbling-into-northern-ontario-mine
Davies, Paul (February 2001). "The Origin of Life II: How did it begin?". Science Progress. 84 (1): 17–29. doi:10.3184/003685001783239096. ISSN 2047-7163. PMC 10367499. PMID 11382135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367499
Taylor, Geoffrey (1996), "Life Underground" (PDF), Planetary Science Research Discoveries, retrieved 2013-10-06 http://www.psrd.hawaii.edu/Dec96/PSRD-LifeUnderground.pdf
Doyle, Alister (4 March 2013), "Deep underground, worms and "zombie microbes" rule", Reuters, retrieved 2013-10-06 https://www.reuters.com/article/us-life-idUSBRE9230WM20130304
Villard, Ray (November 18, 2011). "Alien Life May Live in Various Habitable Zones: Discovery News". News.discovery.com. Discovery Communications LLC. Retrieved April 22, 2013. http://news.discovery.com/space/planetary-habitable-zones-defined-by-alien-biochemistry-111118.html
Villard, Ray (November 18, 2011). "Alien Life May Live in Various Habitable Zones: Discovery News". News.discovery.com. Discovery Communications LLC. Retrieved April 22, 2013. http://news.discovery.com/space/planetary-habitable-zones-defined-by-alien-biochemistry-111118.html
Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode:2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID 22680693. /wiki/Bibcode_(identifier)
Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5. 978-0-387-95289-5
Decker, Heinz; Holde, Kensal E. (2011). "Oxygen and the Exploration of the Universe". Oxygen and the Evolution of Life. pp. 157–168. doi:10.1007/978-3-642-13179-0_9. ISBN 978-3-642-13178-3. 978-3-642-13178-3
Stewart, Ian; Cohen, Jack (2002). Evolving the Alien. Ebury Press. ISBN 978-0-09-187927-3. 978-0-09-187927-3
Stewart, Ian; Cohen, Jack (2002). Evolving the Alien. Ebury Press. ISBN 978-0-09-187927-3. 978-0-09-187927-3
Goldsmith, Donald; Owen, Tobias (1992). The Search for Life in the Universe (2 ed.). Addison-Wesley. p. 247. ISBN 978-0-201-56949-0. 978-0-201-56949-0
Vaclav Smil (2003). The Earth's Biosphere: Evolution, Dynamics, and Change. MIT Press. p. 166. ISBN 978-0-262-69298-4. 978-0-262-69298-4
Reynolds, R.T.; McKay, C.P.; Kasting, J.F. (1987). "Europa, Tidally Heated Oceans, and Habitable Zones Around Giant Planets". Advances in Space Research. 7 (5): 125–132. Bibcode:1987AdSpR...7e.125R. doi:10.1016/0273-1177(87)90364-4. PMID 11538217. /wiki/Bibcode_(identifier)
Guidetti, R.; Jönsson, K.I. (2002). "Long-term anhydrobiotic survival in semi-terrestrial micrometazoans". Journal of Zoology. 257 (2): 181–187. CiteSeerX 10.1.1.630.9839. doi:10.1017/S095283690200078X. /wiki/Journal_of_Zoology
Li, X.; Bai, W.; Yang, Q.; et al. (2024). "The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments". The Innovation. 5 (4): 1–9. doi:10.1016/j.xinn.2024.100657. PMC 11282406. Archived from the original on 2024-07-08. Retrieved 2024-07-07.
Davis, Nicola (30 June 2024). "Scientists find desert moss 'that can survive on Mars'". The Guardian. Archived from the original on 2024-07-08. Retrieved 2024-07-07.
https://doi.org/10.1016/j.xinn.2024.100657
Baldwin, Emily (26 April 2012). "Lichen survives harsh Mars environment". Skymania News. Archived from the original on 28 May 2012. Retrieved 27 April 2012. https://web.archive.org/web/20120528145425/http://www.skymania.com/wp/2012/04/lichen-survives-harsh-martian-setting.html/
de Vera, J.-P.; Kohler, Ulrich (26 April 2012). "The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars" (PDF). European Geosciences Union. Archived from the original (PDF) on 4 May 2012. Retrieved 27 April 2012. https://web.archive.org/web/20120504224706/http://media.egu2012.eu/media/filer_public/2012/04/05/10_solarsystem_devera.pdf
Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J.; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda (2015). "Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station". Astrobiology. 15 (12): 1052–1059. Bibcode:2015AsBio..15.1052O. doi:10.1089/ast.2015.1324. ISSN 1531-1074. PMID 26684504. /wiki/Bibcode_(identifier)
Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J.; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda (2015). "Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station". Astrobiology. 15 (12): 1052–1059. Bibcode:2015AsBio..15.1052O. doi:10.1089/ast.2015.1324. ISSN 1531-1074. PMID 26684504. /wiki/Bibcode_(identifier)
Isler, K.; van Schaik, C. P (2006). "Metabolic costs of brain size evolution". Biology Letters. 2 (4): 557–560. doi:10.1098/rsbl.2006.0538. ISSN 1744-9561. PMC 1834002. PMID 17148287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1834002
Dole, Stephen H. (1964). Habitable Planets for Man. Blaisdell Publishing Company. p. 103. https://www.rand.org/pubs/commercial_books/CB179-1.html
Palca, Joe (September 29, 2010). "'Goldilocks' Planet's Temperature Just Right For Life". NPR. NPR. Retrieved April 5, 2011. https://www.npr.org/templates/story/story.php?storyId=130215192
Brownlee, Donald; Ward, Peter (2004). Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus. ISBN 978-0-387-95289-5. 978-0-387-95289-5
"Project Cyclops: A design study of a system for detecting extraterrestrial intelligent life" (PDF). NASA. 1971. Retrieved June 28, 2009. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730010095_1973010095.pdf
Joseph A. Angelo (2007). Life in the Universe. Infobase Publishing. p. 163. ISBN 978-1-4381-0892-6. Retrieved 26 June 2013. 978-1-4381-0892-6
Turnbull, Margaret C.; Tarter, Jill C. (2003). "Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems". The Astrophysical Journal Supplement Series. 145 (1): 181–198. arXiv:astro-ph/0210675. Bibcode:2003ApJS..145..181T. doi:10.1086/345779. S2CID 14734094. /wiki/ArXiv_(identifier)
Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt (2013). "A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets". The Astrophysical Journal. 767 (1): 94. arXiv:1302.0845. Bibcode:2013ApJ...767...94S. doi:10.1088/0004-637X/767/1/94. S2CID 119302350. /wiki/Andrew_Siemion
Wall, Mike (2011). "HabStars: Speeding Up In the Zone". Space.com. Retrieved 2013-06-26. http://www.space.com/13832-seti-ata-search-kepler-planet-candidates.html
Zaitsev, A. L. (June 2004). "Transmission and reasonable signal searches in the Universe" (PDF). Horizons of the Universe Передача и поиски разумных сигналов во Вселенной. Plenary presentation at the National Astronomical Conference WAC-2004 "Horizons of the Universe", Moscow, Moscow State University, June 7, 2004 (in Russian). Moscow. Archived from the original on 2019-05-30. Retrieved 2013-06-30. Передача и поиски разумных сигналов во Вселенной
David Grinspoon (July 13, 2012) [December 12, 2007]. "Who Speaks for Earth?". Seed. Archived from the original on 2012-07-13. Retrieved 2021-06-24. https://web.archive.org/web/20120713064523/http://seedmagazine.com/content/article/who_speaks_for_earth/
P. C. Gregory; D. A. Fischer (2010). "A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris". Monthly Notices of the Royal Astronomical Society. 403 (2): 731–747. arXiv:1003.5549. Bibcode:2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. S2CID 16722873. https://doi.org/10.1111%2Fj.1365-2966.2009.16233.x
B. Jones; Underwood, David R.; et al. (2005). "Prospects for Habitable "Earths" in Known Exoplanetary Systems". Astrophysical Journal. 622 (2): 1091–1101. arXiv:astro-ph/0503178. Bibcode:2005ApJ...622.1091J. doi:10.1086/428108. S2CID 119089227. /wiki/Astrophysical_Journal
"Astronomers Discover Record Fifth Planet Around Nearby Star 55 Cancri". Sciencedaily.com. November 6, 2007. Archived from the original on 26 September 2008. Retrieved 2008-09-14. https://www.sciencedaily.com/releases/2007/11/071106133058.htm
Moore, Matthew (October 9, 2008). "Messages from Earth sent to distant planet by Bebo". London: .telegraph.co.uk. Archived from the original on 11 October 2008. Retrieved 2008-10-09. https://www.telegraph.co.uk/news/newstopics/howaboutthat/3166709/Messages-from-Earth-sent-to-distant-planet-by-Bebo.html