An agrochemical, short for agricultural chemical, is used in conventional and industrial agriculture, typically referring to pesticides like insecticides and herbicides, as well as synthetic fertilizers. Developed mainly during the Green Revolution, agrochemicals are largely petrochemical derivatives and contribute to climate change. Their improper use causes significant environmental pollution, harming waterways and biodiversity as highlighted since Silent Spring. In response, some farmers adopt sustainable agriculture methods like organic farming and agroecology, avoiding synthetic chemicals to protect ecosystems and health.
Categories
Biological action
See also: biological activity
In most of the cases, agrochemicals refer to pesticides.21
Application method
Application process
Agrochemicals are typically applied to seeds or the field using a variety of different methods.
Seed treatment
This section is an excerpt from Seed treatment.[edit]
A seed treatment is a treatment of the seed with either chemical agents or biological or by physical methods. Usually done to provide protection to the seed and improve the establishment of healthy crops. Not to be confused with a seed coating.
In agriculture and horticulture, coating of the seed is the process of applying exogenous materials to the seed. Also referred to as seed dressing.
A seed coating is the layer of material added to the seed, which may or may not contain a "protectant" (biological or chemical pesticide) or biostimulant applied to the seed and possibly some color... By the amount of material added, it can be divided into:22
- A Film coating, a layer of thin film applied to the seed typically less than 10% of the mass of the original seed.
- Encrustment, where the applied material is typically 100%–500% of the original seed mass, but the shape is still discernible.
- Pellet, where the applied material is so thick that the seed's original shape is not discernible.
Seed coating provides the following functions:
- For formulations with pesticides, direct application to seeds can be environmentally more friendly, as the amounts used can be very small.23
- Color makes treated seed less attractive to birds, and easier to see and clean up in the case of an accidental spillage.24
- A thick coating can improve handling, by hand or by machine. Thinner coatings may also help with characteristics like flowability.25
- Thick coatings may accommodate additional features such as fertilizers, plant hormones, plant-beneficial microbes, and water-retaining polymers.2627
Sprayers
This section is an excerpt from Sprayer.[edit]
A sprayer is a device used to spray a liquid, where sprayers are commonly used for projection of water, weed killers, crop performance materials, pest maintenance chemicals, as well as manufacturing and production line ingredients. In agriculture, a sprayer is a piece of equipment that is used to apply herbicides, pesticides, and fertilizers on agricultural crops. Sprayers range in size from man-portable units (typically backpacks with spray guns) to trailed sprayers that are connected to a tractor, to self-propelled units similar to tractors with boom mounts of 4–30 feet (1.2–9.1 m) up to 60–151 feet (18–46 m) in length depending on engineering design for tractor and land size.30Aerial application
This section is an excerpt from Aerial application.[edit]
Aerial application, or crop dusting,31 involves spraying crops with crop protection products from an agricultural aircraft. Planting certain types of seed are also included in aerial application. The specific spreading of fertilizer is also known as aerial topdressing in some countries. Many countries have severely limited aerial application of pesticides and other products because of environmental and public health hazards like spray drift; most notably, the European Union banned it outright with a few highly restricted exceptions in 2009,32 effectively ending the practice in all member states.
Agricultural aircraft are highly specialized, purpose-built aircraft. Today's agricultural aircraft are often powered by turbine engines of up to 1,500 shp (1,100 kW) and can carry as much as 800 US gallons (3,000 L) of crop protection product. Helicopters are sometimes used, and some aircraft serve double duty as water bombers in areas prone to wildfires. These aircraft are referred to as SEAT, or "single engine air tankers."Ecology
Main article: Agricultural pollution
Many agrochemicals are toxic, and agrichemicals in bulk storage may pose significant environmental and/or health risks, particularly in the event of accidental spills. In many countries, use of agrichemicals is highly regulated. Government-issued permits for purchase and use of approved agrichemicals may be required. Significant penalties can result from misuse, including improper storage resulting in spillage. On farms, proper storage facilities and labeling, emergency clean-up equipment and procedures, and safety equipment and procedures for handling, application and disposal are often subject to mandatory standards and regulations. Usually, the regulations are carried out through the registration process.
For instance, bovine somatotropin, though widely used in the United States, is not approved in Canada and some other jurisdictions as there are concerns for the health of cows using it.
Impacts of pesticides
This section is an excerpt from Environmental impact of pesticides.[edit]
The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields.33 Other agrochemicals, such as fertilizers, can also have negative effects on the environment.
The negative effects of pesticides are not just in the area of application. Runoff and pesticide drift can carry pesticides into distant aquatic environments or other fields, grazing areas, human settlements and undeveloped areas. Other problems emerge from poor production, transport, storage and disposal practices.34 Over time, repeat application of pesticides increases pest resistance, while its effects on other species can facilitate the pest's resurgence.35 Alternatives to heavy use of pesticides, such as integrated pest management, and sustainable agriculture techniques such as polyculture mitigate these consequences, without the harmful toxic chemical application.
Environmental modelling indicates that globally over 60% of global agricultural land (~24.5 million km²) is "at risk of pesticide pollution by more than one active ingredient", and that over 30% is at "high risk" of which a third are in high-biodiversity regions.3637 Each pesticide or pesticide class comes with a specific set of environmental concerns. Such undesirable effects have led many pesticides to be banned, while regulations have limited and/or reduced the use of others. The global spread of pesticide use, including the use of older/obsolete pesticides that have been banned in some jurisdictions, has increased overall.3839History
Sumerians from 4500 years ago have said to use insecticides in the form of sulfur compounds. Additionally, the Chinese from about 3200 years ago used mercury and arsenic compounds to control the body lice.40
Agrochemicals were introduced to protect crops from pests and enhance crop yields. The most common agrochemicals include pesticides and fertilizers.41 Chemical fertilizers in the 1960s were responsible for the beginning of the "Green Revolution", where using the same surface of land using intensive irrigation and mineral fertilizers such as nitrogen, phosphorus, and potassium has greatly increased food production.42 Throughout the 1970s through 1980s, pesticide research continued into producing more selective agrochemicals.43 Due to the adaptation of pests to these chemicals, more and new agrochemicals were being used, causing side effects in the environment.
Companies
Syngenta was the Chinese owned worldwide leader in agrochemical sales in 2013 at approximately US$10.9 billion, followed by Bayer CropScience, BASF, Dow AgroSciences, Monsanto, and then DuPont with about $3.6 billion.44 It is still in the worldwide leading position based on sales of year 2019. Based on a statistics by statistica, In 2019, the agrochemical market worldwide was worth approximately $234.2 billion. This is expected to increase to more than $300 billion in 2025.45
See also
- Index of pesticide articles
- Agricultural chemistry
- Ecocide
- Eutrophication
- National Agricultural Statistics Service (NASS)
- Nutrient pollution
External links
- Media related to Agricultural chemistry at Wikimedia Commons
- "Agricultural Chemical Usage - Chemical Distribution Rate - ID: t722h8817 - USDA Economics, Statistics and Market Information System". Publication. December 23, 2005. Retrieved July 23, 2020.
References
Jastrzębska, Magdalena; Kostrzewska, Marta; Saeid, Agnieszka (2022-01-01), Chojnacka, Katarzyna; Saeid, Agnieszka (eds.), "Chapter 1 - Conventional agrochemicals: Pros and cons", Smart Agrochemicals for Sustainable Agriculture, Academic Press, pp. 1–28, ISBN 978-0-12-817036-6, retrieved 2024-10-31 978-0-12-817036-6 ↩
Curley, Robert. "agrochemical, agricultural technology". Britannica (encyclopedia Britannica). Retrieved 24 June 2025. https://www.britannica.com/technology/agrochemical ↩
"Agrochemical". .” Merriam-Webster.com Dictionary, Merriam-Webster. Retrieved 24 June 2025. https://www.merriam-webster.com/dictionary/agrochemical ↩
Haas, Hans-Ulrich (2019). "Chapter 12. New Aspects of Plant Regulators". In Peter, Jeschke; Witschel, Matthias; Krämer, Wolfgang; Schirmer, Ulrich (eds.). Modern Crop Protection Compounds (3rd ed.). Wiley (published 25 January 2019). pp. 571–584. doi:10.1002/9783527699261.ch29. ISBN 9783527699261. 9783527699261 ↩
Gregg, Peter C.; Del Socorro, Alice P.; Landolt, Peter J. (2018-01-07). "Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones". Annual Review of Entomology. 63 (1): 453–470. doi:10.1146/annurev-ento-031616-035040. ISSN 0066-4170. https://www.annualreviews.org/doi/10.1146/annurev-ento-031616-035040 ↩
Toquin, Valerie; Braun, Christoph A.; Sirven, Catherine; Assmann, Lutz; Sawada, Haruko (2019). "Chapter 26. Host Defense Inducers". In Peter, Jeschke; Witschel, Matthias; Krämer, Wolfgang; Schirmer, Ulrich (eds.). Modern Crop Protection Compounds (3rd ed.). Wiley (published 25 January 2019). pp. 959–978. doi:10.1002/9783527699261.ch26. ISBN 9783527699261. 9783527699261 ↩
Rosinger, Chris; Schulte, Wolfgang (2019). "Chapter 8. Safeners for Herbicides". In Peter, Jeschke; Witschel, Matthias; Krämer, Wolfgang; Schirmer, Ulrich (eds.). Modern Crop Protection Compounds (3rd ed.). Wiley (published 25 January 2019). pp. 425–450. doi:10.1002/9783527699261.ch8. ISBN 9783527699261. 9783527699261 ↩
Mishra, Mukesh Kumar; Mishra, Shailendra Kumar; Pandey, Lakshmi; Kumar, Arun (2023). "Chapter 5. Pesticides and Their Formulations". ResearchGate. Retrieved 24 June 2025. https://www.researchgate.net/publication/375485765_Pesticides_and_Their_Formulations ↩
Uzupis, Denise. "Soil & Plant Amendments". Commonwealth of Pennsylvania, department of agriculture. Retrieved 24 June 2025. https://www.pa.gov/agencies/pda/plants-land-water/plant-industry/agronomic-products/soil-and-plant-amendments.html ↩
Djuragic, Olivera; Čabarkapa, Ivana; Milašinović Šeremešić, Marija; Rakita, Slađana; Tomičić, Zorica (2023). "Feed Additives, Their Role, and Technological Properties". In Arsenos, Georgios; Giannenas, Ilias (eds.). Sustainable Use of Feed Additives in Livestock. 6330 Cham, Switzerland: Springer. pp. 17–45. ISBN 978-3-031-42854-8. {{cite book}}: Missing |editor1= (help)CS1 maint: location (link) 978-3-031-42854-8 ↩
Smith, Zachary K. (September 2024). "Overview of Growth Promotants and Production Enhancers in Animals". MSD Veterinary Manual. Retrieved 26 June 2025. https://www.msdvetmanual.com/pharmacology/growth-promotants-and-production-enhancers/overview-of-growth-promotants-and-production-enhancers-in-animals ↩
Claerebout, Edwin (April 2025). "Anthelmintic Drugs for Animals". MSD Veterinary Manual. Retrieved 26 June 2025. https://www.msdvetmanual.com/pharmacology/anthelmintics/anthelmintic-drugs-for-animals?query=anthelmintics ↩
Devi, P. Indira; Manjula, M.; Bhavani, R.V. (2022-10-17). "Agrochemicals, Environment, and Human Health". Annual Review of Environment and Resources. 47 (1): 399–421. doi:10.1146/annurev-environ-120920-111015. ISSN 1543-5938. https://doi.org/10.1146%2Fannurev-environ-120920-111015 ↩
Agrochemicals Are Fossil Fuels in Another Form (Report). Center for International Environmental Law (CIEL). 2022-01-01. https://www.jstor.org/stable/resrep63253.9 ↩
Agrochemicals Are Fossil Fuels in Another Form (Report). Center for International Environmental Law (CIEL). 2022-01-01. https://www.jstor.org/stable/resrep63253.9 ↩
Devi, P. Indira; Manjula, M.; Bhavani, R.V. (2022-10-17). "Agrochemicals, Environment, and Human Health". Annual Review of Environment and Resources. 47 (1): 399–421. doi:10.1146/annurev-environ-120920-111015. ISSN 1543-5938. https://doi.org/10.1146%2Fannurev-environ-120920-111015 ↩
Devi, P. Indira; Manjula, M.; Bhavani, R.V. (2022-10-17). "Agrochemicals, Environment, and Human Health". Annual Review of Environment and Resources. 47 (1): 399–421. doi:10.1146/annurev-environ-120920-111015. ISSN 1543-5938. https://doi.org/10.1146%2Fannurev-environ-120920-111015 ↩
Anenberg, Susan C.; Kalman, Casey (May 2019). "Extreme Weather, Chemical Facilities, and Vulnerable Communities in the U.S. Gulf Coast: A Disastrous Combination". GeoHealth. 3 (5): 122–126. Bibcode:2019GHeal...3..122A. doi:10.1029/2019GH000197. ISSN 2471-1403. PMC 7038901. PMID 32159036. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038901 ↩
Devi, P. Indira; Manjula, M.; Bhavani, R.V. (2022-10-17). "Agrochemicals, Environment, and Human Health". Annual Review of Environment and Resources. 47 (1): 399–421. doi:10.1146/annurev-environ-120920-111015. ISSN 1543-5938. https://doi.org/10.1146%2Fannurev-environ-120920-111015 ↩
Ganguly, Ram K.; Mukherjee, Arpan; Chakraborty, Susanta K.; Verma, Jay Prakash (2021-01-01), Verma, Jay Prakash; Macdonald, Catriona A.; Gupta, Vijai Kumar; Podile, Appa Rao (eds.), "Chapter 2 - Impact of agrochemical application in sustainable agriculture", New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 15–24, ISBN 978-0-444-64325-4, retrieved 2024-10-31 978-0-444-64325-4 ↩
"Agrochemicals: Types and their effects". worldofchemicals.com. February 2, 2018. Retrieved July 23, 2020. https://www.worldofchemicals.com/629/chemistry-articles/agrochemicals-types-and-their-effects.html ↩
Pedrini, Simone; Merritt, David J.; Stevens, Jason; Dixon, Kingsley (February 2017). "Seed Coating: Science or Marketing Spin?" (PDF). Trends in Plant Science. 22 (2): 106–116. Bibcode:2017TPS....22..106P. doi:10.1016/j.tplants.2016.11.002. PMID 27979716. https://api.research-repository.uwa.edu.au/ws/files/22008937/Pedrini_et_al_2017_Seed_coating_science_or_marketing_spin.pdf ↩
Matthews, G.A. (2000). "Chapter 12: Seed treatment, dust and granule application". Pesticide Application Methods. Blackwell Science Ltd. pp. 253–267. ISBN 0632054735. 0632054735 ↩
Callan, I.W. (1975). "Achievements and limitations of seed treatments". Outl. Agric. 8 (5): 271–274. Bibcode:1975OutAg...8..271C. doi:10.1177/003072707500800504. S2CID 157582780. /wiki/Bibcode_(identifier) ↩
Pedrini, Simone; Merritt, David J.; Stevens, Jason; Dixon, Kingsley (February 2017). "Seed Coating: Science or Marketing Spin?" (PDF). Trends in Plant Science. 22 (2): 106–116. Bibcode:2017TPS....22..106P. doi:10.1016/j.tplants.2016.11.002. PMID 27979716. https://api.research-repository.uwa.edu.au/ws/files/22008937/Pedrini_et_al_2017_Seed_coating_science_or_marketing_spin.pdf ↩
Pedrini, Simone; Merritt, David J.; Stevens, Jason; Dixon, Kingsley (February 2017). "Seed Coating: Science or Marketing Spin?" (PDF). Trends in Plant Science. 22 (2): 106–116. Bibcode:2017TPS....22..106P. doi:10.1016/j.tplants.2016.11.002. PMID 27979716. https://api.research-repository.uwa.edu.au/ws/files/22008937/Pedrini_et_al_2017_Seed_coating_science_or_marketing_spin.pdf ↩
Rocha, Inês; Ma, Ying; Souza-Alonso, Pablo; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S. (6 November 2019). "Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops". Frontiers in Plant Science. 10: 1357. doi:10.3389/fpls.2019.01357. PMC 6852281. PMID 31781135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852281 ↩
Harris, D.A. (1975). "The application of chemicals to seed". Outl. Agric. 8 (5): 275–280. Bibcode:1975OutAg...8..275H. doi:10.1177/003072707500800505. S2CID 157559918. /wiki/Bibcode_(identifier) ↩
Rocha, Inês; Ma, Ying; Souza-Alonso, Pablo; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S. (6 November 2019). "Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops". Frontiers in Plant Science. 10: 1357. doi:10.3389/fpls.2019.01357. PMC 6852281. PMID 31781135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852281 ↩
"Farm Sprayers Overview". Successful Farming. 2018-01-26. Retrieved 2018-11-21. https://www.agriculture.com/machinery/spraying/farm-sprayers-overview ↩
"Delta Air Lines | DL | DAL | Heathrow". Heathrow Airport. Retrieved 2022-05-06. https://www.heathrow.com/airline-contact-info/delta-air-lines ↩
Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0128 ↩
George Tyler Miller (1 January 2004). Sustaining the Earth: An Integrated Approach. Thomson/Brooks/Cole. pp. 211–216. ISBN 978-0-534-40088-0. 978-0-534-40088-0 ↩
Tashkent (1998), Part 75. Conditions and provisions for developing a national strategy for biodiversity conservation Archived 13 October 2007 at the Wayback Machine. Biodiversity Conservation National Strategy and Action Plan of Republic of Uzbekistan. Prepared by the National Biodiversity Strategy Project Steering Committee with the Financial Assistance of The Global Environmental Facility (GEF) and Technical Assistance of United Nations Development Programme (UNDP). Retrieved on 17 September 2007. http://bpsp-neca.brim.ac.cn/books/actpln_uzbek/part1-3.html#Table%20E:%20Application%20rates%20of%20Pesticides%20and%20Defoliants%20(1990/1993) ↩
Damalas, C. A.; Eleftherohorinos, I. G. (2011). "Pesticide Exposure, Safety Issues, and Risk Assessment Indicators". International Journal of Environmental Research and Public Health. 8 (12): 1402–19. doi:10.3390/ijerph8051402. PMC 3108117. PMID 21655127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108117 ↩
"A third of global farmland at 'high' pesticide pollution risk". phys.org. Retrieved 22 April 2021. https://phys.org/news/2021-03-global-farmland-high-pesticide-pollution.html ↩
Tang, Fiona H. M.; Lenzen, Manfred; McBratney, Alexander; Maggi, Federico (April 2021). "Risk of pesticide pollution at the global scale". Nature Geoscience. 14 (4): 206–210. Bibcode:2021NatGe..14..206T. doi:10.1038/s41561-021-00712-5. ISSN 1752-0908. https://doi.org/10.1038%2Fs41561-021-00712-5 ↩
Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. (2013). "Current Challenges and Trends in the Discovery of Agrochemicals". Science. 341 (6147): 742–6. Bibcode:2013Sci...341..742L. doi:10.1126/science.1237227. PMID 23950530. S2CID 206548681. /wiki/Bibcode_(identifier) ↩
Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. (2018). "A survey of honey bee-collected pollen reveals widespread contamination by agricultural pesticides". The Science of the Total Environment. 615: 208–218. doi:10.1016/j.scitotenv.2017.09.226. PMID 28968582. S2CID 19956612. http://www.sciencedirect.com ↩
Unsworth, John (10 May 2010). "History of Pesticide Use". International Union of Pure and Applied Chemistry. http://agrochemicals.iupac.org/index.php?option=com_sobi2&sobi2Task=sobi2Details&catid=3&sobi2Id=31&Itemid=19 ↩
"Agrochemical". 2 May 2017. http://www.encyclopedia.com/plants-and-animals/agriculture-and-horticulture/agriculture-general/agrochemical ↩
Carvalho, Fernando P. (2006). "Agriculture, pesticides, food security and food safety". Environmental Science & Policy. 9 (7–8). Elsevier BV: 685–692. Bibcode:2006ESPol...9..685C. doi:10.1016/j.envsci.2006.08.002. ISSN 1462-9011. /wiki/Bibcode_(identifier) ↩
Unsworth, John (10 May 2010). "History of Pesticide Use". International Union of Pure and Applied Chemistry. http://agrochemicals.iupac.org/index.php?option=com_sobi2&sobi2Task=sobi2Details&catid=3&sobi2Id=31&Itemid=19 ↩
Agropages.com Mar. 25, 2014 Top six agrochemical firms grew steady in 2013 http://news.agropages.com/News/NewsDetail---11846.htm ↩
Statista.com/ July. 6, 2021 Agricultural chemicals market value worldwide in 2018 and 2019 with a forecast from 2020 to 2025 https://www.statista.com/statistics/311943/agrochemical-market-value-worldwide ↩