In mathematics, the classifying space BSU ( n ) {\displaystyle \operatorname {BSU} (n)} for the special unitary group SU ( n ) {\displaystyle \operatorname {SU} (n)} is the base space of the universal SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundle ESU ( n ) → BSU ( n ) {\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)} . This means that SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSU ( n ) {\displaystyle \operatorname {BSU} (n)} . The isomorphism is given by pullback.
Definition
There is a canonical inclusion of complex oriented Grassmannians given by Gr ~ n ( C k ) ↪ Gr ~ n ( C k + 1 ) , V ↦ V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:
BSU ( n ) := Gr ~ n ( C ∞ ) := lim n → ∞ Gr ~ n ( C k ) . {\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}
Since real oriented Grassmannians can be expressed as a homogeneous space by:
Gr ~ n ( C k ) = SU ( n + k ) / ( SU ( n ) × SU ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}the group structure carries over to BSU ( n ) {\displaystyle \operatorname {BSU} (n)} .
Simplest classifying spaces
- Since SU ( 1 ) ≅ 1 {\displaystyle \operatorname {SU} (1)\cong 1} is the trivial group, BSU ( 1 ) ≅ { ∗ } {\displaystyle \operatorname {BSU} (1)\cong \{*\}} is the trivial topological space.
- Since SU ( 2 ) ≅ Sp ( 1 ) {\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)} , one has BSU ( 2 ) ≅ BSp ( 1 ) ≅ H P ∞ {\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }} .
Classification of principal bundles
Given a topological space X {\displaystyle X} the set of SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles on it up to isomorphism is denoted Prin SU ( n ) ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:1
[ X , BSU ( n ) ] → Prin SU ( n ) ( X ) , [ f ] ↦ f ∗ ESU ( n ) {\displaystyle [X,\operatorname {BSU} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),[f]\mapsto f^{*}\operatorname {ESU} (n)}is bijective.
Cohomology ring
The cohomology ring of BSU ( n ) {\displaystyle \operatorname {BSU} (n)} with coefficients in the ring Z {\displaystyle \mathbb {Z} } of integers is generated by the Chern classes:2
H ∗ ( BSU ( n ) ; Z ) = Z [ c 2 , … , c n ] . {\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} [c_{2},\ldots ,c_{n}].}Infinite classifying space
The canonical inclusions SU ( n ) ↪ SU ( n + 1 ) {\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)} induce canonical inclusions BSU ( n ) ↪ BSU ( n + 1 ) {\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:
SU := lim n → ∞ SU ( n ) ; {\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);} BSU := lim n → ∞ BSU ( n ) . {\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}BSU {\displaystyle \operatorname {BSU} } is indeed the classifying space of SU {\displaystyle \operatorname {SU} } .
See also
Literature
- Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.
- Mitchell, Stephen (August 2001). Universal principal bundles and classifying spaces (PDF).{{cite book}}: CS1 maint: year (link)
External links
- classifying space on nLab
- BSU(n) on nLab
References
"universal principal bundle". nLab. Retrieved 2024-03-14. https://ncatlab.org/nlab/show/universal+principal+bundle ↩
Hatcher 02, Example 4D.7. ↩