Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Classifying space for SO(n)

In mathematics, the classifying space BSO ⁡ ( n ) {\displaystyle \operatorname {BSO} (n)} for the special orthogonal group SO ⁡ ( n ) {\displaystyle \operatorname {SO} (n)} is the base space of the universal SO ⁡ ( n ) {\displaystyle \operatorname {SO} (n)} principal bundle ESO ⁡ ( n ) → BSO ⁡ ( n ) {\displaystyle \operatorname {ESO} (n)\rightarrow \operatorname {BSO} (n)} . This means that SO ⁡ ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSO ⁡ ( n ) {\displaystyle \operatorname {BSO} (n)} . The isomorphism is given by pullback.

We don't have any images related to Classifying space for SO(n) yet.
We don't have any YouTube videos related to Classifying space for SO(n) yet.
We don't have any PDF documents related to Classifying space for SO(n) yet.
We don't have any Books related to Classifying space for SO(n) yet.
We don't have any archived web articles related to Classifying space for SO(n) yet.

Definition

There is a canonical inclusion of real oriented Grassmannians given by Gr ~ n ( R k ) ↪ Gr ~ n ( R k + 1 ) , V ↦ V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:1

BSO ⁡ ( n ) := Gr ~ n ( R ∞ ) := lim k → ∞ Gr ~ n ( R k ) . {\displaystyle \operatorname {BSO} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{\infty }):=\lim _{k\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k}).}

Since real oriented Grassmannians can be expressed as a homogeneous space by:

Gr ~ n ( R k ) = SO ⁡ ( n + k ) / ( SO ⁡ ( n ) × SO ⁡ ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})=\operatorname {SO} (n+k)/(\operatorname {SO} (n)\times \operatorname {SO} (k))}

the group structure carries over to BSO ⁡ ( n ) {\displaystyle \operatorname {BSO} (n)} .

Simplest classifying spaces

  • Since SO ⁡ ( 1 ) ≅ 1 {\displaystyle \operatorname {SO} (1)\cong 1} is the trivial group, BSO ⁡ ( 1 ) ≅ { ∗ } {\displaystyle \operatorname {BSO} (1)\cong \{*\}} is the trivial topological space.
  • Since SO ⁡ ( 2 ) ≅ U ⁡ ( 1 ) {\displaystyle \operatorname {SO} (2)\cong \operatorname {U} (1)} , one has BSO ⁡ ( 2 ) ≅ BU ⁡ ( 1 ) ≅ C P ∞ {\displaystyle \operatorname {BSO} (2)\cong \operatorname {BU} (1)\cong \mathbb {C} P^{\infty }} .

Classification of principal bundles

Given a topological space X {\displaystyle X} the set of SO ⁡ ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles on it up to isomorphism is denoted Prin SO ⁡ ( n ) ⁡ ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SO} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:2

[ X , BSO ⁡ ( n ) ] → Prin SO ⁡ ( n ) ⁡ ( X ) , [ f ] ↦ f ∗ ESO ⁡ ( n ) {\displaystyle [X,\operatorname {BSO} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SO} (n)}(X),[f]\mapsto f^{*}\operatorname {ESO} (n)}

is bijective.

Cohomology ring

The cohomology ring of BSO ⁡ ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Z 2 {\displaystyle \mathbb {Z} _{2}} of two elements is generated by the Stiefel–Whitney classes:34

H ∗ ( BSO ⁡ ( n ) ; Z 2 ) = Z 2 [ w 2 , … , w n ] . {\displaystyle H^{*}(\operatorname {BSO} (n);\mathbb {Z} _{2})=\mathbb {Z} _{2}[w_{2},\ldots ,w_{n}].}

The results holds more generally for every ring with characteristic char = 2 {\displaystyle \operatorname {char} =2} .

The cohomology ring of BSO ⁡ ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Q {\displaystyle \mathbb {Q} } of rational numbers is generated by Pontrjagin classes and Euler class:

H ∗ ( BSO ⁡ ( 2 n ) ; Q ) ≅ Q [ p 1 , … , p n , e ] / ( p n − e 2 ) , {\displaystyle H^{*}(\operatorname {BSO} (2n);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n},e]/(p_{n}-e^{2}),} H ∗ ( BSO ⁡ ( 2 n + 1 ) ; Q ) ≅ Q [ p 1 , … , p n ] . {\displaystyle H^{*}(\operatorname {BSO} (2n+1);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n}].}

Infinite classifying space

The canonical inclusions SO ⁡ ( n ) ↪ SO ⁡ ( n + 1 ) {\displaystyle \operatorname {SO} (n)\hookrightarrow \operatorname {SO} (n+1)} induce canonical inclusions BSO ⁡ ( n ) ↪ BSO ⁡ ( n + 1 ) {\displaystyle \operatorname {BSO} (n)\hookrightarrow \operatorname {BSO} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:

SO := lim n → ∞ SO ⁡ ( n ) ; {\displaystyle \operatorname {SO} :=\lim _{n\rightarrow \infty }\operatorname {SO} (n);} BSO := lim n → ∞ BSO ⁡ ( n ) . {\displaystyle \operatorname {BSO} :=\lim _{n\rightarrow \infty }\operatorname {BSO} (n).}

BSO {\displaystyle \operatorname {BSO} } is indeed the classifying space of SO {\displaystyle \operatorname {SO} } .

See also

Literature

  • classifying space on nLab
  • BSO(n) on nLab

References

  1. Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151

  2. "universal principal bundle". nLab. Retrieved 2024-03-14. https://ncatlab.org/nlab/show/universal+principal+bundle

  3. Milnor & Stasheff, Theorem 12.4.

  4. Hatcher 02, Example 4D.6.