The first experiments to measure intracellular calcium levels via protein expression were based on aequorin, a bioluminescent protein from the jellyfish Aequorea. To produce light, however, this enzyme needs the 'fuel' compound coelenteracine, which has to be added to the preparation. This is not practical in intact animals, and in addition, the temporal resolution of bioluminescence imaging is relatively poor (seconds-minutes). The first genetically encoded fluorescent calcium indicator (GECI) to be used to image activity in an animal was cameleon, designed by Atsushi Miyawaki, Roger Tsien and coworkers in 1997.[1] Cameleon was first used successfully in an animal by Rex Kerr, William Schafer and coworkers to record from neurons and muscle cells of the nematode C. elegans. Cameleon was subsequently used to record neural activity in flies and zebrafish. In mammals, the first GECI to be used in vivo was GCaMP, first developed by Junichi Nakai and coworkers in 2001. GCaMP has undergone numerous improvements, notably by a team of scientists at the Janelia Farm Research Campus (GENIE project, HHMI), and GCaMP6 in particular has become widely used in neuroscience. Very recently, G protein-coupled receptors have been harnessed to generate a series of highly specific indicators for various neurotransmitters.
Indicators have been designed to measure ion concentrations, membrane potential, neurotransmitters, and various intracellular signaling molecules. The following list provides only examples for each class; many more have been published.
Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (June 2000). "Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans". Neuron. 26 (3): 583–594. doi:10.1016/s0896-6273(00)81196-4. PMID 10896155. S2CID 311998. https://doi.org/10.1016%2Fs0896-6273%2800%2981196-4
Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, et al. (October 2002). "Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons". Current Biology. 12 (21): 1877–1884. Bibcode:2002CBio...12.1877F. doi:10.1016/s0960-9822(02)01239-3. PMID 12419190. S2CID 6312049. https://doi.org/10.1016%2Fs0960-9822%2802%2901239-3
Higashijima S, Masino MA, Mandel G, Fetcho JR (December 2003). "Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator". Journal of Neurophysiology. 90 (6): 3986–3997. doi:10.1152/jn.00576.2003. PMID 12930818. S2CID 2230173. /wiki/Doi_(identifier)
Ji G, Feldman ME, Deng KY, Greene KS, Wilson J, Lee JC, et al. (May 2004). "Ca2+-sensing transgenic mice: postsynaptic signaling in smooth muscle". The Journal of Biological Chemistry. 279 (20): 21461–21468. doi:10.1074/jbc.M401084200. PMID 14990564. https://doi.org/10.1074%2Fjbc.M401084200
Nakai J, Ohkura M, Imoto K (February 2001). "A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein". Nature Biotechnology. 19 (2): 137–141. doi:10.1038/84397. PMID 11175727. S2CID 30254550. /wiki/Doi_(identifier)
Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. (July 2013). "Ultrasensitive fluorescent proteins for imaging neuronal activity". Nature. 499 (7458): 295–300. Bibcode:2013Natur.499..295C. doi:10.1038/nature12354. PMC 3777791. PMID 23868258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791
Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T (2020). "A Bright and Colorful Future for G-Protein Coupled Receptor Sensors". Frontiers in Cellular Neuroscience. 14: 67. doi:10.3389/fncel.2020.00067. PMC 7098945. PMID 32265667. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098945
Rohner, Valentin Lu; Lamothe-Molina, Paul J.; Patriarchi, Tommaso (2024-01-30). "Engineering, applications, and future perspectives of GPCR -based genetically encoded fluorescent indicators for neuromodulators". Journal of Neurochemistry. 168 (3): 163–184. doi:10.1111/jnc.16045. hdl:20.500.11850/659388. ISSN 0022-3042. PMID 38288673. https://doi.org/10.1111%2Fjnc.16045
Jones-Tabah J, Mohammad H, Hadj-Youssef S, Kim LE, Martin RD, Benaliouad F, et al. (September 2020). "Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors". Scientific Reports. 10 (1): 14426. Bibcode:2020NatSR..1014426J. doi:10.1038/s41598-020-71121-8. PMC 7468292. PMID 32879346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468292
Sofroniew NJ (September 2017). "Q&A: The brain under a mesoscope: the forest and the trees". BMC Biology. 15 (1): 82. doi:10.1186/s12915-017-0426-y. PMC 5598035. PMID 28911321. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598035
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert JS, Oertner TG (February 2022). "Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors". Biomedical Optics Express. 13 (2): 777–790. doi:10.1364/BOE.448760. PMC 8884218. PMID 35284188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884218
Zhang Y, Rózsa M, Bushey D, Zheng J, Reep D, Broussard GJ, Tsang A, Tsegaye G, Patel R, Narayan S, Lim JX (2020). "jGCaMP8 Fast Genetically Encoded Calcium Indicators". Janelia Research Campus: 361685. doi:10.25378/JANELIA.13148243. /wiki/Doi_(identifier)
Berglund K, Schleich W, Wang H, Feng G, Hall WC, Kuner T, Augustine GJ (August 2008). "Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon". Brain Cell Biology. 36 (1–4): 101–118. doi:10.1007/s11068-008-9031-x. PMC 2674236. PMID 18850274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674236
Wu, Sheng-Yi; Wen, Yurong; Serre, Nelson B. C.; Laursen, Cathrine Charlotte Heiede; Dietz, Andrea Grostøl; Taylor, Brian R.; Drobizhev, Mikhail; Molina, Rosana S.; Aggarwal, Abhi; Rancic, Vladimir; Becker, Michael; Ballanyi, Klaus; Podgorski, Kaspar; Hirase, Hajime; Nedergaard, Maiken (2022-09-06). Dutzler, Raimund (ed.). "A sensitive and specific genetically-encoded potassium ion biosensor for in vivo applications across the tree of life". PLOS Biology. 20 (9): e3001772. doi:10.1371/journal.pbio.3001772. ISSN 1545-7885. PMC 9481166. PMID 36067248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481166
Han J, Burgess K (May 2010). "Fluorescent indicators for intracellular pH". Chemical Reviews. 110 (5): 2709–2728. doi:10.1021/cr900249z. PMID 19831417. /wiki/Doi_(identifier)
Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (September 2012). "Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe". Neuron. 75 (5): 779–785. doi:10.1016/j.neuron.2012.06.040. PMC 3439164. PMID 22958819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439164
Granseth B, Odermatt B, Royle SJ, Lagnado L (September 2006). "Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses". Neuron. 51 (6): 773–786. doi:10.1016/j.neuron.2006.08.029. PMID 16982422. S2CID 921124. https://doi.org/10.1016%2Fj.neuron.2006.08.029
Klarenbeek J, Goedhart J, van Batenburg A, Groenewald D, Jalink K (2015-04-14). "Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity". PLOS ONE. 10 (4): e0122513. Bibcode:2015PLoSO..1022513K. doi:10.1371/journal.pone.0122513. PMC 4397040. PMID 25875503. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397040
Yaginuma H, Okada Y (2021-10-09). "Live cell imaging of metabolic heterogeneity by quantitative fluorescent ATP indicator protein, QUEEN-37C". bioRxiv: 2021.10.08.463131. doi:10.1101/2021.10.08.463131. S2CID 238585891. /wiki/Doi_(identifier)
Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (March 2009). "Activation of CaMKII in single dendritic spines during long-term potentiation". Nature. 458 (7236): 299–304. Bibcode:2009Natur.458..299L. doi:10.1038/nature07842. PMC 2719773. PMID 19295602. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719773
Oliveira AF, Yasuda R (2013-01-14). "An improved Ras sensor for highly sensitive and quantitative FRET-FLIM imaging". PLOS ONE. 8 (1): e52874. Bibcode:2013PLoSO...852874O. doi:10.1371/journal.pone.0052874. PMC 3544822. PMID 23349692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544822
Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Müller JA, et al. (November 2018). "Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR". Nature Methods. 15 (11): 936–939. doi:10.1038/s41592-018-0171-3. PMC 6394230. PMID 30377363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394230
Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, et al. (August 2019). "A genetically encoded fluorescent sensor for in vivo imaging of GABA". Nature Methods. 16 (8): 763–770. doi:10.1038/s41592-019-0471-2. PMID 31308547. S2CID 196812412. /wiki/Doi_(identifier)
Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et al. (June 2018). "Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors". Science. 360 (6396): eaat4422. doi:10.1126/science.aat4422. PMC 6287765. PMID 29853555. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287765
Labouesse MA, Cola RB, Patriarchi T (October 2020). "GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging". International Journal of Molecular Sciences. 21 (21): 8048. doi:10.3390/ijms21218048. PMC 7672611. PMID 33126757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672611
Wan J, Peng W, Li X, Qian T, Song K, Zeng J, et al. (May 2021). "A genetically encoded sensor for measuring serotonin dynamics". Nature Neuroscience. 24 (5): 746–752. doi:10.1038/s41593-021-00823-7. PMC 8544647. PMID 33821000. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544647
Kubitschke, Martin; Müller, Monika; Wallhorn, Lutz; Pulin, Mauro; Mittag, Manuel; Pollok, Stefan; Ziebarth, Tim; Bremshey, Svenja; Gerdey, Jill; Claussen, Kristin Carolin; Renken, Kim; Groß, Juliana; Gneiße, Pascal; Meyer, Niklas; Wiegert, J. Simon (2022-12-06). "Next generation genetically encoded fluorescent sensors for serotonin". Nature Communications. 13 (1): 7525. Bibcode:2022NatCo..13.7525K. doi:10.1038/s41467-022-35200-w. ISSN 2041-1723. PMC 9726753. PMID 36473867. S2CID 247454046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726753
Unger, Elizabeth K.; Keller, Jacob P.; Altermatt, Michael; Liang, Ruqiang; Matsui, Aya; et al. (December 2020). "Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning". Cell. 183 (7): 1986–2002.e26. doi:10.1016/j.cell.2020.11.040. PMC 8025677. PMID 33333022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025677
Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, et al. (May 2019). "A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine". Neuron. 102 (4): 745–761.e8. doi:10.1016/j.neuron.2019.02.037. PMC 6533151. PMID 30922875. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533151
Dong A, He K, Dudok B, Farrell JS, Guan W, Liput DJ, et al. (November 2021). "A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo". Nature Biotechnology. 40 (5): 787–798. doi:10.1038/s41587-021-01074-4. PMC 9091059. PMID 34764491. S2CID 244039925. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091059
Duffet L, Kosar S, Panniello M, Viberti B, Bracey E, Zych AD, et al. (February 2022). "A genetically encoded sensor for in vivo imaging of orexin neuropeptides". Nature Methods. 19 (2): 231–241. doi:10.1038/s41592-021-01390-2. PMC 8831244. PMID 35145320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831244
Nasu, Yusuke; Murphy-Royal, Ciaran; Wen, Yurong; Haidey, Jordan N.; Molina, Rosana S.; Aggarwal, Abhi; Zhang, Shuce; Kamijo, Yuki; Paquet, Marie-Eve; Podgorski, Kaspar; Drobizhev, Mikhail; Bains, Jaideep S.; Lemieux, M. Joanne; Gordon, Grant R.; Campbell, Robert E. (2021-12-06). "A genetically encoded fluorescent biosensor for extracellular l-lactate". Nature Communications. 12 (1): 7058. Bibcode:2021NatCo..12.7058N. doi:10.1038/s41467-021-27332-2. ISSN 2041-1723. PMC 8648760. PMID 34873165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648760
Rohner, Valentin Lu; Lamothe-Molina, Paul J.; Patriarchi, Tommaso (2024-01-30). "Engineering, applications, and future perspectives of GPCR -based genetically encoded fluorescent indicators for neuromodulators". Journal of Neurochemistry. 168 (3): 163–184. doi:10.1111/jnc.16045. hdl:20.500.11850/659388. ISSN 0022-3042. PMID 38288673. https://doi.org/10.1111%2Fjnc.16045
Greenwald EC, Mehta S, Zhang J (December 2018). "Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks". Chemical Reviews. 118 (24): 11707–11794. doi:10.1021/acs.chemrev.8b00333. PMC 7462118. PMID 30550275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462118