In the 1987 book, Tilings and patterns, Branko Grünbaum calls the vertex-uniform tilings Archimedean, in parallel to the Archimedean solids. Their dual tilings are called Laves tilings in honor of crystallographer Fritz Laves.12 They're also called Shubnikov–Laves tilings after Aleksei Shubnikov.3 John Conway called the uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.
The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones.4 Each vertex has edges evenly spaced around it. Three dimensional analogues of the planigons are called stereohedrons.
These dual tilings are listed by their face configuration, the number of faces at each vertex of a face. For example V4.8.8 means isosceles triangle tiles with one corner with four triangles, and two corners containing eight triangles. The orientations of the vertex planigons (up to D12) are consistent with the vertex diagrams in the below sections.
All reflectional forms can be made by Wythoff constructions, represented by Wythoff symbols, or Coxeter-Dynkin diagrams, each operating upon one of three Schwarz triangle (4,4,2), (6,3,2), or (3,3,3), with symmetry represented by Coxeter groups: [4,4], [6,3], or [3[3]]. Alternated forms such as the snub can also be represented by special markups within each system. Only one uniform tiling can't be constructed by a Wythoff process, but can be made by an elongation of the triangular tiling. An orthogonal mirror construction [∞,2,∞] also exists, seen as two sets of parallel mirrors making a rectangular fundamental domain. If the domain is square, this symmetry can be doubled by a diagonal mirror into the [4,4] family.
Families:
There are a total of 32 uniform colorings of the 11 uniform tilings:
Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. W. H. Freeman and Company. pp. 59, 96. ISBN 0-7167-1193-1. 0-7167-1193-1 ↩
Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (April 18, 2008). "Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Euclidean Plane Tessellations". The Symmetries of Things. A K Peters / CRC Press. p. 288. ISBN 978-1-56881-220-5. Archived from the original on September 19, 2010. 978-1-56881-220-5 ↩
Encyclopaedia of Mathematics: Orbit - Rayleigh Equation, 1991 https://books.google.com/books?id=5rPnCAAAQBAJ&dq=Shubnikov%E2%80%93Laves+tilings&pg=PA169 ↩
Ivanov, A. B. (2001) [1994], "Planigon", Encyclopedia of Mathematics, EMS Press https://www.encyclopediaofmath.org/index.php?title=Planigon ↩