The multiset path ordering (>) can be defined as follows:10
where
More generally, an order functional is a function O mapping an ordering to another one, and satisfying the following properties:12
The multiset extension, mapping (>) above to (>>) above is one example of an order functional: (>>)=O(>). Another order functional is the lexicographic extension, leading to the lexicographic path ordering.
N. Dershowitz, "Termination" (1995). p. 207 https://www.semanticscholar.org/paper/T-E-R-M-I-N-a-T-I-O-N-*-Dershowitz/53272b7f1535a9a0f665026393518c0d738a14fe ↩
Nachum Dershowitz, Jean-Pierre Jouannaud (1990). Jan van Leeuwen (ed.). Rewrite Systems. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320. Here: sect.5.3, p.275 /wiki/Nachum_Dershowitz ↩
Gerard Huet (May 1986). Formal Structures for Computation and Deduction. International Summer School on Logic of Programming and Calculi of Discrete Design. Archived from the original on 2014-07-14. Here: chapter 4, p.55-64 https://web.archive.org/web/20140714171331/http://yquem.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz ↩
N. Dershowitz (1982). "Orderings for Term-Rewriting Systems" (PDF). Theoret. Comput. Sci. 17 (3): 279–301. doi:10.1016/0304-3975(82)90026-3. S2CID 6070052. http://www.cs.tau.ac.il/~nachum/papers/Orderings4TRS.pdf ↩
S. Kamin, J.-J. Levy (1980). Two Generalizations of the Recursive Path Ordering (Technical report). Univ. of Illinois, Urbana/IL. ↩
Kamin, Levy (1980) ↩
N. Dershowitz, M. Okada (1988). "Proof-Theoretic Techniques for Term Rewriting Theory". Proc. 3rd IEEE Symp. on Logic in Computer Science (PDF). pp. 104–111. http://www.cs.tau.ac.il/~nachum/papers/ProofTheoretic.pdf ↩
Mitsuhiro Okada, Adam Steele (1988). "Ordering Structures and the Knuth–Bendix Completion Algorithm". Proc. of the Allerton Conf. on Communication, Control, and Computing. ↩
Huet (1986), sect.4.3, def.1, p.57 ↩
Huet (1986), sect.4.1.3, p.56 ↩
Huet (1986), sect.4.3, p. 58 ↩