There is a canonical inclusion of complex oriented Grassmannians given by Gr ~ n ( C k ) ↪ Gr ~ n ( C k + 1 ) , V ↦ V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:
BSU ( n ) := Gr ~ n ( C ∞ ) := lim n → ∞ Gr ~ n ( C k ) . {\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}
Since real oriented Grassmannians can be expressed as a homogeneous space by:
the group structure carries over to BSU ( n ) {\displaystyle \operatorname {BSU} (n)} .
Given a topological space X {\displaystyle X} the set of SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles on it up to isomorphism is denoted Prin SU ( n ) ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:1
is bijective.
The cohomology ring of BSU ( n ) {\displaystyle \operatorname {BSU} (n)} with coefficients in the ring Z {\displaystyle \mathbb {Z} } of integers is generated by the Chern classes:2
The canonical inclusions SU ( n ) ↪ SU ( n + 1 ) {\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)} induce canonical inclusions BSU ( n ) ↪ BSU ( n + 1 ) {\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:
BSU {\displaystyle \operatorname {BSU} } is indeed the classifying space of SU {\displaystyle \operatorname {SU} } .
"universal principal bundle". nLab. Retrieved 2024-03-14. https://ncatlab.org/nlab/show/universal+principal+bundle ↩
Hatcher 02, Example 4D.7. ↩