Let A {\displaystyle {\mathcal {A}}} be a *-algebra. An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called self-adjoint if a = a ∗ {\displaystyle a=a^{*}} .1
The set of self-adjoint elements is referred to as A s a {\displaystyle {\mathcal {A}}_{sa}} .
A subset B ⊆ A {\displaystyle {\mathcal {B}}\subseteq {\mathcal {A}}} that is closed under the involution *, i.e. B = B ∗ {\displaystyle {\mathcal {B}}={\mathcal {B}}^{*}} , is called self-adjoint.2
A special case of particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2 ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ), which is called a C*-algebra.
Especially in the older literature on *-algebras and C*-algebras, such elements are often called hermitian.3 Because of that the notations A h {\displaystyle {\mathcal {A}}_{h}} , A H {\displaystyle {\mathcal {A}}_{H}} or H ( A ) {\displaystyle H({\mathcal {A}})} for the set of self-adjoint elements are also sometimes used, even in the more recent literature.
Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:
Let A {\displaystyle {\mathcal {A}}} be a C*-algebra and a ∈ A s a {\displaystyle a\in {\mathcal {A}}_{sa}} . Then:
Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 3. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Palmer 2001, p. 800. - Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0. ↩
Dixmier 1977, pp. 3–4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Kadison & Ringrose 1983, p. 271. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Palmer 2001, pp. 798–800. - Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0. ↩
Palmer 2001, p. 798. - Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0. ↩
Palmer 2001, p. 1008. - Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0. ↩
Kadison & Ringrose 1983, p. 238. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Kadison & Ringrose 1983, p. 246. - Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3. ↩
Dixmier 1977, p. 15. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Blackadar 2006, p. 63. - Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. p. 63. ISBN 3-540-28486-9. ↩