As might be expected, the bifunctional enzymes from lower plants are larger (946–960 residues, 106–107 kDa) than the monofunctional enzymes from higher plants (800–867 residues, 90–98 kDa), although not by twice as much. The independent ent-kaurene syntheses in higher plants, of which there may be several per species, are much more heterogenous in size, ranging 161–816 residues, 19–94 kDa.
However, gibberellins are not the only phytochemicals produced from ent-copalyl pyrophosphate. A wide range of secondary metabolites, both terpenes and alkaloids, are also derived either from ent-copalyl pyrophosphate itself or from ent-kaurene or ent-kaurenoic acid, the next two intermediates on the metabolic pathway to gibberellins. Knowledge of these secondary metabolic pathways is much less extensive than that of gibberellin biosynthesis, and is often little more than conjecture.
"EC 5.5.1.13 – ent-copalyl diphosphate synthase". IUBMB Enzyme Nomenclature. Retrieved 2009-09-19. http://www.chem.qmul.ac.uk/iubmb/enzyme/EC5/5/1/13.html
"Diterpenoid Biosynthesis". Kyoto Encyclopedia of Genes and Genomes (KEGG). Retrieved 2009-09-19. http://www.genome.jp/kegg-bin/show_pathway?ec00904
"EC 5.5.1.13 – ent-copalyl diphosphate synthase". IUBMB Enzyme Nomenclature. Retrieved 2009-09-19. http://www.chem.qmul.ac.uk/iubmb/enzyme/EC5/5/1/13.html
Fall RR, West CA (1971). "Purification and properties of kaurene synthetase from Fusarium moniliforme". J. Biol. Chem. 246 (22): 6913–28. PMID 4331199. http://www.jbc.org/content/246/22/6913.abstract
Kawaide H, Imai R, Sassa T, Kamiya Y (1997). "Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis". J. Biol. Chem. 272 (35): 21706–12. doi:10.1074/jbc.272.35.21706. PMID 9268298. https://doi.org/10.1074%2Fjbc.272.35.21706
Kawaide H, Sassa T, Kamiya Y (2000). "Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus Phaeosphaeria sp. L487 and a comparison with cyclases from higher plants". J. Biol. Chem. 275 (4): 2276–80. doi:10.1074/jbc.275.4.2276. PMID 10644675. https://doi.org/10.1074%2Fjbc.275.4.2276
Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W, Sassa T (2000). "Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase". Biosci. Biotechnol. Biochem. 64 (3): 660–64. doi:10.1271/bbb.64.660. PMID 10803977. https://doi.org/10.1271%2Fbbb.64.660
Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006). "Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens". FEBS Lett. 580 (26): 6175–81. doi:10.1016/j.febslet.2006.10.018. PMID 17064690. /wiki/Doi_(identifier)
Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006). "Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens". FEBS Lett. 580 (26): 6175–81. doi:10.1016/j.febslet.2006.10.018. PMID 17064690. /wiki/Doi_(identifier)
Fall RR, West CA (1971). "Purification and properties of kaurene synthetase from Fusarium moniliforme". J. Biol. Chem. 246 (22): 6913–28. PMID 4331199. http://www.jbc.org/content/246/22/6913.abstract
Kawaide H, Sassa T, Kamiya Y (2000). "Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus Phaeosphaeria sp. L487 and a comparison with cyclases from higher plants". J. Biol. Chem. 275 (4): 2276–80. doi:10.1074/jbc.275.4.2276. PMID 10644675. https://doi.org/10.1074%2Fjbc.275.4.2276
Duncan JD, West CA (1981). "Properties of kaurene synthetase from Marah macrocarpus endosperm: evidence for the participation of separate but interacting enzymes". Plant Physiol. 68 (5): 1128–34. doi:10.1104/pp.68.5.1128. PMC 426057. PMID 16662063. http://www.plantphysiol.org/cgi/reprint/68/5/1128
Prisic S, Xu M, Wilderman PR, Peters RJ (2004). "Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions". Plant Physiol. 136 (4): 4228–36. doi:10.1104/pp.104.050567. PMC 535852. PMID 15542489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535852
Ikeda C, Hayashi Y, Itoh N, Seto H, Dairi T (2007). "Functional analysis of eubacterial ent-copalyl diphosphate synthase and pimara-9(11),15-diene synthase with unique primary sequences". J. Biochem. 141: 37–45. doi:10.1093/jb/mvm004. PMID 17148547. /wiki/Doi_(identifier)
"EC 5.5.1.13 – ent-copalyl diphosphate synthase". Brauschweig Enzyme Database (BRENDA). Retrieved 2009-09-19. http://www.brenda-enzymes.org/php/result_flat.php4?ecno=5.5.1.13
"4.2.3.19 BRENDA". http://www.brenda-enzymes.org/php/result_flat.php4?ecno=4.2.3.19
Shen-Miller J, West CA (1985). "Distribution and ent-kaurene synthetase in Helianthus annuus and Marah macrocarpus". Phytochemistry. 24: 461–64. doi:10.1016/s0031-9422(00)80747-5. /wiki/Doi_(identifier)
Aach H, Böse G, Graebe JE (1995). "ent-Kaurene biosynthesis in a cell-free system from wheat (Triticum aestivum L.) seedlings and the localization of ent-kaurene synthetase in plastids of three species". Planta. 197 (2): 333–42. doi:10.1007/BF00202655. /wiki/Doi_(identifier)
Duncan JD, West CA (1981). "Properties of kaurene synthetase from Marah macrocarpus endosperm: evidence for the participation of separate but interacting enzymes". Plant Physiol. 68 (5): 1128–34. doi:10.1104/pp.68.5.1128. PMC 426057. PMID 16662063. http://www.plantphysiol.org/cgi/reprint/68/5/1128
Prisic S, Xu M, Wilderman PR, Peters RJ (2004). "Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions". Plant Physiol. 136 (4): 4228–36. doi:10.1104/pp.104.050567. PMC 535852. PMID 15542489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535852
Aach H, Böse G, Graebe JE (1995). "ent-Kaurene biosynthesis in a cell-free system from wheat (Triticum aestivum L.) seedlings and the localization of ent-kaurene synthetase in plastids of three species". Planta. 197 (2): 333–42. doi:10.1007/BF00202655. /wiki/Doi_(identifier)
"Diterpenoid Biosynthesis". Kyoto Encyclopedia of Genes and Genomes (KEGG). Retrieved 2009-09-19. http://www.genome.jp/kegg-bin/show_pathway?ec00904
Prisic S, Xu M, Wilderman PR, Peters RJ (2004). "Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions". Plant Physiol. 136 (4): 4228–36. doi:10.1104/pp.104.050567. PMC 535852. PMID 15542489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535852
Sun TP, Kamiya Y (1994). "The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis". Plant Cell. 6 (10): 1509–18. doi:10.1105/tpc.6.10.1509. PMC 160538. PMID 7994182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160538
Such conjecture is not, of course, without evidence. It can be clear from the structure of a secondary metabolite that it is almost certainly derived from ent-copalyl pyrophosphate without knowing the details of how the transformation is carried out in living plants.
Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ (2005). "The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase". Plant Mol. Biol. 59 (6): 881–94. doi:10.1007/s11103-005-1674-8. PMID 16307364. /wiki/Doi_(identifier)
Prisic S, Xu M, Wilderman PR, Peters RJ (2004). "Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions". Plant Physiol. 136 (4): 4228–36. doi:10.1104/pp.104.050567. PMC 535852. PMID 15542489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535852