Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Classifying space for SU(n)

In mathematics, the classifying space BSU ⁡ ( n ) {\displaystyle \operatorname {BSU} (n)} for the special unitary group SU ⁡ ( n ) {\displaystyle \operatorname {SU} (n)} is the base space of the universal SU ⁡ ( n ) {\displaystyle \operatorname {SU} (n)} principal bundle ESU ⁡ ( n ) → BSU ⁡ ( n ) {\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)} . This means that SU ⁡ ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSU ⁡ ( n ) {\displaystyle \operatorname {BSU} (n)} . The isomorphism is given by pullback.

We don't have any images related to Classifying space for SU(n) yet.
We don't have any YouTube videos related to Classifying space for SU(n) yet.
We don't have any PDF documents related to Classifying space for SU(n) yet.
We don't have any Books related to Classifying space for SU(n) yet.
We don't have any archived web articles related to Classifying space for SU(n) yet.

Definition

There is a canonical inclusion of complex oriented Grassmannians given by Gr ~ n ( C k ) ↪ Gr ~ n ( C k + 1 ) , V ↦ V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:

BSU ⁡ ( n ) := Gr ~ n ( C ∞ ) := lim n → ∞ Gr ~ n ( C k ) . {\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}

Since real oriented Grassmannians can be expressed as a homogeneous space by:

Gr ~ n ( C k ) = SU ⁡ ( n + k ) / ( SU ⁡ ( n ) × SU ⁡ ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}

the group structure carries over to BSU ⁡ ( n ) {\displaystyle \operatorname {BSU} (n)} .

Simplest classifying spaces

  • Since SU ⁡ ( 1 ) ≅ 1 {\displaystyle \operatorname {SU} (1)\cong 1} is the trivial group, BSU ⁡ ( 1 ) ≅ { ∗ } {\displaystyle \operatorname {BSU} (1)\cong \{*\}} is the trivial topological space.
  • Since SU ⁡ ( 2 ) ≅ Sp ⁡ ( 1 ) {\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)} , one has BSU ⁡ ( 2 ) ≅ BSp ⁡ ( 1 ) ≅ H P ∞ {\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }} .

Classification of principal bundles

Given a topological space X {\displaystyle X} the set of SU ⁡ ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles on it up to isomorphism is denoted Prin SU ⁡ ( n ) ⁡ ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:1

[ X , BSU ⁡ ( n ) ] → Prin SU ⁡ ( n ) ⁡ ( X ) , [ f ] ↦ f ∗ ESU ⁡ ( n ) {\displaystyle [X,\operatorname {BSU} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),[f]\mapsto f^{*}\operatorname {ESU} (n)}

is bijective.

Cohomology ring

The cohomology ring of BSU ⁡ ( n ) {\displaystyle \operatorname {BSU} (n)} with coefficients in the ring Z {\displaystyle \mathbb {Z} } of integers is generated by the Chern classes:2

H ∗ ( BSU ⁡ ( n ) ; Z ) = Z [ c 2 , … , c n ] . {\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} [c_{2},\ldots ,c_{n}].}

Infinite classifying space

The canonical inclusions SU ⁡ ( n ) ↪ SU ⁡ ( n + 1 ) {\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)} induce canonical inclusions BSU ⁡ ( n ) ↪ BSU ⁡ ( n + 1 ) {\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:

SU := lim n → ∞ SU ⁡ ( n ) ; {\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);} BSU := lim n → ∞ BSU ⁡ ( n ) . {\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}

BSU {\displaystyle \operatorname {BSU} } is indeed the classifying space of SU {\displaystyle \operatorname {SU} } .

See also

Literature

  • classifying space on nLab
  • BSU(n) on nLab

References

  1. "universal principal bundle". nLab. Retrieved 2024-03-14. https://ncatlab.org/nlab/show/universal+principal+bundle

  2. Hatcher 02, Example 4D.7.