Proof: Let D be a Weil divisor on X. If D' ~ D, then there is a nonzero rational function f on X such that D + (f) = D' and then f is a section of OX(D) if D' is effective. The opposite direction is similar. □
Alain, Connes (2015-09-18). "An essay on the Riemann Hypothesis". arXiv:1509.05576 [math.NT]. /wiki/ArXiv_(identifier)
Deitmar, Anton (2006-05-16). "Remarks on zeta functions and K-theory over F1". arXiv:math/0605429. /wiki/ArXiv_(identifier)
Flores, Jaret (2015-03-08). "Homological Algebra for Commutative Monoids". arXiv:1503.02309 [math.KT]. /wiki/ArXiv_(identifier)
Durov, Nikolai (2007-04-16). "New Approach to Arakelov Geometry". arXiv:0704.2030 [math.AG]. /wiki/ArXiv_(identifier)
Grothendieck & Dieudonné 1960, 4.1.2 and 4.1.3 - Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083. http://www.numdam.org/item/PMIHES_1960__4__5_0
Smith, Karen E.; Zhang, Wenliang (2014-09-03). "Frobenius Splitting in Commutative Algebra". arXiv:1409.1169 [math.AC]. /wiki/ArXiv_(identifier)
Grothendieck & Dieudonné 1964, §1.4 - Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20. doi:10.1007/bf02684747. MR 0173675. http://www.numdam.org/item/PMIHES_1964__20__5_0
Grothendieck & Dieudonné 1964, §1.6 - Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20. doi:10.1007/bf02684747. MR 0173675. http://www.numdam.org/item/PMIHES_1964__20__5_0
Brandenburg, Martin (2014-10-07). "Tensor categorical foundations of algebraic geometry". arXiv:1410.1716 [math.AG]. /wiki/ArXiv_(identifier)
Hartshorne 1977, Exercise II.3.11(d) - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
The Stacks Project, Chapter 21, §4. http://www.math.columbia.edu/algebraic_geometry/stacks-git/morphisms.pdf
Grothendieck & Dieudonné 1960, 4.2.1 - Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083. http://www.numdam.org/item/PMIHES_1960__4__5_0
Hartshorne 1977, §II.3 - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
Grothendieck & Dieudonné 1960, 4.2.5 - Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083. http://www.numdam.org/item/PMIHES_1960__4__5_0
Q. Liu, Algebraic Geometry and Arithmetic Curves, exercise 2.3
Hartshorne 1977, §II.3 - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
Harada, Megumi; Krepski, Derek (2013-02-02). "Global quotients among toric Deligne-Mumford stacks". arXiv:1302.0385 [math.DG]. /wiki/ArXiv_(identifier)
Hartshorne 1977, II.4 - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
EGA, II.5.5.4(ii). /wiki/%C3%89l%C3%A9ments_de_g%C3%A9om%C3%A9trie_alg%C3%A9brique
Grothendieck & Dieudonné 1964, 1.2.1 - Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20. doi:10.1007/bf02684747. MR 0173675. http://www.numdam.org/item/PMIHES_1964__20__5_0
The notion G-unramified is what is called "unramified" in EGA, but we follow Raynaud's definition of "unramified", so that closed immersions are unramified. See Tag 02G4 in the Stacks Project for more details. /wiki/Closed_immersion