Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Chalcolithic
Prehistoric period, Copper Age

The Chalcolithic or Copper Age, following the Neolithic and preceding the Bronze Age, marks a transitional archaeological period characterized by the early use of smelted copper alongside stone tools. Notably, the site at Rudnik mountain in Serbia provides the oldest evidence of copper smelting dating to around 5,000 BC. The period encompasses early cold working techniques and varied regional chronologies, such as Europe’s transition to the Bronze Age between the late 5th and 3rd millennia BC. Recent research in Antiquity highlights early tin bronze use in Europe, predating the Near East. In Britain, the Chalcolithic featured new ceramic styles and the arrival of Beaker culture around 2,500 BC.

We don't have any images related to Chalcolithic yet.
We don't have any YouTube videos related to Chalcolithic yet.
We don't have any PDF documents related to Chalcolithic yet.
We don't have any Books related to Chalcolithic yet.
We don't have any archived web articles related to Chalcolithic yet.

Terminology

See also: List of archaeological periods

The multiple names result from multiple definitions of the period. Originally, the term Bronze Age meant that either copper or bronze was being used as the chief hard substance for the manufacture of tools and weapons. Ancient writers, who provided the essential cultural references for educated people during the 19th century, used the same name for both copper- and bronze-using ages.9

The concept of the Copper Age was put forward by Hungarian scientist Ferenc Pulszky in the 1870s, when, on the basis of the significant number of large copper objects unearthed within the Carpathian Basin, he suggested that the previous threefold division of the Prehistoric Age – the Stone, Bronze and Iron Ages – should be further divided with the introduction of the Copper Age.

In 1881, John Evans recognized that use of copper often preceded the use of bronze, and distinguished between a transitional Copper Age and the Bronze Age proper. He did not include the transitional period in the Bronze Age, but described it separately from the customary stone / bronze / iron system, at the Bronze Age's beginning. He did not, however, present it as a fourth age but chose to retain the tripartite system.10

In 1884, Gaetano Chierici, perhaps following the lead of Evans, renamed it in Italian as the eneo-litica, or "bronze–stone" transition. The phrase was never intended to mean that the period was the only one in which both bronze and stone were used. The Copper Age features the use of copper, excluding bronze; moreover, stone continued to be used throughout both the Bronze Age and the Iron Age. The part -litica simply names the Stone Age as the point from which the transition began and is not another -lithic age.11

Subsequently, British scholars used either Evans's "Copper Age" or the term "Eneolithic" (or Æneolithic), a translation of Chierici's eneo-litica. After several years, a number of complaints appeared in the literature that "Eneolithic" seemed to the untrained eye to be produced from e-neolithic, "outside the Neolithic", clearly not a definitive characterization of the Copper Age. Around 1900, many writers began to substitute Chalcolithic for Eneolithic, to avoid the false segmentation. The term chalcolithic is a combination of two words- Chalco+Lithic, derived from the Greek words "khalkos" meaning "copper", and "líthos" meaning "stone".

But "chalcolithic" could also mislead: For readers unfamiliar with the Italian language, chalcolithic seemed to suggest another -lithic age, paradoxically part of the Stone Age despite the use of copper. Today, Copper Age, Eneolithic, and Chalcolithic are used synonymously12 to mean Evans's original definition of Copper Age.

Regions

Near East

See also: Ancient Near East § Chalcolithic, 6th millennium BC, 5th millennium BC, and 4th millennium BC

The emergence of metallurgy may have occurred first in the Fertile Crescent.

Lead may have been the first ore that humans smelted, since it can be easily obtained by heating galena.13

Possible early examples of lead smelting, supported by the extreme rarity of native lead,14 include: lead beads, found on Level IX of Chatal/Çatal Hüyük in central Anatolia, though they might be made of galena, cerussite, or metallic lead, and accordingly might or might not be evidence of early smelting;1516 a lead bead, found in a GK59 group test square in the 4th level of Jarmo, dated to the 7th millennium BCE, though it is small enough that its human usage is doubtful;17 a lead bracelet, found in level XII of Yarim Tepe I, dated to the 6th millennium BC;1819 a small cone-shaped piece of lead, found in the "Burnt House" in TT6 at Arpachiyah, dated to the Halaf period or slightly later than the Yarim Tepe bracelet;20 and more.21

Copper smelting is also documented at this site at about the same time period (soon after 6000 BC). However, the use of lead seems to precede copper smelting.22 Early metallurgy is also documented at the nearby site of Tell Maghzaliyah, which seems to be dated even earlier, and completely lacks pottery.

The Timna Valley contains evidence of copper mining in 7000–5000 BC. The process of transition from Neolithic to Chalcolithic in the Middle East is characterized in archaeological stone tool assemblages by a decline in high quality raw material procurement and use. This dramatic shift is seen throughout the region, including the Tehran Plain, Iran. Here, analysis of six archaeological sites determined a marked downward trend in not only material quality, but also in aesthetic variation in the lithic artefacts. Fazeli & Coningham23 use these results as evidence of the loss of craft specialisation caused by increased use of copper tools.24

The Tehran Plain findings illustrate the effects of the introduction of copper working technologies on the in-place systems of lithic craft specialists and raw materials. Networks of exchange and specialized processing and production that had evolved during the Neolithic seem to have collapsed by the Middle Chalcolithic (c. 4500–3500 BC) and been replaced by the use of local materials by a primarily household-based production of stone tools.25

Arsenical copper or bronze was produced in eastern Turkey (Malatya Province) at two ancient sites, Norşuntepe and Değirmentepe, around 4200 BC. According to Boscher (2016), hearths or natural draft furnaces, slag, ore, and pigment had been recovered throughout these sites. This was in the context of Ubaid period architectural complexes typical of southern Mesopotamian architecture. Norşuntepe site demonstrates that some form of arsenic alloying was indeed taking place by the 4th millennium BC. Since the slag identified at Norşuntepe contains no arsenic, this means that arsenic in some form was added separately.26

Europe

Main articles: Chalcolithic Europe and Metallurgy during the Copper Age in Europe

A copper axe found at Prokuplje, Serbia contains the oldest securely dated evidence of copper-making, c. 5500 BC (7,500 years ago).27 The find in June 2010 extends the known record of copper smelting by about 800 years, and suggests that copper smelting may have been invented in separate parts of Asia and Europe at that time rather than spreading from a single source.28

In Britain and central and northern Europe a Chalcolithic period has never been defined. However, copper artefacts have been found in archaeological groups.29 Copper artefacts found in northern Germany and Denmark date from between 4000 and 3300 BC, with most finds dating from 3500 - 3300 BC. They belong to the Funnel Beaker group. The copper was mined in Serbian mines, as researchers from Kiel have recently discovered.30

Knowledge of the use of copper was far more widespread than the metal itself. Many European archaeological Cultures used stone axes modeled on copper axes, even with moulding carved in the stone, such as the Battle Axe culture31 or the late Funnel Beaker Culture.32 Ötzi the Iceman, who was found in the Ötztal Alps in 1991 and whose remains have been dated to about 3300 BC, was found with a Mondsee copper axe.

Examples of Chalcolithic cultures in Europe include Vila Nova de São Pedro and Los Millares on the Iberian Peninsula.33 Pottery of the Beaker people has been found at both sites, dating to several centuries after copper-working began there. The Beaker culture appears to have spread copper and bronze technologies in Europe, along with Indo-European languages.34 In Britain, copper was used between the 25th and 22nd centuries BC, but some archaeologists do not recognise a British Chalcolithic because production and use was on a small scale.35

South Asia

Ceramic similarities between the Indus Valley Civilisation, southern Turkmenistan, and northern Iran during 4300–3300 BC of the Chalcolithic period suggest considerable mobility and trade.36

The term "Chalcolithic" has also been used in the context of the South Asian Stone Age.37

In Bhirrana, the earliest Indus civilization site, copper bangles and arrowheads were found. The inhabitants of Mehrgarh in present-day Pakistan fashioned tools with local copper ore between 7000 and 3300 BC.38

The Nausharo site was a pottery workshop in province of Balochistan, Pakistan, that dates to 4,500 years ago; 12 blades and blade fragments were excavated there. These blades are 12–18 cm (5–7 in) long, 1.2–2.0 cm (0.5–0.8 in) wide, and relatively thin. Archaeological experiments show that these blades were made with a copper indenter and functioned as a potter's tool to trim and shape unfired pottery. Petrographic analysis indicates local pottery manufacturing, but also reveals the existence of a few exotic black-slipped pottery items from the Indus Valley.39

In India, Chalcolithic culture flourished in mainly four farming communities – Ahar or Banas, Kayatha, Malwa, and Jorwe. These communities had some common traits like painted pottery and use of copper, but they had a distinct ceramic design tradition. Banas culture (2000–1600 BC) had ceramics with red, white, and black design. Kayatha culture (2450–1700 BC) had ceramics painted with brown colored design. Malwa culture (1900–1400 BC) had profusely decorated pottery with red or black colored design. Jorwe culture (1500–900 BC) had ceramics with matte surface and black-on-red design.4041

Pandu Rajar Dhibi (2000–1600 BC) is a Chalcolithic site in the eastern part of the Indian subcontinent. It is located on the south bank of Ajay River in West Bengal. Blackware, painted Koshi ware, pottery, various ornaments made of pearl and copper, various types of tools, pieces of fabric woven from Shimul cotton thread, human and various animal skeletons, burnt clay fragments have been found at the site.42

In March 2018, archaeologists had discovered three carts and copper artifacts including weapons dating to 1800 BC in Sanauli village of Uttar Pradesh. The artifacts belongs to Ochre Coloured Pottery culture.43

Pre-Columbian Americas

Main articles: Metallurgy in pre-Columbian Mesoamerica and Metallurgy in pre-Columbian America

In the Archaeology of the Americas, a five-period system is conventionally used which does not include metal ages, though metalworking technology did precede European contact in some areas.

Andean civilizations in South America appear to have independently invented copper smelting.44

The term "Chalcolithic" is also applied to American civilizations that already used copper and copper alloys thousands of years before Europeans immigrated. Besides cultures in the Andes and Mesoamerica, the Old Copper complex mined and fabricated copper as tools, weapons, and personal ornaments in an area centered in the upper Great Lakes region (present-day Michigan and Wisconsin).45

The evidence of smelting or alloying that has been found in North America is subject to some dispute and a common assumption by archaeologists is that objects were cold-worked into shape. Artifacts from some of these sites have been dated to 6500–1000 BC, making them some of the oldest Chalcolithic sites in the world.46 Some archaeologists find artifactual and structural evidence of casting by Hopewellian and Mississippian peoples to be demonstrated in the archaeological record.47

East Asia

Main article: History of metallurgy in China § Copper

In the 5th millennium BC copper artifacts start to appear in East Asia, such as in the Jiangzhai and Hongshan cultures, but those metal artifacts were not widely used during this early stage.48

Copper manufacturing gradually appeared in the Yangshao period (5000–3000 BC). Jiangzhai is the only site where copper artifacts were found in the Banpo culture. Archaeologists have found remains of copper metallurgy in various cultures from the late fourth to the early third millennia BC. These include the copper-smelting remains and copper artifacts of the Hongshan culture (4700–2900) and copper slag at the Yuanwozhen site. This indicates that inhabitants of the Yellow River valley had already learned how to make copper artifacts by the later Yangshao period.49

Sub-Saharan Africa

Main articles: Copper metallurgy in Africa and Iron metallurgy in Africa

In the region of the Aïr Mountains, Niger, independent copper smelting developed between 3000 and 2500 BC. The process was not in a developed state, indicating smelting was not foreign. It became mature about 1500 BC.50

See also

Notes

Bibliography

  • Parpola, Asko (2005). "Study of the Indus script" (PDF). Transactions. 50th International Conference of Eastern Studies. Tokyo, Japan: The Tôhô Gakkai. pp. 28–66. Archived (PDF) from the original on 21 June 2006.
  • Bogucki, Peter (2007). "Copper Age of Eastern Europe". The Atlas of World Archaeology. London, UK: Sandcastle Books. p. 66.
  • Evans, John (1897). The Ancient Stone Implements, Weapons and Ornaments of Great Britain. London, UK: Longmans, Green, and Company. p. 197.
  • Hogan, C. Michael (2007). Burnham, A. (ed.). "Los Silillos". The Megalithic Portal. Archived from the original on 1 October 2017. Retrieved 3 June 2008.
  • Miles, David (2016). The Tale of the Axe: How the Neolithic revolution transformed Britain. London, UK: Thames & Hudson. ISBN 978-0-500-05186-3.
  • Pleger, T.C. (2002). A brief introduction to the Old Copper Complex of the western Great Lakes: 4000-1000 BC. Twenty-seventh Annual Meeting of Forest History Association of Wisconsin. Oconto, WI: Forest History Association of Wisconsin.
  • Possehl, Gregory L. (1996). "Mehrgarh". In Fagan, Brian (ed.). Oxford Companion to Archaeology. Oxford, UK: Oxford University Press.
Wikimedia Commons has media related to Copper Age.

References

  1. Chalcolithic (English: /ˌkælkəˈlɪθɪk/; from Ancient Greek: χαλκός khalkós, "copper" and λίθος líthos, "stone"); Eneolithic, from Latin aeneus "of copper" /wiki/Help:IPA/English

  2. "Chalcolithic". British Museum. Retrieved 12 August 2023. https://www.britishmuseum.org/collection/term/x13740

  3. Pearsall, Judy (1998). "Chalcolithic". The New Oxford Dictionary of English. Clarendon Press. p. 301. ISBN 0-19-861263-X. 0-19-861263-X

  4. Pompeani, David P.; Steinman, Byron A.; Abbott, Mark B.; Pompeani, Katherine M.; Reardon, William; DePasqual, Seth; Mueller, Robin H. (April 2021). "On the Timing of the Old Copper Complex in North America: A Comparison of Radiocarbon Dates from Different Archaeological Contexts". Radiocarbon. 63 (2): 513–531. Bibcode:2021Radcb..63..513P. doi:10.1017/RDC.2021.7. ISSN 0033-8222. https://www.cambridge.org/core/journals/radiocarbon/article/abs/on-the-timing-of-the-old-copper-complex-in-north-america-a-comparison-of-radiocarbon-dates-from-different-archaeological-contexts/E46715993E58EDC94F225CC6FE776CF2

  5. Radivojević, Miljana; Rehren, Thilo; Pernicka, Ernst; Šljivar, Dušan; Brauns, Michael; Borić, Dušan (1 November 2010). "On the origins of extractive metallurgy: New evidence from Europe". Journal of Archaeological Science. 37 (11): 2775–2787. Bibcode:2010JArSc..37.2775R. doi:10.1016/j.jas.2010.06.012. ISSN 0305-4403. Archived from the original on 25 December 2015. Retrieved 6 September 2022. https://www.sciencedirect.com/science/article/pii/S0305440310001986

  6. Radivojević, Miljana; Rehren, Thilo; Kuzmanović-Cvetković, Julka; Jovanović, Marija; Northover, J. Peter (2015). "Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago" (PDF). Antiquity. 87 (338): 1030–1045. doi:10.1017/S0003598X0004984X. Archived (PDF) from the original on 19 November 2018. Retrieved 11 June 2019. http://discovery.ucl.ac.uk/1420706/1/S0003598X0004984Xa-1.pdf

  7. Radivojević, Miljana; Rehren, Thilo; Kuzmanović-Cvetković, Julka; Jovanović, Marija; Northover, J. Peter (2015). "Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago" (PDF). Antiquity. 87 (338): 1030–1045. doi:10.1017/S0003598X0004984X. Archived (PDF) from the original on 19 November 2018. Retrieved 11 June 2019. http://discovery.ucl.ac.uk/1420706/1/S0003598X0004984Xa-1.pdf

  8. "Chalcolithic". British Museum. Retrieved 12 August 2023. https://www.britishmuseum.org/collection/term/x13740

  9. Pearce, Mark (1 September 2019). "The 'Copper Age' – a history of the concept". Journal of World Prehistory. 32 (3): 229–250. doi:10.1007/s10963-019-09134-z. ISSN 1573-7802. https://doi.org/10.1007%2Fs10963-019-09134-z

  10. Pearce, Mark (1 September 2019). "The 'Copper Age' – a history of the concept". Journal of World Prehistory. 32 (3): 229–250. doi:10.1007/s10963-019-09134-z. ISSN 1573-7802. https://doi.org/10.1007%2Fs10963-019-09134-z

  11. Pearce, Mark (1 September 2019). "The 'Copper Age' – a history of the concept". Journal of World Prehistory. 32 (3): 229–250. doi:10.1007/s10963-019-09134-z. ISSN 1573-7802. https://doi.org/10.1007%2Fs10963-019-09134-z

  12. Middle Eastern archaeologists use "Chalcolithic" regularly, whereas the literature of European archaeology generally avoids the use of "Chalcolithic": The term "Copper Age" is preferred for Western Europe, "Eneolithic" for Eastern Europe. "Chalcolithic" is not generally used by British prehistorians, who disagree as to whether it is appropriate in the British context.[7]

  13. Moorey, Peter Roger Stuart (1994). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Oxford University Press. p. 294. ISBN 0-19-814921-2. LCCN 93-40752. OCLC 29255664. 0-19-814921-2

  14. Craddock, Paul T. (1995). Early Metal Mining and Production. Smithsonian Institution Press (USA) and Edinburgh University Press (GB). p. 125. ISBN 1-56098-535-6. LCCN 94-61412. OCLC 32769136. 1-56098-535-6

  15. Mellaart, James (1967). Çatal Hüyük: A Neolithic Town in Anatolia. New Aspects of Archaeology. New York: McGraw-Hill / Thames and Hudson. pp. 217–218. LCCN 67-14150. OCLC 306918. https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=67014150&searchType=1&permalink=y

  16. Craddock, Paul T. (1995). Early Metal Mining and Production. Smithsonian Institution Press (USA) and Edinburgh University Press (GB). p. 125. ISBN 1-56098-535-6. LCCN 94-61412. OCLC 32769136. 1-56098-535-6

  17. Braidwood, Linda S.; Braidwood, Robert J.; Howe, Bruce; Reed, Charles A.; Watson, Patty Jo, eds. (1983). Prehistoric Archeology Along the Zagros Flanks (PDF). Oriental Institute Publications. Vol. 105. Chicago, Illinois: The Oriental Institute of the University of Chicago. p. 542. ISBN 0-918986-36-2. ISSN 0069-3367. LCCN 81-85896 – via Institute for the Study of Ancient Cultures, University of Chicago. 0-918986-36-2

  18. Merpert, N. I.; Munchaev, R. M.; Bader, N. O. (1977). "The Investigations of Soviet Expedition in Iraq 1974". Sumer: A Journal of Archaeology & History in Arab World. XXXIII (1). Baghdad: The State Organization of Antiquities, Ministry of Culture and Arts: 84, 103. PL. XII

  19. Potts, Daniel T., ed. (15 August 2012). "Northern Mesopotamia". A Companion to the Archaeology of the Ancient Near East. Vol. 1. John Wiley & Sons. pp. 302–303. ISBN 978-1-4443-6077-6 – via Google Books. 978-1-4443-6077-6

  20. Potts, Daniel T., ed. (15 August 2012). "Northern Mesopotamia". A Companion to the Archaeology of the Ancient Near East. Vol. 1. John Wiley & Sons. pp. 302–303. ISBN 978-1-4443-6077-6 – via Google Books. 978-1-4443-6077-6

  21. Moorey, Peter Roger Stuart (1994). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Oxford University Press. p. 294. ISBN 0-19-814921-2. LCCN 93-40752. OCLC 29255664. 0-19-814921-2

  22. Potts, Daniel T., ed. (15 August 2012). "Northern Mesopotamia". A Companion to the Archaeology of the Ancient Near East. Vol. 1. John Wiley & Sons. pp. 302–303. ISBN 978-1-4443-6077-6 – via Google Books. 978-1-4443-6077-6

  23. Fazeli, H.; Donahue, R.E.; Coningham, R.A.E. (2002). "Stone tool production, distribution, and use during the Late Neolithic and Chalcolithic on the Tehran plain, Iran". Iran: Journal of the British Institute of Persian Studies. 40: 1–14. doi:10.2307/4300616. JSTOR 4300616. /wiki/Iran:_Journal_of_the_British_Institute_of_Persian_Studies

  24. Fazeli, H.; Donahue, R.E.; Coningham, R.A.E. (2002). "Stone tool production, distribution, and use during the Late Neolithic and Chalcolithic on the Tehran plain, Iran". Iran: Journal of the British Institute of Persian Studies. 40: 1–14. doi:10.2307/4300616. JSTOR 4300616. /wiki/Iran:_Journal_of_the_British_Institute_of_Persian_Studies

  25. Fazeli, H.; Donahue, R.E.; Coningham, R.A.E. (2002). "Stone tool production, distribution, and use during the Late Neolithic and Chalcolithic on the Tehran plain, Iran". Iran: Journal of the British Institute of Persian Studies. 40: 1–14. doi:10.2307/4300616. JSTOR 4300616. /wiki/Iran:_Journal_of_the_British_Institute_of_Persian_Studies

  26. Loïc C. Boscher (2016), Reconstructing the Arsenical Copper Production Process in Early Bronze Age Southwest Asia. Archived 14 May 2023 at the Wayback Machine Ph.D. Thesis. University College London. pp.75-77 https://core.ac.uk/download/pdf/79547378.pdf

  27. "Ancient axe find suggests Copper Age began earlier than believed". Thaindian News. ANI. 9 October 2008. Archived from the original on 14 October 2008. https://web.archive.org/web/20081014045213/http://www.thaindian.com/newsportal/india-news/ancient-axe-find-suggests-copper-age-began-earlier-than-believed_100105122.html

  28. Radivojević, Miljana; Rehren, Thilo; Pernicka, Ernst; Šljivar, Dušan; Brauns, Michael; Borić, Dušan (1 November 2010). "On the origins of extractive metallurgy: New evidence from Europe". Journal of Archaeological Science. 37 (11): 2775–2787. Bibcode:2010JArSc..37.2775R. doi:10.1016/j.jas.2010.06.012. ISSN 0305-4403. Archived from the original on 25 December 2015. Retrieved 6 September 2022. https://www.sciencedirect.com/science/article/pii/S0305440310001986

  29. Brozio, Jan Piet; Stos-Gale, Zofia; Müller, Johannes; Müller-Scheeßel, Nils; Schultrich, Sebastian; Fritsch, Barbara; Jürgens, Fritz; Skorna, Henry (10 May 2023). "The origin of Neolithic copper on the central Northern European plain and in Southern Scandinavia: Connectivities on a European scale". PLOS ONE. 18 (5): e0283007. Bibcode:2023PLoSO..1883007B. doi:10.1371/journal.pone.0283007. ISSN 1932-6203. PMC 10171686. PMID 37163484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171686

  30. Brozio, Jan Piet; Stos-Gale, Zofia; Müller, Johannes; Müller-Scheeßel, Nils; Schultrich, Sebastian; Fritsch, Barbara; Jürgens, Fritz; Skorna, Henry (10 May 2023). "The origin of Neolithic copper on the central Northern European plain and in Southern Scandinavia: Connectivities on a European scale". PLOS ONE. 18 (5): e0283007. Bibcode:2023PLoSO..1883007B. doi:10.1371/journal.pone.0283007. ISSN 1932-6203. PMC 10171686. PMID 37163484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171686

  31. Evans (1897). - Evans, John (1897). The Ancient Stone Implements, Weapons and Ornaments of Great Britain. London, UK: Longmans, Green, and Company. p. 197.

  32. Schultrich, Sebastian (2022). Kriegerideal und Netzwerke : Die Doppeläxte West- und Mitteleuropas im Kontext der jung- bis endneolithischen Kulturentwicklung [Warrior Images and Networks: The Double Axes of Western and Central Europe in the Context of the Younger to the Final Neolithic Cultural Development.] (in German). Kiel: MACAU. https://macau.uni-kiel.de/receive/macau_mods_00002793?lang=de

  33. Hogan (2007). - Hogan, C. Michael (2007). Burnham, A. (ed.). "Los Silillos". The Megalithic Portal. Archived from the original on 1 October 2017. Retrieved 3 June 2008. http://www.megalithic.co.uk/article.php?sid=17974

  34. Anthony, D.W. (2007). The Horse, the Wheel and Language: How Bronze-Age riders from the Eurasian steppes shaped the modern world. Princeton University Press. ISBN 978-0-691-14818-2. 978-0-691-14818-2

  35. Miles (2016), pp. 363, 423, note 15. - Miles, David (2016). The Tale of the Axe: How the Neolithic revolution transformed Britain. London, UK: Thames & Hudson. ISBN 978-0-500-05186-3.

  36. Parpola (2005). - Parpola, Asko (2005). "Study of the Indus script" (PDF). Transactions. 50th International Conference of Eastern Studies. Tokyo, Japan: The Tôhô Gakkai. pp. 28–66. Archived (PDF) from the original on 21 June 2006. http://www.helsinki.fi/~aparpola/tices_50.pdf

  37. Shinde, Vasant; Deshpande, Shweta Sinha (2015). "Crafts and technologies of the Chalcolithic people of South Asia: An overview". Indian Journal of History of Science. 50 (1): 42–54. doi:10.16943/ijhs/2015/v50i1/48111. https://doi.org/10.16943%2Fijhs%2F2015%2Fv50i1%2F48111

  38. Possehl (1996). - Possehl, Gregory L. (1996). "Mehrgarh". In Fagan, Brian (ed.). Oxford Companion to Archaeology. Oxford, UK: Oxford University Press.

  39. Méry, S.; Anderson, P.; Inizan, M.L.; Lechavallier, M.; Pelegrin, J. (2007). "A pottery workshop with flint tools on blades knapped with copper at Nausharo (Indus civilisation ca. 2500 BC)". Journal of Archaeological Science. 34 (7): 1098–1116. doi:10.1016/j.jas.2006.10.002. /wiki/Doi_(identifier)

  40. Singh, Vipul (2008) [2006]. The Pearson Indian History Manual for the UPSC Civil Services Preliminary Examination (2nd ed.). New Delhi, IN: Pearson Education India. ISBN 978-81-317-1753-0. 978-81-317-1753-0

  41. Peregrine, Peter N.; Ember, Melvin (31 March 2003). Encyclopedia of Prehistory. Vol. 8: South and Southwest Asia. Springer Science & Business Media. ISBN 978-0-306-46262-7. 978-0-306-46262-7

  42. "The Excavations at Pandu Rajar Dhibi". indianculture.gov.in. Retrieved 3 July 2023. https://indianculture.gov.in/flipbook/27898

  43. Parpola, Asko (2020). "Royal "chariot" burials of Sanauli near Delhi and archaeological correlates of prehistoric Indo-Iranian languages". Studia Orientalia Electronica. 8: 176. doi:10.23993/store.98032. https://doi.org/10.23993%2Fstore.98032

  44. Cooke, Colin A.; Abbott, Mark B.; Wolfe, Alexander P.; Kittleson, John L. (1 May 2007). "A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes". Environmental Science & Technology. 41 (10): 3469–3474. Bibcode:2007EnST...41.3469C. doi:10.1021/es062930+. ISSN 0013-936X. PMID 17547165. https://doi.org/10.1021%2Fes062930%2B

  45. Birmingham, R.A.; Eisenberg, L.E. (2000). Indian Mounds of Wisconsin. Madison, WI: University of Wisconsin Press. pp. 75–77.

  46. Pompeani, David P.; Steinman, Byron A.; Abbott, Mark B.; Pompeani, Katherine M.; Reardon, William; DePasqual, Seth; Mueller, Robin H. (April 2021). "On the Timing of the Old Copper Complex in North America: A Comparison of Radiocarbon Dates from Different Archaeological Contexts". Radiocarbon. 63 (2): 513–531. Bibcode:2021Radcb..63..513P. doi:10.1017/RDC.2021.7. ISSN 0033-8222. S2CID 233029733. Archived from the original on 11 February 2023. Retrieved 11 February 2023. https://www.cambridge.org/core/journals/radiocarbon/article/abs/on-the-timing-of-the-old-copper-complex-in-north-america-a-comparison-of-radiocarbon-dates-from-different-archaeological-contexts/E46715993E58EDC94F225CC6FE776CF2

  47. Neiburger, E.J. (1987). "Did Midwest pre-Columbia[n] Indians cast metal? A new look". Central States Archaeological Journal. 34 (2): 60–74.

  48. Peterson, Christian E.; Shelach, Gideon (September 2012). "Jiangzhai: Social and economic organization of a Middle Neolithic Chinese village". Journal of Anthropological Archaeology. 31 (3): 241–422. doi:10.1016/j.jaa.2012.01.007. /wiki/Gideon_Shelach-Lavi

  49. Chang, Kwang-Chih; Xu, Pingfang; Lu, Liancheng (2005). The Formation of Chinese Civilization: An archaeological perspective. Yale University Press. p. 66.

  50. Ehret, Christopher (2002). The Civilizations of Africa. Charlottesville, VA: University of Virginia. pp. 136, 137. ISBN 0-8139-2085-X. 0-8139-2085-X