There are four unique degrees of truncation. Vertices of the truncation 8-simplex are located as pairs on the edge of the 8-simplex. Vertices of the bitruncated 8-simplex are located on the triangular faces of the 8-simplex. Vertices of the tritruncated 8-simplex are located inside the tetrahedral cells of the 8-simplex.
Truncated 8-simplex
Alternate names
- Truncated enneazetton (Acronym: tene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the truncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 9-orthoplex.
Images
orthographic projections
Bitruncated 8-simplex
Alternate names
- Bitruncated enneazetton (Acronym: batene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the bitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 9-orthoplex.
Images
orthographic projections
Tritruncated 8-simplex
Alternate names
- Tritruncated enneazetton (Acronym: tatene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the tritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 9-orthoplex.
Images
orthographic projections
Quadritruncated 8-simplex
Quadritruncated 8-simplex |
---|
Type | uniform 8-polytope |
Schläfli symbol | 4t{37} |
Coxeter-Dynkin diagrams | or |
6-faces | 18 3t{3,3,3,3,3,3} |
7-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2520 |
Vertices | 630 |
Vertex figure | {3,3}v{3,3} |
Coxeter group | A8, [[37]], order 725760 |
Properties | convex, isotopic |
The quadritruncated 8-simplex an isotopic polytope, constructed from 18 tritruncated 7-simplex facets.
Alternate names
- Octadecazetton (18-facetted 8-polytope) (Acronym: be) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the quadritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,2,2,2). This construction is based on facets of the quadritruncated 9-orthoplex.
Images
orthographic projections
Related polytopes
Isotopic uniform truncated simplices
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|
NameCoxeter | Hexagon = t{3} = {6} | Octahedron = r{3,3} = {31,1} = {3,4} { 3 3 } {\displaystyle \left\{{\begin{array}{l}3\\3\end{array}}\right\}} | Decachoron2t{33} | Dodecateron2r{34} = {32,2} { 3 , 3 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}} | Tetradecapeton3t{35} | Hexadecaexon3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3,3,3\\3,3,3\end{array}}\right\}} | Octadecazetton4t{37} |
---|
Images | | | | | | | |
---|
Vertex figure | ( )∨( ) | { }×{ } | { }∨{ } | {3}×{3} | {3}∨{3} | {3,3}×{3,3} | {3,3}∨{3,3} |
---|
Facets | | {3} | t{3,3} | r{3,3,3} | 2t{3,3,3,3} | 2r{3,3,3,3,3} | 3t{3,3,3,3,3,3} |
---|
Asintersectingdualsimplexes | ∩ | ∩ | ∩ | ∩ | ∩ | ∩ | ∩ |
---|
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3x3o3o3o3o3o3o - tene, o3x3x3o3o3o3o3o - batene, o3o3x3x3o3o3o3o - tatene, o3o3o3x3x3o3o3o - be
External links
References
Klitizing, (x3x3o3o3o3o3o3o - tene)
Klitizing, (o3x3x3o3o3o3o3o - batene)
Klitizing, (o3o3x3x3o3o3o3o - tatene)
Klitizing, (o3o3o3x3x3o3o3o - be)