Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Coherence scanning interferometry

Coherence scanning interferometry (CSI) is any of a class of optical surface measurement methods wherein the localization of interference fringes during a scan of optical path length provides a means to determine surface characteristics such as topography, transparent film structure, and optical properties. CSI is currently the most common interference microscopy technique for areal surface topography measurement. The term "CSI" was adopted by the International Organization for Standardization (ISO).

The technique encompasses but is not limited to instruments that use spectrally broadband, visible sources (white light) to achieve interference fringe localization. CSI uses either fringe localization alone or in combination with interference fringe phase, depending on the surface type, desired surface topography repeatability and software capabilities. The table below compiles alternative terms that conform at least in part to the above definition.

AcronymTermReference
CSICoherence scanning interferometry
CPMCoherence probe microscope
CSMCoherence scanning microscope
CRCoherence radar
CCICoherence correlation interferometry
MCMMirau correlation microscope
WLIWhite light interferometry
WLSIWhite light scanning interferometry
SWLIScanning white light interferometry
WLSWhite Light Scanner
WLPSIWhite light phase shifting interferometry
VSIVertical scanning interferometry
RSPRough surface profiler
IRSInfrared scanning
OCTFull-field optical coherence tomography
Related Image Collections Add Image
We don't have any YouTube videos related to Coherence scanning interferometry yet.
We don't have any PDF documents related to Coherence scanning interferometry yet.
We don't have any Books related to Coherence scanning interferometry yet.
We don't have any archived web articles related to Coherence scanning interferometry yet.

Applications of Coherence Scanning Interferometry

Coherence Scanning Interferometry (CSI), also known as White Light Interferometry, is an optical metrology technique used for measuring surface topography in three dimensions with sub-nanometer vertical resolution. It is widely employed in both research and industrial settings due to its non-contact operation and high precision.

The capability to perform rapid 3D measurements is essential in many applications, either because the sample may change over time or due to the need to reduce inspection time and costs in industrial environments. Key application areas include:

Additive Manufacturing

In metal additive manufacturing (AM), the process involves a complex set of parameters that are difficult to control precisely. Surface texture analysis can reveal characteristic features linked to specific processing conditions. CSI enables fast and accurate topographic measurement of metal AM parts, even on surfaces with low reflectance or steep slopes beyond the numerical aperture of the objective. This makes CSI a valuable tool for process development, defect detection, and quality assurance in AM workflows.17

Surface Topography Measurement

CSI is widely used to measure the 3D shape of both smooth and rough surfaces. This is critical for quality control and process optimization across multiple industries, including aerospace, automotive, and biomedical manufacturing.

Optical Metrology

CSI is essential for the characterization of optical components such as lenses and mirrors. It allows precise measurement of surface form, flatness, and radius of curvature, contributing to the performance and reliability of optical systems.

Thin Film Characterization

CSI can also be used to measure the thickness and surface profile of thin films, including buried layers. This application is particularly important in the semiconductor, optics, and advanced coatings industries, where film uniformity and layer definition are critical.18

19

20

References

References

  1. de Groot, P (2015). "Principles of interference microscopy for the measurement of surface topography". Advances in Optics and Photonics. 7 (1): 1–65. Bibcode:2015AdOP....7....1D. doi:10.1364/AOP.7.000001. /wiki/Bibcode_(identifier)

  2. ISO (2013). 25178-604:2013(E): Geometrical product specification (GPS) – Surface texture: Areal – Nominal characteristics of non-contact (coherence scanning interferometric microscopy) instruments (2013(E) ed.). Geneva: International Organization for Standardization. /wiki/ISO_25178

  3. Windecker, R.; Haible, P.; Tiziani, H. J. (1995). "Fast Coherence Scanning Interferometry for Measuring Smooth, Rough and Spherical Surfaces". Journal of Modern Optics. 42 (10): 2059–2069. Bibcode:1995JMOp...42.2059W. doi:10.1080/09500349514551791. /wiki/Bibcode_(identifier)

  4. Davidson, M.; Kaufman, K.; Mazor, I. (1987). "The Coherence Probe Microscope". Solid State Technology. 30 (9): 57–59.

  5. Lee, B. S.; Strand, T. C. (1990). "Profilometry with a coherence scanning microscope". Appl Opt. 29 (26): 3784–3788. Bibcode:1990ApOpt..29.3784L. doi:10.1364/ao.29.003784. PMID 20567484. /wiki/Bibcode_(identifier)

  6. Dresel, T.; Häusler, G.; Venzke, H. (1992). "Three-dimensional sensing of rough surfaces by coherence radar". Applied Optics. 31 (7): 919–925. Bibcode:1992ApOpt..31..919D. doi:10.1364/ao.31.000919. PMID 20720701. /wiki/Bibcode_(identifier)

  7. Lee-Bennett, I. (2004). Advances in non-contacting surface metrology. Optical Fabrication and Testing, OTuC1.

  8. Kino, G. S.; Chim, S. S. C. (1990). "Mirau correlation microscope". Applied Optics. 29 (26): 3775–83. Bibcode:1990ApOpt..29.3775K. doi:10.1364/ao.29.003775. PMID 20567483. /wiki/Bibcode_(identifier)

  9. Larkin, K. G. (1996). "Efficient nonlinear algorithm for envelope detection in white light interferometry". Journal of the Optical Society of America A. 13 (4): 832. Bibcode:1996JOSAA..13..832L. CiteSeerX 10.1.1.190.4728. doi:10.1364/josaa.13.000832. /wiki/Bibcode_(identifier)

  10. Wyant, J. C. (September, 1993). How to extend interferometry for rough-surface tests. Laser Focus World, 131-135.

  11. Deck, L.; de Groot, P. (1994). "High-speed noncontact profiler based on scanning white-light interferometry". Applied Optics. 33 (31): 7334–7338. Bibcode:1994ApOpt..33.7334D. doi:10.1364/ao.33.007334. PMID 20941290. /wiki/Bibcode_(identifier)

  12. Schmit, J.; Olszak, A. G. (2002). Creath, Katherine; Schmit, Joanna (eds.). "Challenges in white-light phase-shifting interferometry". Proc. SPIE. Interferometry XI: Techniques and Analysis. 4777: 118–127. Bibcode:2002SPIE.4777..118S. doi:10.1117/12.472211. S2CID 128892213. /wiki/Bibcode_(identifier)

  13. Harasaki, A.; Schmit, J.; Wyant, J. C. (2000). "Improved vertical-scanning interferometry". Applied Optics. 39 (13): 2107–2115. Bibcode:2000ApOpt..39.2107H. doi:10.1364/ao.39.002107. hdl:10150/289148. PMID 18345114. /wiki/Bibcode_(identifier)

  14. Caber, P. J. (1993). "Interferometric profiler for rough surfaces". Appl Opt. 32 (19): 3438–3441. Bibcode:1993ApOpt..32.3438C. doi:10.1364/ao.32.003438. PMID 20829962. /wiki/Bibcode_(identifier)

  15. De Groot, P.; Biegen, J.; Clark, J.; Colonna; de Lega, X.; Grigg, D. (2002). "Optical Interferometry for Measurement of the Geometric Dimensions of Industrial Parts". Applied Optics. 41 (19): 3853–3860. Bibcode:2002ApOpt..41.3853D. doi:10.1364/ao.41.003853. PMID 12099592. /wiki/Bibcode_(identifier)

  16. Dubois, A; Vabre, L; Boccara, AC; Beaurepaire, E (2002). "High-resolution full-field optical coherence tomography with a Linnik microscope". Applied Optics. 41 (4): 805–12. Bibcode:2002ApOpt..41..805D. doi:10.1364/ao.41.000805. PMID 11993929. /wiki/Bibcode_(identifier)

  17. Cite error: The named reference Leach2017 was invoked but never defined (see the help page). /wiki/Help:Cite_errors/Cite_error_references_no_text

  18. Cite error: The named reference Takaki2022 was invoked but never defined (see the help page). /wiki/Help:Cite_errors/Cite_error_references_no_text

  19. Leach, Richard; Carmignato, Simone; Dewulf, Wim; Donmez, Alkan; Hebert, Pierre; Newman, Steven T. (2017). "Coherence scanning interferometry for additive manufacture". CIRP Annals. 66 (2): 781–802. doi:10.1016/j.cirp.2017.05.001. https://www.researchgate.net/publication/317888768_Coherence_scanning_interferometry_for_additive_manufacture

  20. Takaki, Yasuhiro; Murata, Shuhei (2022). "Single-shot optical surface profiling using extended depth-of-field 3D microscopy". Precision Engineering. 78: 12–20. doi:10.1016/j.precisioneng.2022.02.005. https://www.researchgate.net/publication/362268296_Single-shot_optical_surface_profiling_using_extended_depth_of_field_3D_microscopy