In mathematics, the classifying space BSO ( n ) {\displaystyle \operatorname {BSO} (n)} for the special orthogonal group SO ( n ) {\displaystyle \operatorname {SO} (n)} is the base space of the universal SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundle ESO ( n ) → BSO ( n ) {\displaystyle \operatorname {ESO} (n)\rightarrow \operatorname {BSO} (n)} . This means that SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSO ( n ) {\displaystyle \operatorname {BSO} (n)} . The isomorphism is given by pullback.
Definition
There is a canonical inclusion of real oriented Grassmannians given by Gr ~ n ( R k ) ↪ Gr ~ n ( R k + 1 ) , V ↦ V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:1
BSO ( n ) := Gr ~ n ( R ∞ ) := lim k → ∞ Gr ~ n ( R k ) . {\displaystyle \operatorname {BSO} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{\infty }):=\lim _{k\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k}).}Since real oriented Grassmannians can be expressed as a homogeneous space by:
Gr ~ n ( R k ) = SO ( n + k ) / ( SO ( n ) × SO ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})=\operatorname {SO} (n+k)/(\operatorname {SO} (n)\times \operatorname {SO} (k))}the group structure carries over to BSO ( n ) {\displaystyle \operatorname {BSO} (n)} .
Simplest classifying spaces
- Since SO ( 1 ) ≅ 1 {\displaystyle \operatorname {SO} (1)\cong 1} is the trivial group, BSO ( 1 ) ≅ { ∗ } {\displaystyle \operatorname {BSO} (1)\cong \{*\}} is the trivial topological space.
- Since SO ( 2 ) ≅ U ( 1 ) {\displaystyle \operatorname {SO} (2)\cong \operatorname {U} (1)} , one has BSO ( 2 ) ≅ BU ( 1 ) ≅ C P ∞ {\displaystyle \operatorname {BSO} (2)\cong \operatorname {BU} (1)\cong \mathbb {C} P^{\infty }} .
Classification of principal bundles
Given a topological space X {\displaystyle X} the set of SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles on it up to isomorphism is denoted Prin SO ( n ) ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SO} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:2
[ X , BSO ( n ) ] → Prin SO ( n ) ( X ) , [ f ] ↦ f ∗ ESO ( n ) {\displaystyle [X,\operatorname {BSO} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SO} (n)}(X),[f]\mapsto f^{*}\operatorname {ESO} (n)}is bijective.
Cohomology ring
The cohomology ring of BSO ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Z 2 {\displaystyle \mathbb {Z} _{2}} of two elements is generated by the Stiefel–Whitney classes:34
H ∗ ( BSO ( n ) ; Z 2 ) = Z 2 [ w 2 , … , w n ] . {\displaystyle H^{*}(\operatorname {BSO} (n);\mathbb {Z} _{2})=\mathbb {Z} _{2}[w_{2},\ldots ,w_{n}].}The results holds more generally for every ring with characteristic char = 2 {\displaystyle \operatorname {char} =2} .
The cohomology ring of BSO ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Q {\displaystyle \mathbb {Q} } of rational numbers is generated by Pontrjagin classes and Euler class:
H ∗ ( BSO ( 2 n ) ; Q ) ≅ Q [ p 1 , … , p n , e ] / ( p n − e 2 ) , {\displaystyle H^{*}(\operatorname {BSO} (2n);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n},e]/(p_{n}-e^{2}),} H ∗ ( BSO ( 2 n + 1 ) ; Q ) ≅ Q [ p 1 , … , p n ] . {\displaystyle H^{*}(\operatorname {BSO} (2n+1);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n}].}Infinite classifying space
The canonical inclusions SO ( n ) ↪ SO ( n + 1 ) {\displaystyle \operatorname {SO} (n)\hookrightarrow \operatorname {SO} (n+1)} induce canonical inclusions BSO ( n ) ↪ BSO ( n + 1 ) {\displaystyle \operatorname {BSO} (n)\hookrightarrow \operatorname {BSO} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:
SO := lim n → ∞ SO ( n ) ; {\displaystyle \operatorname {SO} :=\lim _{n\rightarrow \infty }\operatorname {SO} (n);} BSO := lim n → ∞ BSO ( n ) . {\displaystyle \operatorname {BSO} :=\lim _{n\rightarrow \infty }\operatorname {BSO} (n).}BSO {\displaystyle \operatorname {BSO} } is indeed the classifying space of SO {\displaystyle \operatorname {SO} } .
See also
Literature
- Milnor, John; Stasheff, James (1974). Characteristic classes (PDF). Princeton University Press. doi:10.1515/9781400881826. ISBN 9780691081229.
- Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.
- Mitchell, Stephen (August 2001). Universal principal bundles and classifying spaces (PDF).{{cite book}}: CS1 maint: year (link)
External links
- classifying space on nLab
- BSO(n) on nLab
References
Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151 ↩
"universal principal bundle". nLab. Retrieved 2024-03-14. https://ncatlab.org/nlab/show/universal+principal+bundle ↩
Milnor & Stasheff, Theorem 12.4. ↩
Hatcher 02, Example 4D.6. ↩