Name | Symbol | Formula | Fourier Series |
---|
Sine | sin ( x ) {\displaystyle \sin(x)} | ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}} | sin ( x ) {\displaystyle \sin(x)} |
cas (mathematics) | cas ( x ) {\displaystyle \operatorname {cas} (x)} | sin ( x ) + cos ( x ) {\displaystyle \sin(x)+\cos(x)} | sin ( x ) + cos ( x ) {\displaystyle \sin(x)+\cos(x)} |
Cosine | cos ( x ) {\displaystyle \cos(x)} | ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}} | cos ( x ) {\displaystyle \cos(x)} |
cis (mathematics) | e i x , cis ( x ) {\displaystyle e^{ix},\operatorname {cis} (x)} | cos(x) + i sin(x) | cos ( x ) + i sin ( x ) {\displaystyle \cos(x)+i\sin(x)} |
Tangent | tan ( x ) {\displaystyle \tan(x)} | sin x cos x = ∑ n = 0 ∞ U 2 n + 1 x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle {\frac {\sin x}{\cos x}}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}x^{2n+1}}{(2n+1)!}}} | 2 ∑ n = 1 ∞ ( − 1 ) n − 1 sin ( 2 n x ) {\displaystyle 2\sum _{n=1}^{\infty }(-1)^{n-1}\sin(2nx)} |
Cotangent | cot ( x ) {\displaystyle \cot(x)} | cos x sin x = ∑ n = 0 ∞ ( − 1 ) n 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! {\displaystyle {\frac {\cos x}{\sin x}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}2^{2n}B_{2n}x^{2n-1}}{(2n)!}}} | i + 2 i ∑ n = 1 ∞ ( cos 2 n x − i sin 2 n x ) {\displaystyle i+2i\sum _{n=1}^{\infty }(\cos 2nx-i\sin 2nx)} |
Secant | sec ( x ) {\displaystyle \sec(x)} | 1 cos x = ∑ n = 0 ∞ U 2 n x 2 n ( 2 n ) ! {\displaystyle {\frac {1}{\cos x}}=\sum _{n=0}^{\infty }{\frac {U_{2n}x^{2n}}{(2n)!}}} | - |
Cosecant | csc ( x ) {\displaystyle \csc(x)} | 1 sin x = ∑ n = 0 ∞ ( − 1 ) n + 1 2 ( 2 2 n − 1 − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! {\displaystyle {\frac {1}{\sin x}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}2\left(2^{2n-1}-1\right)B_{2n}x^{2n-1}}{(2n)!}}} | - |
Exsecant | exsec ( x ) {\displaystyle \operatorname {exsec} (x)} | sec ( x ) − 1 {\displaystyle \sec(x)-1} | - |
Excosecant | excsc ( x ) {\displaystyle \operatorname {excsc} (x)} | csc ( x ) − 1 {\displaystyle \csc(x)-1} | - |
Versine | versin ( x ) {\displaystyle \operatorname {versin} (x)} | 1 − cos ( x ) {\displaystyle 1-\cos(x)} | 1 − cos ( x ) {\displaystyle 1-\cos(x)} |
Vercosine | vercosin ( x ) {\displaystyle \operatorname {vercosin} (x)} | 1 + cos ( x ) {\displaystyle 1+\cos(x)} | 1 + cos ( x ) {\displaystyle 1+\cos(x)} |
Coversine | coversin ( x ) {\displaystyle \operatorname {coversin} (x)} | 1 − sin ( x ) {\displaystyle 1-\sin(x)} | 1 − sin ( x ) {\displaystyle 1-\sin(x)} |
Covercosine | covercosin ( x ) {\displaystyle \operatorname {covercosin} (x)} | 1 + sin ( x ) {\displaystyle 1+\sin(x)} | 1 + sin ( x ) {\displaystyle 1+\sin(x)} |
Haversine | haversin ( x ) {\displaystyle \operatorname {haversin} (x)} | 1 − cos ( x ) 2 {\displaystyle {\frac {1-\cos(x)}{2}}} | 1 2 − 1 2 cos ( x ) {\displaystyle {\frac {1}{2}}-{\frac {1}{2}}\cos(x)} |
Havercosine | havercosin ( x ) {\displaystyle \operatorname {havercosin} (x)} | 1 + cos ( x ) 2 {\displaystyle {\frac {1+\cos(x)}{2}}} | 1 2 + 1 2 cos ( x ) {\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\cos(x)} |
Hacoversine | hacoversin ( x ) {\displaystyle \operatorname {hacoversin} (x)} | 1 − sin ( x ) 2 {\displaystyle {\frac {1-\sin(x)}{2}}} | 1 2 − 1 2 sin ( x ) {\displaystyle {\frac {1}{2}}-{\frac {1}{2}}\sin(x)} |
Hacovercosine | hacovercosin ( x ) {\displaystyle \operatorname {hacovercosin} (x)} | 1 + sin ( x ) 2 {\displaystyle {\frac {1+\sin(x)}{2}}} | 1 2 + 1 2 sin ( x ) {\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\sin(x)} |
Jacobi elliptic function sn | sn ( x , m ) {\displaystyle \operatorname {sn} (x,m)} | sin am ( x , m ) {\displaystyle \sin \operatorname {am} (x,m)} | 2 π K ( m ) m ∑ n = 0 ∞ q n + 1 / 2 1 − q 2 n + 1 sin ( 2 n + 1 ) π x 2 K ( m ) {\displaystyle {\frac {2\pi }{K(m){\sqrt {m}}}}\sum _{n=0}^{\infty }{\frac {q^{n+1/2}}{1-q^{2n+1}}}~\sin {\frac {(2n+1)\pi x}{2K(m)}}} |
Jacobi elliptic function cn | cn ( x , m ) {\displaystyle \operatorname {cn} (x,m)} | cos am ( x , m ) {\displaystyle \cos \operatorname {am} (x,m)} | 2 π K ( m ) m ∑ n = 0 ∞ q n + 1 / 2 1 + q 2 n + 1 cos ( 2 n + 1 ) π x 2 K ( m ) {\displaystyle {\frac {2\pi }{K(m){\sqrt {m}}}}\sum _{n=0}^{\infty }{\frac {q^{n+1/2}}{1+q^{2n+1}}}~\cos {\frac {(2n+1)\pi x}{2K(m)}}} |
Jacobi elliptic function dn | dn ( x , m ) {\displaystyle \operatorname {dn} (x,m)} | 1 − m sn 2 ( x , m ) {\displaystyle {\sqrt {1-m\operatorname {sn} ^{2}(x,m)}}} | π 2 K ( m ) + 2 π K ( m ) ∑ n = 1 ∞ q n 1 + q 2 n cos n π x K ( m ) {\displaystyle {\frac {\pi }{2K(m)}}+{\frac {2\pi }{K(m)}}\sum _{n=1}^{\infty }{\frac {q^{n}}{1+q^{2n}}}~\cos {\frac {n\pi x}{K(m)}}} |
Jacobi elliptic function zn | zn ( x , m ) {\displaystyle \operatorname {zn} (x,m)} | ∫ 0 x [ dn ( t , m ) 2 − E ( m ) K ( m ) ] d t {\displaystyle \int _{0}^{x}\left[\operatorname {dn} (t,m)^{2}-{\frac {E(m)}{K(m)}}\right]dt} | 2 π K ( m ) ∑ n = 1 ∞ q n 1 − q 2 n sin n π x K ( m ) {\displaystyle {\frac {2\pi }{K(m)}}\sum _{n=1}^{\infty }{\frac {q^{n}}{1-q^{2n}}}~\sin {\frac {n\pi x}{K(m)}}} |
Weierstrass elliptic function | ℘ ( x , Λ ) {\displaystyle \wp (x,\Lambda )} | 1 x 2 + ∑ λ ∈ Λ − { 0 } [ 1 ( x − λ ) 2 − 1 λ 2 ] {\displaystyle {\frac {1}{x^{2}}}+\sum _{\lambda \in \Lambda -\{0\}}\left[{\frac {1}{(x-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right]} | {\displaystyle } |
Clausen function | Cl 2 ( x ) {\displaystyle \operatorname {Cl} _{2}(x)} | − ∫ 0 x ln | 2 sin t 2 | d t {\displaystyle -\int _{0}^{x}\ln \left|2\sin {\frac {t}{2}}\right|dt} | ∑ k = 1 ∞ sin k x k 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin kx}{k^{2}}}} |