Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Business intelligence
A set of techniques and tools for the acquisition and transformation of raw data into meaningful and useful information for business analysis purposes

Business intelligence (BI) encompasses strategies and technologies for data analysis and managing business information. BI tools support functions like reporting, analytics, data mining, and prescriptive analytics to interpret big data and uncover new business opportunities. Combining external market data with internal company data enables more informed decision support for operational choices like product positioning and strategic business goals. BI systems draw data from sources such as data warehouses and data marts, helping organizations gain insight into market segments and improve performance through effective data-driven strategies.

We don't have any images related to Business intelligence yet.
We don't have any YouTube videos related to Business intelligence yet.
We don't have any PDF documents related to Business intelligence yet.
We don't have any Books related to Business intelligence yet.
We don't have any archived web articles related to Business intelligence yet.

History

The earliest known use of the term business intelligence is in Richard Millar Devens' Cyclopædia of Commercial and Business Anecdotes (1865). Devens used the term to describe how the banker Sir Henry Furnese gained profit by receiving and acting upon information about his environment, prior to his competitors:

Throughout Holland, Flanders, France, and Germany, he maintained a complete and perfect train of business intelligence. The news of the many battles fought was thus received first by him, and the fall of Namur added to his profits, owing to his early receipt of the news.

— Devens, p. 210

The ability to collect and react accordingly based on the information retrieved, Devens says, is central to business intelligence.6

When Hans Peter Luhn, a researcher at IBM, used the term business intelligence in an article published in 1958, he employed the Webster's Dictionary definition of intelligence: "the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal."7

In 1989, Howard Dresner (later a Gartner analyst) proposed business intelligence as an umbrella term to describe "concepts and methods to improve business decision making by using fact-based support systems."8 It was not until the late 1990s that this usage was widespread.9

Definition

According to Solomon Negash and Paul Gray, business intelligence (BI) can be defined as systems that combine:

with analysis to evaluate complex corporate and competitive information for presentation to planners and decision makers, with the objective of improving the timeliness and the quality of the input to the decision process."10

According to Forrester Research, business intelligence is "a set of methodologies, processes, architectures, and technologies that transform raw data into meaningful and useful information used to enable more effective strategic, tactical, and operational insights and decision-making."11 Under this definition, business intelligence encompasses information management (data integration, data quality, data warehousing, master-data management, text- and content-analytics, et al.). Therefore, Forrester refers to data preparation and data usage as two separate but closely linked segments of the business-intelligence architectural stack.

Some elements of business intelligence are:

Forrester distinguishes this from the business-intelligence market, which is "just the top layers of the BI architectural stack, such as reporting, analytics, and dashboards."12

Compared with competitive intelligence

Though the term business intelligence is sometimes a synonym for competitive intelligence (because they both support decision making), BI uses technologies, processes, and applications to analyze mostly internal, structured data and business processes while competitive intelligence gathers, analyzes, and disseminates information with a topical focus on company competitors. If understood broadly, competitive intelligence can be considered as a subset of business intelligence.13

Compared with business analytics

Business intelligence and business analytics are sometimes used interchangeably, but there are alternate definitions.14 Thomas Davenport, professor of information technology and management at Babson College argues that business intelligence should be divided into querying, reporting, Online analytical processing (OLAP), an "alerts" tool, and business analytics. In this definition, business analytics is the subset of BI focusing on statistics, prediction, and optimization, rather than the reporting functionality.15

Unstructured data

Business operations can generate a very large amount of data in the form of e-mails, memos, notes from call-centers, news, user groups, chats, reports, web-pages, presentations, image-files, video-files, and marketing material. According to Merrill Lynch, more than 85% of all business information exists in these forms; a company might only use such a document a single time.16 Because of the way it is produced and stored, this information is either unstructured or semi-structured.

The management of semi-structured data is an unsolved problem in the information technology industry.17 According to projections from Gartner (2003), white-collar workers spend 30–40% of their time searching, finding, and assessing unstructured data. BI uses both structured and unstructured data. The former is easy to search, and the latter contains a large quantity of the information needed for analysis and decision-making.1819 Because of the difficulty of properly searching, finding, and assessing unstructured or semi-structured data, organizations may not draw upon these vast reservoirs of information, which could influence a particular decision, task, or project. This can ultimately lead to poorly informed decision-making.20

Therefore, when designing a business intelligence/DW-solution, the specific problems associated with semi-structured and unstructured data must be accommodated for as well as those for the structured data.

Limitations of semi-structured and unstructured data

There are several challenges to developing BI with semi-structured data. According to Inmon & Nesavich,21 some of those are:

  • Physically accessing unstructured textual data – unstructured data is stored in a huge variety of formats.
  • Terminology – Among researchers and analysts, there is a need to develop standardized terminology.
  • Volume of data – As stated earlier, up to 85% of all data exists as semi-structured data. Couple that with the need for word-to-word and semantic analysis.
  • Searchability of unstructured textual data – A simple search on some data, e.g. apple, results in links where there is a reference to that precise search term. (Inmon & Nesavich, 2008)22 gives an example: "a search is made on the term felony. In a simple search, the term felony is used, and everywhere there is a reference to felony, a hit to an unstructured document is made. But a simple search is crude. It does not find references to crime, arson, murder, embezzlement, vehicular homicide, and such, even though these crimes are types of felonies".

Metadata

To solve problems with searchability and assessment of data, it is necessary to know something about the content. This can be done by adding context through the use of metadata.23[needs independent confirmation] Many systems already capture some metadata (e.g. filename, author, size, etc.), but more useful would be metadata about the actual content – e.g. summaries, topics, people, or companies mentioned. Two technologies designed for generating metadata about content are automatic categorization and information extraction.

Generative AI

Generative business intelligence is the application of generative AI techniques, such as large language models, in business intelligence. This combination facilitates data analysis and enables users to interact with data more intuitively, generating actionable insights through natural language queries. Microsoft Copilot was for example integrated into the business analytics tool Power BI.24

Applications

Business intelligence can be applied to the following business purposes:

Roles

Some common technical roles for business intelligence developers are:30

Risk

In a 2013 report, Gartner categorized business intelligence vendors as either an independent "pure-play" vendor or a consolidated "mega-vendor".31[non-primary source needed] In 2019, the BI market was shaken within Europe for the new legislation of GDPR (General Data Protection Regulation) which puts the responsibility of data collection and storage onto the data user with strict laws in place to make sure the data is compliant. Growth within Europe has steadily increased since May 2019 when GDPR was brought. The legislation refocused companies to look at their own data from a compliance perspective but also revealed future opportunities using personalization and external BI providers to increase market share.32[permanent dead link‍]

See also

Bibliography

  • Kimball, Ralph; et al. (1998). The Data warehouse Lifecycle Toolkit" (2nd ed.). John Wiley & Sons Inc. ISBN 0-470-47957-4.
  • Rausch, Peter; Sheta, Alaa; Ayesh, Aladdin (2013). Business Intelligence and Performance Management: Theory, Systems, and Industrial Applications. Springer Verlag U.K. ISBN 978-1-4471-4865-4..
  • Munoz, J.M. (2017). Global Business Intelligence. Routledge : UK. ISBN 978-1-1382-03686.
  • Chaudhuri, Surajit; Dayal, Umeshwar; Narasayya, Vivek (August 2011). "An Overview of Business Intelligence Technology". Communications of the ACM. 54 (8): 88–98. doi:10.1145/1978542.1978562. S2CID 13843514.
Wikimedia Commons has media related to Business intelligence.

References

  1. Dedić N. & Stanier noC. (2016). "Measuring the Success of Changes to Existing Business Intelligence Solutions to Improve Business Intelligence Reporting" (PDF). Measuring the Success of Changes to Existing Business Intelligence Solutions to Improve Business Intelligence Reporting. Lecture Notes in Business Information Processing. Vol. 268. Springer International Publishing. pp. 225–236. doi:10.1007/978-3-319-49944-4_17. ISBN 978-3-319-49943-7. S2CID 30910248. 978-3-319-49943-7

  2. (Rud, Olivia (2009). Business Intelligence Success Factors: Tools for Aligning Your Business in the Global Economy. Hoboken, N.J.: Wiley & Sons. ISBN 978-0-470-39240-9.) 978-0-470-39240-9

  3. Coker, Frank (2014). Pulse: Understanding the Vital Signs of Your Business. Ambient Light Publishing. pp. 41–42. ISBN 978-0-9893086-0-1. 978-0-9893086-0-1

  4. Chugh, R. & Grandhi, S. (2013,). "Why Business Intelligence? Significance of Business Intelligence tools and integrating BI governance with corporate governance". International Journal of E-Entrepreneurship and Innovation', vol. 4, no.2, pp. 1–14. https://www.researchgate.net/publication/273861123_Why_Business_Intelligence_Significance_of_Business_Intelligence_Tools_and_Integrating_BI_Governance_with_Corporate_Governance

  5. Golden, Bernard (2013). Amazon Web Services For Dummies. John Wiley & Sons. p. 234. ISBN 9781118652268. Retrieved 6 July 2014. [...] traditional business intelligence or data warehousing tools (the terms are used so interchangeably that they're often referred to as BI/DW) are extremely expensive [...] 9781118652268

  6. Miller Devens, Richard (1865). Cyclopaedia of Commercial and Business Anecdotes; Comprising Interesting Reminiscences and Facts, Remarkable Traits and Humors of Merchants, Traders, Bankers Etc. in All Ages and Countries. D. Appleton and company. p. 210. Retrieved 15 February 2014. business intelligence. https://archive.org/details/cyclopaediacomm00devegoog

  7. Luhn, H. P. (1958). "A Business Intelligence System" (PDF). IBM Journal of Research and Development. 2 (4): 314–319. doi:10.1147/rd.24.0314. Archived from the original (PDF) on 13 September 2008. /wiki/Hans_Peter_Luhn

  8. D. J. Power (10 March 2007). "A Brief History of Decision Support Systems, version 4.0". DSSResources.COM. Retrieved 10 July 2008. http://dssresources.com/history/dsshistory.html

  9. Power, D. J. "A Brief History of Decision Support Systems". Retrieved 1 November 2010. http://dssresources.com/history/dsshistory.html

  10. Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Heidelberg (21 November 2008). Topic Overview: Business Intelligence. doi:10.1007/978-3-540-48716-6. ISBN 978-3-540-48715-9. 978-3-540-48715-9

  11. Evelson, Boris (21 November 2008). "Topic Overview: Business Intelligence". https://www.forrester.com/report/Topic+Overview+Business+Intelligence/-/E-RES39218

  12. Evelson, Boris (29 April 2010). "Want to know what Forrester's lead data analysts are thinking about BI and the data domain?". Archived from the original on 6 August 2016. Retrieved 4 November 2010. https://web.archive.org/web/20160806102752/http://blogs.forrester.com/boris_evelson/10-04-29-want_know_what_forresters_lead_data_analysts_are_thinking_about_bi_and_data_domain

  13. Kobielus, James (30 April 2010). "What's Not BI? Oh, Don't Get Me Started... Oops Too Late... Here Goes..." Archived from the original on 7 May 2010. Retrieved 4 November 2010. "Business" intelligence is a non-domain-specific catchall for all the types of analytic data that can be delivered to users in reports, dashboards, and the like. When you specify the subject domain for this intelligence, then you can refer to "competitive intelligence", "market intelligence", "social intelligence", "financial intelligence", "HR intelligence", "supply chain intelligence", and the like. https://web.archive.org/web/20100507103207/http://blogs.forrester.com/james_kobielus/10-04-30-what%E2%80%99s_not_bi_oh_don%E2%80%99t_get_me_startedoops_too_latehere_goes

  14. "Business Analytics vs Business Intelligence?". timoelliott.com. 9 March 2011. Retrieved 15 June 2014. http://timoelliott.com/blog/2011/03/business-analytics-vs-business-intelligence.html

  15. Henschen, Doug (4 January 2010). "Analytics at Work: Q&A with Tom Davenport" (Interview). Archived from the original on 3 April 2012. Retrieved 26 September 2011. https://web.archive.org/web/20120403080949/http://www.informationweek.com/news/software/bi/222200096

  16. Rao, R. (2003). "From unstructured data to actionable intelligence" (PDF). IT Professional. 5 (6): 29–35. doi:10.1109/MITP.2003.1254966. http://www.ramanarao.com/papers/rao-itpro-2003-11.pdf

  17. Blumberg, R. & S. Atre (2003). "The Problem with Unstructured Data" (PDF). DM Review: 42–46. Archived from the original (PDF) on 25 January 2011. https://web.archive.org/web/20110125033210/http://soquelgroup.com/Articles/dmreview_0203_problem.pdf

  18. Blumberg, R. & S. Atre (2003). "The Problem with Unstructured Data" (PDF). DM Review: 42–46. Archived from the original (PDF) on 25 January 2011. https://web.archive.org/web/20110125033210/http://soquelgroup.com/Articles/dmreview_0203_problem.pdf

  19. Negash, S (2004). "Business Intelligence". Communications of the Association for Information Systems. 13: 177–195. doi:10.17705/1CAIS.01315. https://doi.org/10.17705%2F1CAIS.01315

  20. Rao, R. (2003). "From unstructured data to actionable intelligence" (PDF). IT Professional. 5 (6): 29–35. doi:10.1109/MITP.2003.1254966. http://www.ramanarao.com/papers/rao-itpro-2003-11.pdf

  21. Inmon, B. & A. Nesavich, "Unstructured Textual Data in the Organization" from "Managing Unstructured data in the organization", Prentice Hall 2008, pp. 1–13

  22. Inmon, B. & A. Nesavich, "Unstructured Textual Data in the Organization" from "Managing Unstructured data in the organization", Prentice Hall 2008, pp. 1–13

  23. Rao, R. (2003). "From unstructured data to actionable intelligence" (PDF). IT Professional. 5 (6): 29–35. doi:10.1109/MITP.2003.1254966. http://www.ramanarao.com/papers/rao-itpro-2003-11.pdf

  24. Novet, Jordan (23 May 2023). "Microsoft is bringing an A.I. chatbot to data analysis". CNBC. Retrieved 19 August 2024. https://www.cnbc.com/2023/05/23/microsoft-launches-fabric-including-copilot-for-power-bi.html

  25. Feldman, D.; Himmelstein, J. (2013). Developing Business Intelligence Apps for SharePoint. O'Reilly Media, Inc. pp. 140–1. ISBN 9781449324681. Retrieved 8 May 2018. 9781449324681

  26. Moro, Sérgio; Cortez, Paulo; Rita, Paulo (February 2015). "Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation". Expert Systems with Applications. 42 (3): 1314–1324. doi:10.1016/j.eswa.2014.09.024. hdl:10071/8522. S2CID 15595226. /wiki/Doi_(identifier)

  27. Feldman, D.; Himmelstein, J. (2013). Developing Business Intelligence Apps for SharePoint. O'Reilly Media, Inc. pp. 140–1. ISBN 9781449324681. Retrieved 8 May 2018. 9781449324681

  28. Feldman, D.; Himmelstein, J. (2013). Developing Business Intelligence Apps for SharePoint. O'Reilly Media, Inc. pp. 140–1. ISBN 9781449324681. Retrieved 8 May 2018. 9781449324681

  29. Feldman, D.; Himmelstein, J. (2013). Developing Business Intelligence Apps for SharePoint. O'Reilly Media, Inc. pp. 140–1. ISBN 9781449324681. Retrieved 8 May 2018. 9781449324681

  30. Roles in data - Learn | Microsoft Docs https://docs.microsoft.com/en-us/learn/modules/data-analytics-microsoft/3-roles

  31. Andrew Brust (14 February 2013). "Gartner releases 2013 BI Magic Quadrant". ZDNet. Retrieved 21 August 2013. https://www.zdnet.com/article/gartner-releases-2013-bi-magic-quadrant/

  32. SaaS BI growth will soar in 2010 | Cloud Computing. InfoWorld (1 February 2010). Retrieved 17 January 2012. http://infoworld.com/d/cloud-computing/saas-bi-growth-will-soar-in-2010-511