This article compares a large number of programming languages by tabulating their data types, their expression, statement, and declaration syntax, and some common operating-system interfaces.
Conventions of this article
Generally, var, var, or var is how variable names or other non-literal values to be interpreted by the reader are represented. The rest is literal code. Guillemets (« and ») enclose optional sections. Tab ↹ indicates a necessary (whitespace) indentation.
The tables are not sorted lexicographically ascending by programming language name by default, and that some languages have entries in some tables but not others.
Type identifiers
Integers
8 bit (byte) | 16 bit (short integer) | 32 bit | 64 bit (long integer) | Word size | Arbitrarily precise (bignum) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | ||
Ada1 | range -2**7 .. 2**7 - 1[j] | range 0 .. 2**8 - 1[j] or mod 2**8[k] | range -2**15 .. 2**15 - 1[j] | range 0 .. 2**16 - 1[j] or mod 2**16[k] | range -2**31 .. 2**31 - 1[j] | range 0 .. 2**32 - 1[j] or mod 2**32[k] | range -2**63 .. 2**63 - 1[j] | mod 2**64[k] | Integer[j] | range 0 .. 2**Integer'Size - 1[j] or mod Integer'Size[k] | — |
ALGOL 68 (variable-width) | short short int[c] | — | short int[c] | — | int[c] | — | long int[c] | — | int[c] | — | long long int[a][g] |
bytes and bits | |||||||||||
C (C99 fixed-width) | int8_t | uint8_t | int16_t | uint16_t | int32_t | uint32_t | int64_t | uint64_t | intptr_t[c] | size_t[c] | — |
C++ (C++11 fixed-width) | |||||||||||
C (C99 variable-width) | signed char | unsigned char | short[c] | unsigned short[c] | long[c] | unsigned long[c] | long long[c] | unsigned long long[c] | int[c] | unsigned int[c] | |
C++ (C++11 variable-width) | |||||||||||
Objective-C (Cocoa) | signed char or int8_t | unsigned char or uint8_t | short or int16_t | unsigned short or uint16_t | int or int32_t | unsigned int or uint32_t | long long or int64_t | unsigned long long or uint64_t | NSInteger or long | NSUInteger or unsigned long | |
C# | sbyte | byte | short | ushort | int | uint | long | ulong | IntPtr | UIntPtr | System.Numerics.BigInteger(.NET 4.0) |
Java | byte | — | char[b] | — | — | — | — | java.math.BigInteger | |||
Go | int8 | uint8 or byte | int16 | uint16 | int32 | uint32 | int64 | uint64 | int | uint | big.Int |
Rust | i8 | u8 | i16 | u16 | i32 | u32 | i64 | u64 | isize | usize | — |
Swift | Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 | Int64 | UInt64 | Int | UInt | |
D | byte | ubyte | short | ushort | int | uint | long | ulong | — | — | BigInt |
Common Lisp2 | (signed-byte 8) | (unsigned-byte 8) | (signed-byte 16) | (unsigned-byte 16) | (signed-byte 32) | (unsigned-byte 32) | (signed-byte 64) | (unsigned-byte 64) | bignum | ||
Scheme | |||||||||||
ISLISP3 | bignum | ||||||||||
Pascal (FPC) | shortint | byte | smallint | word | longint | longword | int64 | qword | integer | cardinal | — |
Visual Basic | — | Byte | Integer | — | Long | — | — | — | — | ||
Visual Basic .NET | SByte | Short | UShort | Integer | UInteger | Long | ULong | System.Numerics.BigInteger(.NET 4.0) | |||
FreeBasic | Byte or Integer<8> | UByte or UInteger<8> | Short or Integer<16> | UShort or UInteger<16> | Long or Integer<32> | ULong or UInteger<32> | LongInt or Integer<64> | ULongInt or UInteger<64> | Integer | UInteger | — |
Python 2.x | — | — | — | — | int | — | long | ||||
Python 3.x | — | — | — | — | — | int | |||||
S-Lang | — | — | — | — | — | — | |||||
Fortran | INTEGER(KIND = n)[f] | — | INTEGER(KIND = n)[f] | — | INTEGER(KIND = n)[f] | — | INTEGER(KIND = n)[f] | — | |||
PHP | — | — | int[m] | — | int[m] | — | — | [e] | |||
Perl 5 | —[d] | —[d] | —[d] | —[d] | —[d] | Math::BigInt | |||||
Raku | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | Int | — | |
Ruby | — | — | — | — | Fixnum | — | Bignum | ||||
Erlang[n] | — | — | — | — | integer() | — | integer()[o] | ||||
Scala | Byte | — | Short | Char[l] | Int | — | Long | — | — | — | scala.math.BigInt |
Seed7 | — | — | — | — | — | — | integer | — | — | — | bigInteger |
Smalltalk | — | — | — | — | SmallInteger[i] | — | LargeInteger[i] | ||||
Windows PowerShell | — | — | — | — | — | — | |||||
OCaml | — | — | int32 | — | int64 | — | int or nativeint | open Big_int;; or big_int | |||
F# | sbyte | byte | int16 | uint16 | int32 or int | uint32 | uint64 | nativeint | unativeint | bigint | |
Standard ML | — | Word8.word | — | Int32.int | Word32.word | Int64.int | Word64.word | int | word | LargeInt.int orIntInf.int | |
Haskell (GHC) | «import Int» or Int8 | «import Word» or Word8 | «import Int» or Int16 | «import Word» or Word16 | «import Int» or Int32 | «import Word» or Word32 | «import Int» or Int64 | «import Word» or Word64 | Int | «import Word» or Word | Integer |
Eiffel | INTEGER_8 | NATURAL_8 | INTEGER_16 | NATURAL_16 | INTEGER_32 | NATURAL_32 | INTEGER_64 | NATURAL_64 | INTEGER | NATURAL | — |
COBOL[h] | BINARY-CHAR «SIGNED» | BINARY-CHAR UNSIGNED | BINARY-SHORT «SIGNED» | BINARY-SHORT UNSIGNED | BINARY-LONG «SIGNED» | BINARY-LONG UNSIGNED | BINARY-DOUBLE «SIGNED» | BINARY-DOUBLE UNSIGNED | — | — | — |
Mathematica | — | — | — | — | — | Integer | |||||
Wolfram Language | — | — | — | — | — | Integer |
- ^a The standard constants int shorts and int lengths can be used to determine how many shorts and longs can be usefully prefixed to short int and long int. The actual sizes of short int, int, and long int are available as the constants short max int, max int, and long max int etc.
- ^b Commonly used for characters.
- ^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types short, int, long, and (C99, C++11) long long, so they are implementation-dependent. In C and C++ short, long, and long long types are required to be at least 16, 32, and 64 bits wide, respectively, but can be more. The int type is required to be at least as wide as short and at most as wide as long, and is typically the width of the word size on the processor of the machine (i.e. on a 32-bit machine it is often 32 bits wide; on 64-bit machines it is sometimes 64 bits wide). C99 and C++11 also define the [u]intN_t exact-width types in the stdint.h header. See C syntax#Integral types for more information. In addition the types size_t and ptrdiff_t are defined in relation to the address size to hold unsigned and signed integers sufficiently large to handle array indices and the difference between pointers.
- ^d Perl 5 does not have distinct types. Integers, floating point numbers, strings, etc. are all considered "scalars".
- ^e PHP has two arbitrary-precision libraries. The BCMath library just uses strings as datatype. The GMP library uses an internal "resource" type.
- ^f The value of n is provided by the SELECTED_INT_KIND4 intrinsic function.
- ^g ALGOL 68G's runtime option --precision "number" can set precision for long long ints to the required "number" significant digits. The standard constants long long int width and long long max int can be used to determine actual precision.
- ^h COBOL allows the specification of a required precision and will automatically select an available type capable of representing the specified precision. "PIC S9999", for example, would require a signed variable of four decimal digits precision. If specified as a binary field, this would select a 16-bit signed type on most platforms.
- ^i Smalltalk automatically chooses an appropriate representation for integral numbers. Typically, two representations are present, one for integers fitting the native word size minus any tag bit (SmallInteger) and one supporting arbitrary sized integers (LargeInteger). Arithmetic operations support polymorphic arguments and return the result in the most appropriate compact representation.
- ^j Ada range types are checked for boundary violations at run-time (as well as at compile-time for static expressions). Run-time boundary violations raise a "constraint error" exception. Ranges are not restricted to powers of two. Commonly predefined Integer subtypes are: Positive (range 1 .. Integer'Last) and Natural (range 0 .. Integer'Last). Short_Short_Integer (8 bits), Short_Integer (16 bits) and Long_Integer (64 bits) are also commonly predefined, but not required by the Ada standard. Runtime checks can be disabled if performance is more important than integrity checks.
- ^k Ada modulo types implement modulo arithmetic in all operations, i.e. no range violations are possible. Modulos are not restricted to powers of two.
- ^l Commonly used for characters like Java's char.
- ^m int in PHP has the same width as long type in C has on that system.[c]
- ^n Erlang is dynamically typed. The type identifiers are usually used to specify types of record fields and the argument and return types of functions.5
- ^o When it exceeds one word.6
Floating point
Single precision | Double precision | Other precision | Processor dependent | |
---|---|---|---|---|
Ada7 | Float | Long_Float | — | |
ALGOL 68 | real[a] | long real[a] | short real, long long real, etc.[d] | |
C | float[b] | double | long double[f] | |
C++ (STL) | ||||
Objective-C (Cocoa) | CGFloat | |||
C# | float | — | ||
Java | ||||
Go | float32 | float64 | ||
Rust | f32 | f64 | f16, f128 | |
Swift | Float or Float32 | Double or Float64 | Float80[g] | CGFloat |
D | float | double | real | |
Common Lisp | single-float | double-float | float, short-float, long-float | |
Scheme | ||||
ISLISP | ||||
Pascal (FPC) | single | double | real | |
Visual Basic | Single | Double | — | |
Visual Basic .NET | ||||
Xojo | ||||
Python | — | float | ||
JavaScript | Number8 | — | ||
S-Lang | ||||
Fortran | REAL(KIND = n)[c] | |||
PHP | float | |||
Perl | ||||
Raku | num32 | num64 | Num | |
Ruby | — | Float | — | |
Scala | Float | Double | ||
Seed7 | — | float | ||
Smalltalk | Float | Double | ||
Windows PowerShell | ||||
OCaml | — | float | — | |
F# | float32 | |||
Standard ML | — | real | ||
Haskell (GHC) | Float | Double | ||
Eiffel | REAL_32 | REAL_64 | ||
COBOL | FLOAT-BINARY-7[e] | FLOAT-BINARY-34[e] | FLOAT-SHORT, FLOAT-LONG, FLOAT-EXTENDED | |
Mathematica | — | — | Real |
- ^a The standard constants real shorts and real lengths can be used to determine how many shorts and longs can be usefully prefixed to short real and long real. The actual sizes of short real, real, and long real are available as the constants short max real, max real and long max real etc. With the constants short small real, small real and long small real available for each type's machine epsilon.
- ^b declarations of single precision often are not honored
- ^c The value of n is provided by the SELECTED_REAL_KIND9 intrinsic function.
- ^d ALGOL 68G's runtime option --precision "number" can set precision for long long reals to the required "number" significant digits. The standard constants long long real width and long long max real can be used to determine actual precision.
- ^e These IEEE floating-point types will be introduced in the next COBOL standard.
- ^f Same size as double on many implementations.
- ^g Swift supports 80-bit extended precision floating point type, equivalent to long double in C languages.
Complex numbers
Integer | Single precision | Double precision | Half and Quadruple precision etc. | |
---|---|---|---|---|
Ada10 | — | Complex[b] | Complex[b] | Complex[b] |
ALGOL 68 | — | compl | long compl etc. | short compl etc. and long long compl etc. |
C (C99)11 | — | float complex | double complex | — |
C++ (STL) | — | std::complex<float> | std::complex<double> | |
C# | — | — | System.Numerics.Complex(.NET 4.0) | |
Java | — | — | — | |
Go | — | complex64 | complex128 | |
D | — | cfloat | cdouble | |
Objective-C | — | — | — | |
Common Lisp | (complex integer) | (complex single-float) | (complex double-float) | complex |
Scheme | — | |||
Pascal | — | — | ||
Visual Basic | — | — | ||
Visual Basic .NET | — | — | System.Numerics.Complex(.NET 4.0) | |
Perl | Math::Complex | |||
Raku | complex64 | complex128 | Complex | |
Python | complex | — | ||
JavaScript | — | — | ||
S-Lang | — | — | ||
Fortran | COMPLEX(KIND = n)[a] | |||
Ruby | Complex | — | Complex | |
Scala | — | — | — | |
Seed7 | — | — | complex | |
Smalltalk | Complex | Complex | Complex | |
Windows PowerShell | — | — | ||
OCaml | — | — | Complex.t | |
F# | System.Numerics.Complex(.NET 4.0) | |||
Standard ML | — | — | — | |
Haskell (GHC) | — | Complex.Complex Float | Complex.Complex Double | |
Eiffel | — | — | — | |
COBOL | — | — | — | |
Mathematica | Complex | — | — | Complex |
- ^a The value of n is provided by the SELECTED_REAL_KIND12 intrinsic function.
- ^b Generic type which can be instantiated with any base floating point type.
Other variable types
Text | Boolean | Enumeration | Object/Universal | ||
---|---|---|---|---|---|
Character | String[a] | ||||
Ada13 | Character | String, Bounded_String, Unbounded_String | Boolean | (item1, item2, ...) | tagged null record |
ALGOL 68 | char | string, bytes | bool, bits | — - User defined | — |
C (C99) | char, wchar_t | — | bool[b] | enum «name» { item1, item2, ... }; | void * |
C++ (STL) | «std::»string | ||||
Objective-C | unichar | NSString * | BOOL | id | |
C# | char | string | bool | enum name { item1« = value», item2« = value», ... } | object |
Java | String | boolean | enum name { item1, item2, ... } | Object | |
Go | byte, rune | string | bool | const ( item1 = iota item2 ...) | interface{} |
Rust | char | String | bool | enum name { item1« = value», item2« = value», ... } | std::any::Any |
Swift | Character | String | Bool | enum name { case item1, item2, ... } | Any |
D | char | string | bool | enum name { item1, item2, ... } | std.variant.Variant |
Common Lisp | character | string | boolean | (member item1 item2 ...) | t |
Scheme | |||||
ISLISP | |||||
Pascal (ISO) | char | — | boolean | ( item1, item2, ... ) | — |
Object Pascal (Delphi) | string | variant | |||
Visual Basic | — | String | Boolean | Enum name item1 «= value» item2 «= value» ...End Enum | [[Variant type|Variant]] |
Visual Basic .NET | Char | Object | |||
Xojo | — | Object or Variant | |||
Python | —[d] | str | bool | from enum import Enumclass Name(Enum): item1 = value item2 = value ... | object |
JavaScript | —[d] | String | Boolean | Object | |
S-Lang | |||||
Fortran | CHARACTER(LEN = *) | CHARACTER(LEN = :), allocatable | LOGICAL(KIND = n)[f] | CLASS(*) | |
PHP | —[d] | string | bool | (type declaration omitted) | |
Perl | —[d] | UNIVERSAL | |||
Raku | Char | Str | Bool | enum name<item1 item2 ...>enum name <<:item1(value) :item2(value) ..>> | Mu |
Ruby | —[d] | String | Object[c] | Object | |
Scala | Char | String | Boolean | object name extends Enumeration { val item1, item2, ... = Value} | Any |
Seed7 | char | string | boolean | const type: name is new enum item1, item2, ...end enum; | |
Windows PowerShell | |||||
OCaml | char | string | bool | —[e] | — |
F# | type name = item1 = value |item2 = value | ... | obj | |||
Standard ML | —[e] | — | |||
Haskell (GHC) | Char | String | Bool | —[e] | — |
Eiffel | CHARACTER | STRING | BOOLEAN | — | ANY |
COBOL | PIC X | PIC X(string length) or PIC X«X...» | PIC 1«(number of digits)» or PIC 1«1...» | — | OBJECT REFERENCE |
Mathematica | —[d] | String | — |
- ^a specifically, strings of arbitrary length and automatically managed.
- ^b This language represents a boolean as an integer where false is represented as a value of zero and true by a non-zero value.
- ^c All values evaluate to either true or false. Everything in TrueClass evaluates to true and everything in FalseClass evaluates to false.
- ^d This language does not have a separate character type. Characters are represented as strings of length 1.
- ^e Enumerations in this language are algebraic types with only nullary constructors
- ^f The value of n is provided by the SELECTED_INT_KIND14 intrinsic function.
Derived types
Array
Further information: Comparison of programming languages (array)
fixed size array | dynamic size array | |||
---|---|---|---|---|
one-dimensional array | multidimensional array | one-dimensional array | multidimensional array | |
Ada15 | array (<first> .. <last>) of <type>orarray (<discrete_type>) of <type> | array (<first1> .. <last1>, <first2> .. <last2>, ...) of <type>orarray (<discrete_type1>, <discrete_type2>, ...) of <type> | array (<discrete_type> range <>) of <type> | array (<discrete_type1> range <>, <discrete_type2> range <>, ...) of <type> |
ALGOL 68 | [first:last]«modename»or simply:[size]«modename» | [first1:last1, first2:last2]«modename»or[first1:last1][first2:last2]«modename»etc. | flex[first:last]«modename»or simply:flex[size]«modename» | flex[first1:last1, first2:last2]«modename»orflex[first1:last1]flex[first2:last2]«modename» etc. |
C (C99) | type name[size][a] | type name[size1][size2][a] | type *nameor within a block:int n = ...; type name[n] | |
C++ (STL) | «std::»array<type, size>(C++11) | «std::»vector<type> | ||
C# | type[] | type[,,...] | System.Collections.ArrayListorSystem.Collections.Generic.List<type> | |
Java | type[][b] | type[][]...[b] | ArrayList or ArrayList<type> | |
D | type[size] | type[size1][size2] | type[] | |
Go | [size]type | [size1][size2]...type | []type | [][]type |
Rust | [type; size] | [[type; size1]; size2] | Vec<type> | Vec<Vec<type>> |
Swift | [type] or Array<type> | [[type]] or Array<Array<type>> | ||
Objective-C | NSArray | NSMutableArray | ||
JavaScript | — | — | Array[d] | |
Common Lisp | (simple-array type (dimension)) | (simple-array type (dimension1 dimension2)) | (array type (dimension)) | (array type (dimension1 dimension2)) |
Scheme | ||||
ISLISP | ||||
Pascal | array[first..last] of type[c] | array[first1..last1] of array[first2..last2] ... of type[c]or array[first1..last1, first2..last2, ...] of type[c] | — | — |
Object Pascal (Delphi) | array of type | array of array ... of type | ||
Visual Basic | Dim x(last) As type | Dim x(last1, last2,...) As type | ||
Visual Basic .NET | type() | type(,,...) | System.Collections.ArrayListorSystem.Collections.Generic.List(Of type) | |
Python | list | |||
S-Lang | x = type[size]; | x = type[size1, size2, ...]; | ||
Fortran | type :: name(size) | type :: name(size1, size2,...) | type, ALLOCATABLE :: name(:) | type, ALLOCATABLE :: name(:,:,...) |
PHP | array | |||
Perl | ||||
Raku | Array[type] or Array of type | |||
Ruby | x = Array.new(size1){ Array.new(size2) } | Array | ||
Scala | Array[type] | Array[...[Array[type]]...] | ArrayBuffer[type] | |
Seed7 | array typeorarray [idxType] type | array array typeorarray [idxType] array [idxType] type | array typeorarray [idxType] type | array array typeorarray [idxType] array [idxType] type |
Smalltalk | Array | OrderedCollection | ||
Windows PowerShell | type[] | type[,,...] | ||
OCaml | type array | type array ... array | ||
F# | type []ortype array | type [,,...] | System.Collections.ArrayListorSystem.Collections.Generic.List<type> | |
Standard ML | type vector or type array | |||
Haskell (GHC) | x = Array.array (0, size-1) list_of_association_pairs | x = Array.array ((0, 0,...), (size1-1, size2-1,...)) list_of_association_pairs | ||
COBOL | level-number type OCCURS size «TIMES». | one-dimensional array definition... | level-number type OCCURS min-size TO max-size «TIMES» DEPENDING «ON» size.[e] | — |
- ^a In most expressions (except the sizeof and & operators), values of array types in C are automatically converted to a pointer of its first argument. See C syntax#Arrays for further details of syntax and pointer operations.
- ^b The C-like type x[] works in Java, however type[] x is the preferred form of array declaration.
- ^c Subranges are used to define the bounds of the array.
- ^d JavaScript's array are a special kind of object.
- ^e The DEPENDING ON clause in COBOL does not create a true variable length array and will always allocate the maximum size of the array.
Other types
Simple composite types | Algebraic data types | Unions | ||
---|---|---|---|---|
Records | Tuple expression | |||
Ada16 | type name is «abstract» «tagged» «limited» [record field1 : type; field2 : type; ...end record | null record] | — | Any combination of records, unions, and enumerations (as well as references to those, enabling recursive types). | type name (variation : discrete_type) is record case variation is when choice_list1 => fieldname1 : type; ... when choice_list2 => fieldname2 : type; ... ... end case;end record |
ALGOL 68 | struct (modename «fieldname», ...); | Required types and operators can be user-defined | union (modename, ...); | |
C (C99) | struct «name» {type name;...}; | — | — | union {type name;...}; |
Objective-C | ||||
C++ | struct «name» {type name;...};[b] | «std::»tuple<type1..typen> | ||
C# | struct name {type name;...} | (val1, val2, ... ) | — | |
Java | —[a] | |||
JavaScript | — | |||
D | struct name {type name;...} | std.variant.Algebraic!(type,...) | union {type name;...} | |
Go | struct { «name» type ...} | |||
Rust | struct name {name: type, ...} | (val1, val2, ... ) | enum name { Foo(types), ...} | union name {name: type, ...} |
Swift | struct name { var name «: type» ...} | («name1:» val1, «name2:» val2, «name3:» val3, ... ) | enum name { case Foo«(types)» case Bar «(types)» ... } | |
Common Lisp | (defstruct name slot-name (slot-name initial-value) (slot-name initial-value :type type) ...) | (cons val1 val2)[c] | ||
Scheme | — | |||
ISLISP | ||||
Pascal | record name: type; ...end | — | — | record case type of value: (types); ...end |
Visual Basic | ||||
Visual Basic .NET | Structure name Dim name As type ...End Structure | (val1, val2, ... ) | ||
Python | —[a] | «(»val1, val2, val3, ... «)» | — | |
S-Lang | struct {name [=value], ...} | |||
Fortran | TYPE name type :: name ...END TYPE | |||
PHP | —[a] | |||
Perl | —[d] | — | ||
Raku | —[a] | |||
Ruby | OpenStruct.new({:name => value}) | |||
Scala | case class name(«var» name: type, ...) | (val1, val2, val3, ... ) | abstract class name case class Foo(«parameters») extends name case class Bar(«parameters») extends name ...orabstract class name case object Foo extends name case object Bar extends name ...or a combination of case classes and case objects | |
Windows PowerShell | ||||
OCaml | type name = {«mutable» name : type;...} | «(»val1, val2, val3, ... «)» | type name = Foo «of type» | Bar «of type» | ... | — |
F# | ||||
Standard ML | type name = {name : type,...} | (val1, val2, val3, ... ) | datatype name = Foo «of type» | Bar «of type» | ... | |
Haskell | data Name = Constr {name :: type,...} | data Name = Foo «types» | Bar «types» | ... | ||
COBOL | level-number name type clauses. level-number+n name type clauses. ... | — | — | name REDEFINES variable type. |
- ^a Only classes are supported.
- ^b structs in C++ are actually classes, but have default public visibility and are also POD objects. C++11 extended this further, to make classes act identically to POD objects in many more cases.
- ^c pair only
- ^d Although Perl doesn't have records, because Perl's type system allows different data types to be in an array, "hashes" (associative arrays) that don't have a variable index would effectively be the same as records.
- ^e Enumerations in this language are algebraic types with only nullary constructors
Variable and constant declarations
variable | constant | type synonym | |
---|---|---|---|
Ada17 | identifier : type« := initial_value»[e] | identifier : constant type := final_value | subtype identifier is type |
ALGOL 68 | modename name« := initial_value»; | modename name = value; | mode synonym = modename; |
C (C99) | type name« = initial_value»; | enum{ name = value }; | typedef type synonym; |
Objective-C | |||
C++ | const type name = value; | ||
C# | type name1« = initial_value», name2« = initial_value», ...;orvar name = initial_value; | const type name = value, name = value, ...;orreadonly type name = value, name = value, ... ; | using synonym = type; |
D | type name« = initial_value»;orauto name = value; | const type name = value;orimmutable type name = value; | alias type synonym; |
Java | type name« = initial_value»; | final type name = value; | — |
JavaScript | var name« = initial_value»; orlet name« = initial_value»; (since ECMAScript 2015) | const name = value; (since ECMAScript 2015) | |
Go | var name type« = initial_value»orname := initial_value | const name «type» = value | type synonym type |
Rust[f] | let mut name«: type»« = initial_value»;static mut NAME: type = value; | let name«: type»« = initial_value»;const NAME: type = value;static NAME: type = value; | type synonym = typename; |
Swift | var name «: type»« = initial_value» | let name «: type» = value | typealias synonym = type |
Common Lisp | (defparameter name initial-value)or(defvar name initial-value) | (defconstant name value) | (deftype synonym () 'type) |
Scheme | (define name initial_value) | ||
ISLISP | (defglobal name initial_value)or(defdynamic name initial_value) | (defconstant name value) | — |
Pascal[a] | name: type« = initial_value» | name = value | synonym = type |
Visual Basic | Dim name «As type» | See notes to left. Constants use the same syntax, and:
| |
Visual Basic .NET18 | The variable declaration syntax of VB.NET is unusually difficult to precisely describe. Given that there exist the identifier suffixes ("modifiers"):
and that
valid declaration statements are of the form Dim declarator_list,where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
and for which, for each identifier,
If Option Explicit is off, variables do not require explicit declaration; they are declared implicitly when used:name = initial_value | Imports synonym = type | |
Xojo | Dim name «As type»« = initial_value» | — | |
Python | name«: type» = initial_value | — | synonym = type[b] |
CoffeeScript | name = initial_value | ||
S-Lang | name = initial_value; | typedef struct {...} typename | |
Fortran | type :: name | type, PARAMETER :: name = value | |
PHP | $name = initial_value; | define("name", value);const name = value (5.3+) | — |
Perl | «my» $name« = initial_value»;[c] | use constant name => value; | |
Raku | «my «type»» $name« = initial_value»;[c] | «my «type»» constant name = value; | ::synonym ::= type |
Ruby | name = initial_value | Name = value | synonym = type[b] |
Scala | var name«: type» = initial_value | val name«: type» = value | type synonym = type |
Windows PowerShell | «[type]» $name = initial_value | — | — |
Bash shell | name=initial_value | — | — |
OCaml | let name« : type ref» = ref value[d] | let name «: type» = value | type synonym = type |
F# | let mutable name «: type» = value | ||
Standard ML | val name «: type ref» = ref value[d] | val name «: type» = value | |
Haskell | «name::type;» name = value | type Synonym = type | |
Forth | VARIABLE name (in some systems use value VARIABLE name instead) | value CONSTANT name | |
COBOL | level-number name type clauses. | «0»1 name CONSTANT «AS» value. | level-number name type clauses «IS» TYPEDEF. |
Mathematica | name=initial_value | — | — |
- ^a Pascal has declaration blocks. See functions.
- ^b Types are just regular objects, so you can just assign them.
- ^c In Perl, the "my" keyword scopes the variable into the block.
- ^d Technically, this does not declare name to be a mutable variable—in ML, all names can only be bound once; rather, it declares name to point to a "reference" data structure, which is a simple mutable cell. The data structure can then be read and written to using the ! and := operators, respectively.
- ^e If no initial value is given, an invalid value is automatically assigned (which will trigger a run-time exception if it used before a valid value has been assigned). While this behaviour can be suppressed it is recommended in the interest of predictability. If no invalid value can be found for a type (for example in case of an unconstraint integer type), a valid, yet predictable value is chosen instead.
- ^f In Rust, if no initial value is given to a let or let mut variable and it is never assigned to later, there is an "unused variable" warning. If no value is provided for a const or static or static mut variable, there is an error. There is a "non-upper-case globals" error for non-uppercase const variables. After it is defined, a static mut variable can only be assigned to in an unsafe block or function.
Control flow
Conditional statements
if | else if | select case | conditional expression | |
---|---|---|---|---|
Ada19 | if condition then statements«else statements»end if | if condition1 then statementselsif condition2 then statements...«else statements»end if | case expression is when value_list1 => statements when value_list2 => statements ... «when others => statements»end case | (if condition1 then expression1«elsif condition2 then expression2»...else expressionn)or(case expression is when value_list1 => expression1 when value_list2 => expression2 ... «when others => expressionn») |
Seed7 | if condition then statements«else statements»end if | if condition1 then statementselsif condition2 then statements...«else statements»end if | case expression of when set1 : statements ... «otherwise: statements»end case | |
Modula-2 | if condition then statements«else statements»end | if condition1 then statementselsif condition2 then statements...«else statements»end | case expression of caseLabelList : statements | ... «else statements»end | |
ALGOL 68 | if condition then statements «else statements» fi | if condition then statements elif condition then statements fi | case switch in statements, statements«,... out statements» esac | ( condition | valueIfTrue | valueIfFalse ) |
ALGOL 68(brief form) | ( condition | statements «| statements» ) | ( condition | statements |: condition | statements ) | ( variable | statements,... «| statements» ) | |
APL | :If condition instructions«:Else instructions»:EndIf | :If condition instructions:ElseIf condition instructions...«:Else instructions»:EndIf | :Select expression :Case case1 instructions ... «:Else instructions»:EndSelect | {condition:valueIfTrue ⋄ valueIfFalse} |
C (C99) | if (condition) instructions«else instructions»instructions can be a single statement or a block in the form of: { statements } | if (condition) instructionselse if (condition) instructions...«else instructions»orif (condition) instructionselse { if (condition) instructions } | switch (variable) { case case1: instructions «; break;» ... «default: instructions»} | condition ? valueIfTrue : valueIfFalse |
Objective-C | ||||
C++ (STL) | ||||
D | ||||
Java | ||||
JavaScript | ||||
PHP | ||||
C# | if (condition) instructions«else instructions» instructions can be a single statement or a block in the form of: { statements } | if (condition) instructionselse if (condition) instructions...«else instructions» | switch (variable){ case case1: instructions «break_or_jump_statement» ... «default: instructions break_or_jump_statement»} All non-empty cases must end with a break or goto case statement (that is, they are not allowed to fall-through to the next case).The default case is not required to come last. | condition ? valueIfTrue : valueIfFalse |
Windows PowerShell | if (condition) instruction«else instructions» | if (condition) { instructions }elseif (condition) { instructions }...«else { instructions }» | switch (variable) { case1{instructions «break;» } ... «default { instructions }»} | |
Go | if condition {instructions}«else {instructions}» | if condition {instructions}else if condition {instructions}...«else {instructions}»orswitch { case condition: instructions ... «default: instructions»} | switch variable { case case1: instructions ... «default: instructions»} | |
Swift | if condition {instructions}«else {instructions}» | if condition {instructions}else if condition {instructions}...«else {instructions}» | switch variable { case case1: instructions ... «default: instructions»} | |
Perl | if (condition) {instructions}«else {instructions}»orunless (notcondition) {instructions}«else {instructions}» | if (condition) {instructions}elsif (condition) {instructions}...«else {instructions}»orunless (notcondition) {instructions}elsif (condition) {instructions}...«else {instructions}» | use feature "switch";...given (variable) { when (case1) { instructions } ... «default { instructions }»} | condition ? valueIfTrue : valueIfFalse |
Raku | if condition {instructions}«else {instructions}»orunless notcondition {instructions} | if condition {instructions}elsif condition {instructions}...«else {instructions} | given variable { when case1 { instructions } ... «default { instructions }»} | condition ?? valueIfTrue !! valueIfFalse |
Ruby | if condition instructions«else instructions» | if condition instructionselsif condition instructions...«else instructions»end | case variable when case1 instructions ... «else instructions»end | condition ? valueIfTrue : valueIfFalse |
Scala | if (condition) {instructions}«else {instructions}» | if (condition) {instructions}else if (condition) {instructions}...«else {instructions}» | expression match { case pattern1 => expression case pattern2 => expression ... «case _ => expression»}[b] | if (condition) valueIfTrue else valueIfFalse |
Smalltalk | condition ifTrue: trueBlock«ifFalse: falseBlock»end | condition ifTrue: trueBlock ifFalse: falseBlock | ||
Common Lisp | (when condition instructions)or(unless condition instructions)or(if condition (progn instructions) «(progn instructions)») | (cond (condition1 instructions) (condition2 instructions) ... «(t instructions)») | (case expression (case1 instructions) (case2 instructions) ... «(otherwise instructions)») | (if test then else)or(cond (test1 value1) (test2 value2) ...)) |
Scheme | (when condition instructions)or(if condition (begin instructions) «(begin instructions)») | (cond (condition1 instructions) (condition2 instructions) ... «(else instructions)») | (case (variable) ((case1) instructions) ((case2) instructions) ... «(else instructions)») | (if condition valueIfTrue valueIfFalse) |
ISLISP | (if condition (progn instructions) «(progn instructions)») | (cond (condition1 instructions) (condition2 instructions) ... «(t instructions)») | (case expression (case1 instructions) (case2 instructions) ... «(t instructions)») | (if condition valueIfTrue valueIfFalse) |
Pascal | if condition then begin instructionsend«else begin instructionsend»'[c] | if condition then begin instructionsendelse if condition then begin instructionsend...«else begin instructionsend»[c] | case variable of case1: instructions ... «else: instructions»end[c] | |
Visual Basic | If condition Then instructions«Else instructions»End IfSingle-line, when instructions are instruction1 : instruction2 : ...:If condition Then instructions «Else instructions» | If condition Then instructionsElseIf condition Then instructions...«Else instructions»End IfSingle-line:See note about C-like languages; the Else clause of a single-line If statement can contain another single-line If statement. | Select« Case» variable Case case_pattern1 instructions ... «Case Else instructions»End Select | IIf(condition, valueIfTrue, valueIfFalse) |
Visual Basic .NET | If(condition, valueIfTrue, valueIfFalse) | |||
Xojo | ||||
Python[a] | if condition :Tab ↹instructions«else:Tab ↹instructions» | if condition :Tab ↹instructionselif condition :Tab ↹instructions...«else:Tab ↹instructions» | Python 3.10+:match variable:Tab ↹case case1:Tab ↹Tab ↹instructionsTab ↹case case2:Tab ↹Tab ↹instructions | Python 2.5+:valueIfTrue if condition else valueIfFalse |
S-Lang | if (condition) { instructions } «else { instructions }» | if (condition) { instructions } else if (condition) { instructions } ... «else { instructions }» | switch (variable) { case case1: instructions } { case case2: instructions } ... | |
Fortran | IF (condition) THEN instructionsELSE instructionsENDIF | IF (condition) THEN instructionsELSEIF (condition) THEN instructions...ELSE instructionsENDIF | SELECT CASE(variable) CASE (case1) instructions ... CASE DEFAULT instructionsEND SELECT | |
Forth | condition IF instructions « ELSE instructions» THEN | condition IF instructions ELSE condition IF instructions THEN THEN | value CASE case OF instructions ENDOF case OF instructions ENDOF default instructionsENDCASE | condition IF valueIfTrue ELSE valueIfFalse THEN |
OCaml | if condition then begin instructions end «else begin instructions end» | if condition then begin instructions end else if condition then begin instructions end ... «else begin instructions end» | match value with pattern1 -> expression | pattern2 -> expression ... «| _ -> expression»[b] | if condition then valueIfTrue else valueIfFalse |
F# | Lightweight syntax mode: Either on a single line or with indentation as shown below:if condition thenTab ↹instructions«elseTab ↹instructions»Verbose syntax mode:Same as Standard ML. | Lightweight syntax mode:Either on a single line or with indentation as shown below:if condition thenTab ↹instructionselif condition thenTab ↹instructions...«elseTab ↹instructions»Verbose syntax mode:Same as Standard ML. | ||
Standard ML | if condition then «(»instructions «)»else «(» instructions «)» | if condition then «(»instructions «)»else if condition then «(» instructions «)»...else «(» instructions «)» | case value of pattern1 => expression | pattern2 => expression ... «| _ => expression»[b] | |
Haskell (GHC) | if condition then expression else expressionorwhen condition (do instructions)orunless notcondition (do instructions) | result | condition = expression | condition = expression | otherwise = expression | case value of { pattern1 -> expression; pattern2 -> expression; ... «_ -> expression»}[b] | |
Bash shell | if condition-command; then expression«else expression»fi | if condition-command; then expressionelif condition-command; then expression«else expression»fi | case "$variable" in "$condition1" ) command... "$condition2" ) command...esac | |
CoffeeScript | if condition then expression «else expression»orif condition expression«else expression»orexpression if conditionorunless condition expression«else expression»orexpression unless condition | if condition then expression else if condition then expression «else expression»orif condition expressionelse if condition expression«else expression»orunless condition expressionelse unless condition expression«else expression» | switch expression when condition then expression else expressionorswitch expression when condition expression «else expression» | All conditions are expressions. |
COBOL | IF condition «THEN» expression«ELSE expression».[d] | EVALUATE expression «ALSO expression...» WHEN case-or-condition «ALSO case-or-condition...» expression ... «WHEN OTHER expression»END-EVALUATE | ||
Rust | if condition { expression}« else { expression}» | if condition { expression} else if condition { expression}« else { expression}» | match variable { pattern1 => expression, pattern2 => expression, pattern3 => expression, «_ => expression»}[b][e] | All conditions are expressions |
if | else if | select case | conditional expression |
- ^a A single instruction can be written on the same line following the colon. Multiple instructions are grouped together in a block which starts on a newline (The indentation is required). The conditional expression syntax does not follow this rule.
- ^b This is pattern matching and is similar to select case but not the same. It is usually used to deconstruct algebraic data types.
- ^c In languages of the Pascal family, the semicolon is not part of the statement. It is a separator between statements, not a terminator.
- ^d END-IF may be used instead of the period at the end.
- ^e In Rust, the comma (,) at the end of a match arm can be omitted after the last match arm, or after any match arm in which the expression is a block (ends in possibly empty matching brackets {}).
Loop statements
while loop | do while loop | (count-controlled) for loop | foreach | |
---|---|---|---|---|
Ada20 | while condition loop statementsend loop | loop statements exit when not conditionend loop | for index in «reverse» [first .. last | discrete_type] loop statementsend loop | for item of «reverse» iterator loop statementsend loopor(for [all | some] [in | of] [first .. last | discrete_type | iterator] => predicate)[b] |
ALGOL 68 | «for index» «from first» «by increment» «to last» «while condition» do statements od | for key «to upb list» do «typename val=list[key];» statements od | ||
«while condition» do statements od | «while statements; condition» do statements od | «for index» «from first» «by increment» «to last» do statements od | ||
APL | :While condition statements:EndWhile | :Repeat statements:Until condition | :For var«s» :In list statements:EndFor | :For var«s» :InEach list statements:EndFor |
C (C99) | instructions can be a single statement or a block in the form of: { statements }while (condition) instructions | do instructions while (condition); | for («type» i = first; i <= last; i++) instructions | — |
Objective-C | for (type item in set) instructions | |||
C++ (STL) | «std::»for_each(start, end, function)Since C++11:for (type item : set) instructions | |||
C# | foreach (type item in set) instructions | |||
Java | for (type item : set) instructions | |||
JavaScript | for (var i = first; i <= last; i++) instructions | Since EcmaScript 2015:21 for (var item of set) instructions | ||
PHP | foreach (range(first, last) as $i) instructionsorfor ($i = first; $i <= last; $i++) instructions | foreach (set as item) instructionsorforeach (set as key => item) instructions | ||
Windows PowerShell | for ($i = first; $i -le last; $i++) instructions | foreach (item in set) instructions | ||
D | foreach (i; first ... last) instructions | foreach («type» item; set) instructions | ||
Go | for condition { instructions } | for i := first; i <= last; i++ { instructions } | for key, item := range set { instructions } | |
Swift | while condition { instructions } | 2.x:repeat { instructions } while condition1.x:do { instructions } while condition | for i = first ... last { instructions }orfor i = first ..< last+1 { instructions }orfor var i = first; i <= last; i++ { instructions } | for item in set { instructions } |
Perl | while (condition) { instructions }oruntil (notcondition) { instructions } | do { instructions } while (condition)ordo { instructions } until (notcondition) | for«each» «$i» (first .. last) { instructions }orfor ($i = first; $i <= last; $i++) { instructions } | for«each» «$item» (set) { instructions } |
Raku | while condition { instructions }oruntil notcondition { instructions } | repeat { instructions } while conditionorrepeat { instructions } until notcondition | for first..last -> $i { instructions }orloop ($i = first; $i <=last; $i++) { instructions } | for set« -> $item» { instructions } |
Ruby | while condition instructionsendoruntil notcondition instructionsend | begin instructionsend while conditionorbegin instructionsend until notcondition | for i in first..last instructionsendorfor i in first...last+1 instructionsendorfirst.upto(last) { |i| instructions } | for item in set instructionsendorset.each { |item| instructions } |
Bash shell | while condition ;do instructionsdoneoruntil notcondition ;do instructionsdone | — | for ((i = first; i <= last; ++i)) ; do instructionsdone | for item in set ;do instructionsdone |
Scala | while (condition) { instructions } | do { instructions } while (condition) | for (i <- first to last «by 1») { instructions }orfirst to last «by 1» foreach (i => { instructions }) | for (item <- set) { instructions }orset foreach (item => { instructions }) |
Smalltalk | conditionBlock whileTrue: loopBlock | loopBlock doWhile: conditionBlock | first to: last do: loopBlock | collection do: loopBlock |
Common Lisp | (loop while condition do instructions)or(do () (notcondition) instructions) | (loop do instructions while condition) | (loop for i from first to last «by 1» do instructions)or(dotimes (i N) instructions)or(do ((i first (1+ i))) ((>=i last)) instructions) | (loop for item in list do instructions)or(loop for item across vector do instructions)or(dolist (item list) instructions)or(mapc function list)or(map type function sequence) |
Scheme | (do () (notcondition) instructions)or(let loop () (if condition (begin instructions (loop)))) | (let loop () (instructions (if condition (loop)))) | (do ((i first (+ i 1))) ((>= i last)) instructions)or(let loop ((i first)) (if (< i last) (begin instructions (loop (+ i 1))))) | (for-each (lambda (item) instructions) list) |
ISLISP | (while condition instructions) | (tagbody loop instructions (if condition (go loop)) | (for ((i first (+ i 1))) ((>= i last)) instructions) | (mapc (lambda (item) instructions) list) |
Pascal | while condition do begin instructionsend | repeat instructionsuntil notcondition; | for i := first «step 1» to last do begin instructionsend;[a] | for item in set do instructions |
Visual Basic | Do While condition instructionsLooporDo Until notcondition instructionsLooporWhile condition instructionsWend (Visual Basic .NET uses End While instead) | Do instructionsLoop While conditionorDo instructionsLoop Until notcondition | i must be declared beforehand. For i = first To last «Step 1» instructionsNext i | For Each item In set instructionsNext item |
Visual Basic .NET | For i« As type» = first To last« Step 1» instructionsNext« i»[a] | For Each item« As type» In set instructionsNext« item» | ||
Xojo | While condition instructionsWend | Do Until notcondition instructionsLooporDo instructionsLoop Until notcondition | ||
Python | while condition :Tab ↹instructions«else:Tab ↹instructions» | — | Python 3.x:for i in range(first, last+1):Tab ↹instructions«else:Tab ↹instructions»Python 2.x:for i in xrange(first, last+1):Tab ↹instructions«else:Tab ↹instructions» | for item in set:Tab ↹instructions«else:Tab ↹instructions» |
S-Lang | while (condition) { instructions } «then optional-block» | do { instructions } while (condition) «then optional-block» | for (i = first; i <= last; i++) { instructions } «then optional-block» | foreach item(set) «using (what)» { instructions } «then optional-block» |
Fortran | DO WHILE (condition) instructionsENDDO | DO instructions IF (condition) EXITENDDO | DO I = first,last instructionsENDDO | — |
Forth | BEGIN «instructions» condition WHILE instructions REPEAT | BEGIN instructions condition UNTIL | limit start DO instructions LOOP | — |
OCaml | while condition do instructions done | — | for i = first to last do instructions done | Array.iter (fun item -> instructions) arrayorList.iter (fun item -> instructions) list |
F# | while condition doTab ↹instructions | — | for i = first to last doTab ↹instructions | foritem in set doTab ↹instructionsorSeq.iter (fun item -> instructions) set |
Standard ML | while condition do ( instructions ) | — | Array.app (fn item => instructions) arrayorapp (fn item => instructions) list | |
Haskell (GHC) | — | Control.Monad.forM_ [first..last] (\i -> do instructions) | Control.Monad.forM_list (\item -> do instructions) | |
Eiffel | from setupuntil conditionloop instructionsend | |||
CoffeeScript | while condition expressionorexpression while conditionorwhile condition then expressionoruntil condition expressionorexpression until conditionoruntil expression then condition | — | for i in [first..last] expressionorfor i in [first..last] then expressionorexpression for i in [first..last] | for item in set expressionorfor item in set then expressionorexpression for item in set |
COBOL | PERFORM procedure-1 «THROUGH procedure-2» ««WITH» TEST BEFORE» UNTIL condition[c]orPERFORM ««WITH» TEST BEFORE» UNTIL condition expressionEND-PERFORM | PERFORM procedure-1 «THROUGH procedure-2» «WITH» TEST AFTER UNTIL condition[c]orPERFORM «WITH» TEST AFTER UNTIL condition expressionEND-PERFORM | PERFORM procedure-1 «THROUGH procedure-2» VARYING i FROM first BY increment UNTIL i > last[d]orPERFORM VARYING i FROM first BY increment UNTIL i > last expressionEND-PERFORM[d] | — |
Rust | while condition { expression} | loop { expression if condition { break; }} | for i in first..last+1 { expression}orfor i in first..=last { expression} | for item in set { expression}[e]orset.into_iter().for_each(|item| expression);[e] |
- ^a "step n" is used to change the loop interval. If "step" is omitted, then the loop interval is 1.
- ^b This implements the universal quantifier ("for all" or " ∀ {\displaystyle \forall } ") as well as the existential quantifier ("there exists" or " ∃ {\displaystyle \exists } ").
- ^c THRU may be used instead of THROUGH.
- ^d «IS» GREATER «THAN» may be used instead of >.
- ^e Type of set expression must implement trait std::iter::IntoIterator.
Exceptions
Further information: Exception handling syntax
throw | handler | assertion | |
---|---|---|---|
Ada22 | raise exception_name «with string_expression» | begin statementsexception when exception_list1 => statements; when exception_list2 => statements;... «when others => statements;»end[b] | pragma Assert («Check =>» boolean_expression ««Message =>» string_expression»)[function | procedure | entry] with Pre => boolean_expression Post => boolean_expressionany_type with Type_Invariant => boolean_expression |
APL | «string_expression» ⎕SIGNAL number_expression | :Trap number«s»_expression statements«:Case number«s»_expression statements»...«:Else number«s»_expression statements»:EndTrap | «string_expression» ⎕SIGNAL 98/⍨~condition |
C (C99) | longjmp(state, exception); | switch (setjmp(state)) { case 0: instructions break; case exception: instructions ... } | assert(condition); |
C++ | throw exception; | try { instructions } catch «(exception)» { instructions } ... | |
C# | try { instructions } catch «(exception« name»)» { instructions } ... «finally { instructions }» | System.Diagnostics.Debug.Assert(condition);orSystem.Diagnostics.Trace.Assert(condition); | |
Java | try { instructions } catch (exception) { instructions } ... «finally { instructions }» | assert condition «: description»; | |
JavaScript | try { instructions } catch (exception) { instructions} «finally { instructions }» | ? | |
D | try { instructions } catch (exception) { instructions } ... «finally { instructions }» | assert(condition); | |
PHP | try { instructions } catch (exception) { instructions } ... «finally { instructions }» | assert(condition); | |
S-Lang | try { instructions } catch «exception» { instructions } ... «finally { instructions }» | ? | |
Windows PowerShell | trap «[exception]» { instructions } ... instructionsortry { instructions } catch «[exception]» { instructions } ... «finally { instructions }» | [Debug]::Assert(condition) | |
Objective-C | @throw exception; | @try { instructions } @catch (exception) { instructions } ... «@finally { instructions }» | NSAssert(condition, description); |
Swift | throw exception (2.x) | do { try expression ... instructions } catch exception { instructions } ... (2.x) | assert(condition«, description») |
Perl | die exception; | eval { instructions }; if ($@) { instructions } | ? |
Raku | try { instructions CATCH { when exception { instructions } ...}} | ? | |
Ruby | raise exception | begin instructionsrescue exception instructions...«else instructions»«ensure instructions»end | |
Smalltalk | exception raise | instructionBlock on: exception do: handlerBlock | assert: conditionBlock |
Common Lisp | (error "exception")or(error type arguments)or(error (make-condition type arguments)) | (handler-case (progn instructions) (exception instructions) ...)or(handler-bind (condition (lambda instructions «invoke-restart restart args»))...)[a] | (assert condition)or(assert condition «(place) «error»»)or(check-type var type) |
Scheme (R6RS) | (raise exception) | (guard (con (condition instructions) ...) instructions) | ? |
ISLISP | (error "error-string" objects)or(signal-condition condition continuable) | (with-handler handler form*) | ? |
Pascal | raise Exception.Create() | try Except on E: exception do begin instructions end; end; | ? |
Visual Basic | Err.Raise ERRORNUMBER | With New Try: On Error Resume Next OneInstruction.Catch: On Error GoTo 0: Select Case .Number Case SOME_ERRORNUMBER instructionsEnd Select: End With'*** Try class ***Private mstrDescription As StringPrivate mlngNumber As LongPublic Sub Catch() mstrDescription = Err.Description mlngNumber = Err.NumberEnd SubPublic Property Get Number() As Long Number = mlngNumberEnd PropertyPublic Property Get Description() As String Description = mstrDescriptionEnd Property23 | Debug.Assert condition |
Visual Basic .NET | Throw exceptionorError errorcode | Try instructionsCatch« name As exception»« When condition» instructions...«Finally instructions»End Try | System.Diagnostics.Debug.Assert(condition)orSystem.Diagnostics.Trace.Assert(condition) |
Xojo | Raise exception | Try instructionsCatch «exception» instructions...«Finally instructions»End Try | — |
Python | raise exception | try:Tab ↹instructionsexcept «exception»:Tab ↹instructions...«else:Tab ↹instructions»«finally:Tab ↹instructions» | assert condition |
Fortran | — | ||
Forth | code THROW | xt CATCH ( code or 0 ) | — |
OCaml | raise exception | try expression with pattern -> expression ... | assert condition |
F# | try expression with pattern -> expression ...ortry expression finally expression | ||
Standard ML | raise exception «arg» | expression handle pattern => expression ... | |
Haskell (GHC) | throw exceptionorthrowError expression | catch tryExpression catchExpressionorcatchError tryExpression catchExpression | assert condition expression |
COBOL | RAISE «EXCEPTION» exception | USE «AFTER» EXCEPTION OBJECT class-name.orUSE «AFTER» EO class-name.orUSE «AFTER» EXCEPTION CONDITION exception-name «FILE file-name».orUSE «AFTER» EC exception-name «FILE file-name». | — |
Rust | No24 | assert!(condition) |
- ^a Common Lisp allows with-simple-restart, restart-case and restart-bind to define restarts for use with invoke-restart. Unhandled conditions may cause the implementation to show a restarts menu to the user before unwinding the stack.
- ^b Uncaught exceptions are propagated to the innermost dynamically enclosing execution. Exceptions are not propagated across tasks (unless these tasks are currently synchronised in a rendezvous).
Other control flow statements
exit block (break) | continue | label | branch (goto) | return value from generator | |
---|---|---|---|---|---|
Ada25 | exit «loop_name» «when condition» | — | label: | goto label | — |
ALGOL 68 | value exit; ... | do statements; skip exit; label: statements od | label: ... | go to label; ...goto label; ...label; ... | yield(value) |
APL | :Leave | :Continue | label: | →labelor:GoTo label | — |
C (C99) | break; | continue; | label: | goto label; | — |
Objective-C | |||||
C++ (STL) | |||||
D | |||||
C# | yield return value; | ||||
Java | break «label»; | continue «label»; | — | ||
JavaScript | yield value«;» | ||||
PHP | break «levels»; | continue «levels»; | goto label; | yield «key =>» value; | |
Perl | last «label»; | next «label»; | |||
Raku | |||||
Go | break «label» | continue «label» | goto label | ||
Swift | break «label» | continue «label» | — | ||
Bash shell | break «levels» | continue «levels» | — | — | — |
Common Lisp | (return)or(return-from block)or(loop-finish) | (tagbody tag ... tag...) | (go tag) | ||
Scheme | |||||
ISLISP | (return-from block) | (tagbody tag ... tag...) | (go tag) | ||
Pascal (ISO) | — | label:[a] | goto label; | — | |
Pascal (FPC) | break; | continue; | |||
Visual Basic | Exit blockAlternatively, for methods,Return | — | label: | GoTo label | |
Xojo | Continue block | ||||
Visual Basic .NET | Yield value | ||||
Python | break | continue | — | yield value | |
RPG IV | LEAVE; | ITER; | |||
S-Lang | break; | continue; | |||
Fortran | EXIT | CYCLE | label[b] | GOTO label | — |
Ruby | break | next | |||
Windows PowerShell | break «label» | continue | |||
OCaml | — | ||||
F# | |||||
Standard ML | |||||
Haskell (GHC) | |||||
COBOL | EXIT PERFORM or EXIT PARAGRAPH or EXIT SECTION or EXIT. | EXIT PERFORM CYCLE | label «SECTION». | GO TO label | — |
- ^a Pascal has declaration blocks. See functions.
- ^b label must be a number between 1 and 99999.
Functions
See reflective programming for calling and declaring functions by strings.
calling a function | basic/void function | value-returning function | required main function | |
---|---|---|---|---|
Ada27 | foo «(parameters)» | procedure foo «(parameters)» is begin statements end foo | function foo «(parameters)» return type is begin statements end foo | — |
ALGOL 68 | foo «(parameters)»; | proc foo = «(parameters)» void: ( instructions ); | proc foo = «(parameters)» rettype: ( instructions ...; retvalue ); | — |
APL | «parameters» foo parameters | foo←{ statements } | foo←{ statements } | — |
C (C99) | foo(«parameters») | void foo(«parameters») { instructions } | type foo(«parameters») { instructions ... return value; } | «global declarations»int main(«int argc, char *argv[]») { instructions} |
Objective-C | ||||
C++ (STL) | ||||
Java | public static void main(String[] args) { instructions }orpublic static void main(String... args) { instructions } | |||
D | int main(«char[][] args») { instructions}orint main(«string[] args») { instructions}orvoid main(«char[][] args») { instructions}orvoid main(«string[] args») { instructions} | |||
C# | Same as above; alternatively, if only one statement: void foo(«parameters») => statement; | Same as above; alternatively, if simple enough to be an expression: void foo(«parameters») => expression; | static void Main(«string[] args») method_bodyMay instead return int.(starting with C# 7.1:) May return Task or Task<int>, and if so, may be async. | |
JavaScript | function foo(«parameters») { instructions }orvar foo = function («parameters») { instructions }orvar foo = new Function ("«parameter»", ..., "«last parameter»" "instructions"); | function foo(«parameters») { instructions ... return value; } | — | |
Go | func foo(«parameters») { instructions } | func foo(«parameters») type { instructions ... return value } | func main() { instructions } | |
Swift | func foo(«parameters») { instructions } | func foo(«parameters») -> type { instructions ... return value } | — | |
Common Lisp | (foo «parameters») | (defun foo («parameters») instructions)or(setf (symbol-function 'symbol) function) | (defun foo («parameters») ... value) | — |
Scheme | (define (foo parameters) instructions)or(define foo (lambda (parameters) instructions)) | (define (foo parameters) instructions... return_value)or(define foo (lambda (parameters) instructions... return_value)) | ||
ISLISP | (defun foo («parameters») instructions) | (defun foo («parameters») ... value) | ||
Pascal | foo«(parameters)» | procedure foo«(parameters)»; «forward;»[a]«label label declarations»«const constant declarations»«type type declarations»«var variable declarations»«local function declarations»begin instructionsend; | function foo«(parameters)»: type; «forward;»[a]«label label declarations»«const constant declarations»«type type declarations»«var variable declarations»«local function declarations»begin instructions; foo := valueend; | program name;«label label declarations»«const constant declarations»«type type declarations»«var variable declarations»«function declarations»begin instructionsend. |
Visual Basic | Foo(«parameters») | Sub Foo«(parameters)» instructionsEnd Sub | Function Foo«(parameters)»« As type» instructions Foo = valueEnd Function | Sub Main() instructionsEnd Sub |
Visual Basic .NET | Same as above; alternatively: Function Foo«(parameters)»« As type» instructions Return valueEnd FunctionThe As clause is not required if Option Strict is off. A type character may be used instead of the As clause.If control exits the function without a return value having been explicitly specified, the function returns the default value for the return type. | Sub Main(««ByVal »args() As String») instructionsEnd SuborFunction Main(««ByVal »args() As String») As Integer instructionsEnd Function | ||
Xojo | ||||
Python | foo(«parameters») | def foo(«parameters»):Tab ↹instructions | def foo(«parameters»):Tab ↹instructionsTab ↹return value | — |
S-Lang | foo(«parameters» «;qualifiers») | define foo («parameters») { instructions } | define foo («parameters») { instructions ... return value; } | public define slsh_main () { instructions } |
Fortran | foo («arguments»)CALL sub_foo («arguments»)[c] | SUBROUTINE sub_foo («arguments») instructionsEND SUBROUTINE[c] | type FUNCTION foo («arguments») instructions ... foo = valueEND FUNCTION[c] | PROGRAM main instructionsEND PROGRAM |
Forth | «parameters» FOO | : FOO « stack effect comment: ( before -- ) » instructions; | : FOO « stack effect comment: ( before -- after ) » instructions; | — |
PHP | foo(«parameters») | function foo(«parameters») { instructions } | function foo(«parameters») { instructions ... return value; } | — |
Perl | foo(«parameters»)or&foo«(parameters)» | sub foo { «my (parameters) = @_;» instructions } | sub foo { «my (parameters) = @_;» instructions... «return» value; } | |
Raku | foo(«parameters»)or&foo«(parameters)» | «multi »sub foo(parameters) { instructions } | «our «type» »«multi »sub foo(parameters) { instructions ... «return» value; } | |
Ruby | foo«(parameters)» | def foo«(parameters)» instructionsend | def foo«(parameters)» instructions «return» valueend | |
Rust | foo(«parameters») | fn foo(«parameters») { instructions } | fn foo(«parameters») -> type { instructions } | fn main() { instructions } |
Scala | foo«(parameters)» | def foo«(parameters)»«: Unit =» { instructions } | def foo«(parameters)»«: type» = { instructions ... «return» value } | def main(args: Array[String]) { instructions } |
Windows PowerShell | foo «parameters» | function foo { instructions };orfunction foo { «param(parameters)» instructions } | function foo «(parameters)» { instructions ... return value };orfunction foo { «param(parameters)» instructions ... return value } | — |
Bash shell | foo «parameters» | function foo { instructions}orfoo () { instructions} | function foo { instructions return «exit_code»}orfoo () { instructions return «exit_code»} | |
| ||||
OCaml | foo parameters | let «rec» foo parameters = instructions | let «rec» foo parameters = instructions... return_value | |
F# | [<EntryPoint>] let main args = instructions | |||
Standard ML | fun foo parameters = ( instructions ) | fun foo parameters = ( instructions... return_value ) | ||
Haskell | foo parameters = doTab ↹instructions | foo parameters = return_valueorfoo parameters = doTab ↹instructionsTab ↹return value | «main :: IO ()»main = do instructions | |
Eiffel | foo («parameters») | foo («parameters») require preconditions do instructions ensure postconditions end | foo («parameters»): type require preconditions do instructions Result := value ensure postconditions end | [b] |
CoffeeScript | foo() | foo = -> | foo = -> value | — |
foo parameters | foo = () -> | foo = ( parameters ) -> value | ||
COBOL | CALL "foo" «USING parameters» «exception-handling»«END-CALL»[d] | «IDENTIFICATION DIVISION.»PROGRAM-ID. foo.«other divisions...»PROCEDURE DIVISION «USING parameters». instructions. | «IDENTIFICATION DIVISION.»PROGRAM-ID/FUNCTION-ID. foo.«other divisions...»DATA DIVISION.«other sections...»LINKAGE SECTION.«parameter definitions...»variable-to-return definition«other sections...»PROCEDURE DIVISION «USING parameters» RETURNING variable-to-return. instructions. | — |
«FUNCTION» foo«(«parameters»)» | — |
- ^a Pascal requires "forward;" for forward declarations.
- ^b Eiffel allows the specification of an application's root class and feature.
- ^c In Fortran, function/subroutine parameters are called arguments (since PARAMETER is a language keyword); the CALL keyword is required for subroutines.
- ^d Instead of using "foo", a string variable may be used instead containing the same value.
Type conversions
Where string is a signed decimal number:
string to integer | string to long integer | string to floating point | integer to string | floating point to string | |
---|---|---|---|---|---|
Ada28 | Integer'Value (string_expression) | Long_Integer'Value (string_expression) | Float'Value (string_expression) | Integer'Image (integer_expression) | Float'Image (float_expression) |
ALGOL 68 with general, and then specific formats | With prior declarations and association of: string buf := "12345678.9012e34 "; file proxy; associate(proxy, buf); | ||||
get(proxy, ivar); | get(proxy, livar); | get(proxy, rvar); | put(proxy, ival); | put(proxy, rval); | |
getf(proxy, ($g$, ivar));orgetf(proxy, ($dddd$, ivar)); | getf(proxy, ($g$, livar));orgetf(proxy, ($8d$, livar)); | getf(proxy, ($g$, rvar));orgetf(proxy, ($8d.4dE2d$, rvar)); | putf(proxy, ($g$, ival));orputf(proxy, ($4d$, ival)); | putf(proxy, ($g(width, places, exp)$, rval));orputf(proxy, ($8d.4dE2d$, rval)); | |
APL | ⍎string_expression | ⍎string_expression | ⍎string_expression | ⍕integer_expression | ⍕float_expression |
C (C99) | integer = atoi(string); | long = atol(string); | float = atof(string); | sprintf(string, "%i", integer); | sprintf(string, "%f", float); |
Objective-C | integer = [string intValue]; | long = [string longLongValue]; | float = [string doubleValue]; | string = [NSString stringWithFormat:@"%i", integer]; | string = [NSString stringWithFormat:@"%f", float]; |
C++ (STL) | «std::»istringstream(string) >> number; | «std::»ostringstream o; o << number; string = o.str(); | |||
C++11 | integer = «std::»stoi(string); | long = «std::»stol(string); | float = «std::»stof(string); double = «std::»stod(string); | string = «std::»to_string(number); | |
C# | integer = int.Parse(string); | long = long.Parse(string); | float = float.Parse(string);double = double.Parse(string); | string = number.ToString(); | |
D | integer = std.conv.to!int(string) | long = std.conv.to!long(string) | float = std.conv.to!float(string)double = std.conv.to!double(string) | string = std.conv.to!string(number) | |
Java | integer = Integer.parseInt(string); | long = Long.parseLong(string); | float = Float.parseFloat(string);double = Double.parseDouble(string); | string = Integer.toString(integer);string = String.valueOf(integer); | string = Float.toString(float);string = Double.toString(double); |
JavaScript[a] | integer = parseInt(string); | float = parseFloat(string);float = new Number (string);float = Number (string);float = +string; | string = number.toString ();string = String (number);string = number+"";string = `${number}` | ||
Go | integer, error = strconv.Atoi(string)integer, error = strconv.ParseInt(string, 10, 0) | long, error = strconv.ParseInt(string, 10, 64) | float, error = strconv.ParseFloat(string, 64) | string = strconv.Itoa(integer)string = strconv.FormatInt(integer, 10)string = fmt.Sprint(integer) | string = strconv.FormatFloat(float)string = fmt.Sprint(float) |
Rust[d] | string.parse::<i32>()i32::from_str(string) | string.parse::<i64>()i64::from_str(string) | string.parse::<f64>()f64::from_str(string) | integer.to_string() | float.to_string() |
Common Lisp | (setf integer (parse-integer string)) | (setf float (read-from-string string)) | (setf string (princ-to-string number)) | ||
Scheme | (define number (string->number string)) | (define string (number->string number)) | |||
ISLISP | (setf integer (convert string <integer>)) | (setf float (convert string <float>)) | (setf string (convert number <string>)) | ||
Pascal | integer := StrToInt(string); | float := StrToFloat(string); | string := IntToStr(integer); | string := FloatToStr(float); | |
Visual Basic | integer = CInt(string) | long = CLng(string) | float = CSng(string)double = CDbl(string) | string = CStr(number) | |
Visual Basic .NET(can use both VB syntax above and .NET methods shown right) | integer = Integer.Parse(string) | long = Long.Parse(string) | float = Single.Parse(string)double = Double.Parse(string) | string = number.ToString() | |
Xojo | integer = Val(string) | long = Val(string) | double = Val(string)double = CDbl(string) | string = CStr(number)orstring = Str(number) | |
Python | integer = int(string) | long = long(string) | float = float(string) | string = str(number) | |
S-Lang | integer = atoi(string); | long = atol(string); | float = atof(string); | string = string(number); | |
Fortran | READ(string,format) number | WRITE(string,format) number | |||
PHP | integer = intval(string);orinteger = (int)string; | float = floatval(string);float = (float)string; | string = "$number";orstring = strval(number);orstring = (string)number; | ||
Perl[b] | number = 0 + string; | string = "number"; | |||
Raku | number = +string; | string = ~number; | |||
Ruby | integer = string.to_iorinteger = Integer(string) | float = string.to_ffloat = Float(string) | string = number.to_s | ||
Scala | integer = string.toInt | long = string.toLong | float = string.toFloatdouble = string.toDouble | string = number.toString | |
Smalltalk | integer := Integer readFrom: string | float := Float readFrom: string | string := number asString | ||
Windows PowerShell | integer = [int]string | long = [long]string | float = [float]string | string = [string]number;orstring = "number";orstring = (number).ToString() | |
OCaml | let integer = int_of_string string | let float = float_of_string string | let string = string_of_int integer | let string = string_of_float float | |
F# | let integer = int string | let integer = int64 string | let float = float string | let string = string number | |
Standard ML | val integer = Int.fromString string | val float = Real.fromString string | val string = Int.toString integer | val string = Real.toString float | |
Haskell (GHC) | number = read string | string = show number | |||
COBOL | MOVE «FUNCTION» NUMVAL(string)[c] TO number | MOVE number TO numeric-edited |
- ^a JavaScript only uses floating point numbers so there are some technicalities.29
- ^b Perl doesn't have separate types. Strings and numbers are interchangeable.
- ^c NUMVAL-C or NUMVAL-F may be used instead of NUMVAL.
- ^ str::parse is available to convert any type that has an implementation of the std::str::FromStr trait. Both str::parse and FromStr::from_str return a Result that contains the specified type if there is no error. The turbofish (::<_>) on str::parse can be omitted if the type can be inferred from context.
Standard stream I/O
read from | write to | ||
---|---|---|---|
stdin | stdout | stderr | |
Ada30 | Get (x) | Put (x) | Put (Standard_Error, x) |
ALGOL 68 | readf(($format$, x));orgetf(stand in, ($format$, x)); | printf(($format$, x));orputf(stand out, ($format$, x)); | putf(stand error, ($format$, x));[a] |
APL | x←⎕ | ⎕←x | ⍞←x |
C (C99) | scanf(format, &x);orfscanf(stdin, format, &x);[b] | printf(format, x);orfprintf(stdout, format, x);[c] | fprintf(stderr, format, x);[d] |
Objective-C | data = [[NSFileHandle fileHandleWithStandardInput] readDataToEndOfFile]; | [[NSFileHandle fileHandleWithStandardOutput] writeData:data]; | [[NSFileHandle fileHandleWithStandardError] writeData:data]; |
C++ | «std::»cin >> x;or«std::»getline(«std::»cin, str); | «std::»cout << x; | «std::»cerr << x;or«std::»clog << x; |
C# | x = Console.Read();orx = Console.ReadLine(); | Console.Write(«format, »x);orConsole.WriteLine(«format, »x); | Console.Error.Write(«format, »x);orConsole.Error.WriteLine(«format, »x); |
D | x = std.stdio.readln() | std.stdio.write(x)orstd.stdio.writeln(x)orstd.stdio.writef(format, x)orstd.stdio.writefln(format, x) | stderr.write(x)orstderr.writeln(x)orstd.stdio.writef(stderr, format, x)orstd.stdio.writefln(stderr, format, x) |
Java | x = System.in.read();orx = new Scanner(System.in).nextInt();orx = new Scanner(System.in).nextLine(); | System.out.print(x);orSystem.out.printf(format, x);orSystem.out.println(x); | System.err.print(x);orSystem.err.printf(format, x);orSystem.err.println(x); |
Go | fmt.Scan(&x)orfmt.Scanf(format, &x)orx = bufio.NewReader(os.Stdin).ReadString('\n') | fmt.Println(x)orfmt.Printf(format, x) | fmt.Fprintln(os.Stderr, x)orfmt.Fprintf(os.Stderr, format, x) |
Swift | x = readLine() (2.x) | print(x) (2.x)println(x) (1.x) | |
JavaScriptWeb Browser implementation | document.write(x) | ||
JavaScriptActive Server Pages | Response.Write(x) | ||
JavaScriptWindows Script Host | x = WScript.StdIn.Read(chars)orx = WScript.StdIn.ReadLine() | WScript.Echo(x)orWScript.StdOut.Write(x)orWScript.StdOut.WriteLine(x) | WScript.StdErr.Write(x)orWScript.StdErr.WriteLine(x) |
Common Lisp | (setf x (read-line)) | (princ x)or(format t format x) | (princ x *error-output*)or(format *error-output* format x) |
Scheme (R6RS) | (define x (read-line)) | (display x)or(format #t format x) | (display x (current-error-port))or(format (current-error-port) format x) |
ISLISP | (setf x (read-line)) | (format (standard-output) format x) | (format (error-output) format x) |
Pascal | read(x);orreadln(x); | write(x);orwriteln(x); | write(stderr, x);orwriteln(stderr, x); |
Visual Basic | Input« prompt,» x | Print xor? x | — |
Visual Basic .NET | x = Console.Read()orx = Console.ReadLine() | Console.Write(«format,»x)orConsole.WriteLine(«format, »x) | Console.Error.Write(«format, »x)orConsole.Error.WriteLine(«format, »x) |
Xojo | x = StandardInputStream.Read()orx = StandardInputStreame.ReadLine() | StandardOutputStream.Write(x)orStandardOutputStream.WriteLine(x) | StdErr.Write(x)orStdErr.WriteLine(x) |
Python 2.x | x = raw_input(«prompt») | print xorsys.stdout.write(x) | print >> sys.stderr, xorsys.stderr.write(x) |
Python 3.x | x = input(«prompt») | print(x«, end=""») | print(x«, end=""», file=sys.stderr) |
S-Lang | fgets (&x, stdin) | fputs (x, stdout) | fputs (x, stderr) |
Fortran | READ(*,format) variable names orREAD(INPUT_UNIT,format) variable names[e] | WRITE(*,format) expressions orWRITE(OUTPUT_UNIT,format) expressions[e] | WRITE(ERROR_UNIT,format) expressions[e] |
Forth | buffer length ACCEPT ( # chars read )KEY ( char ) | buffer length TYPEchar EMIT | — |
PHP | $x = fgets(STDIN);or$x = fscanf(STDIN, format); | print x;orecho x;orprintf(format, x); | fprintf(STDERR, format, x); |
Perl | $x = <>;or$x = <STDIN>; | print x;orprintf format, x; | print STDERR x;orprintf STDERR format, x; |
Raku | $x = $*IN.get; | x.printorx.say | x.noteor$*ERR.print(x)or$*ERR.say(x) |
Ruby | x = gets | puts xorprintf(format, x) | $stderr.puts(x)or$stderr.printf(format, x) |
Windows PowerShell | $x = Read-Host«« -Prompt» text»;or$x = [Console]::Read();or$x = [Console]::ReadLine() | x;orWrite-Output x;orecho x | Write-Error x |
OCaml | let x = read_int ()orlet str = read_line ()orScanf.scanf format (fun x ... -> ...) | print_int xorprint_endline strorPrintf.printf format x ... | prerr_int xorprerr_endline strorPrintf.eprintf format x ... |
F# | let x = System.Console.ReadLine() | printf format x ...orprintfn format x ... | eprintf format x ...oreprintfn format x ... |
Standard ML | val str = TextIO.inputLIne TextIO.stdIn | print str | TextIO.output (TextIO.stdErr, str) |
Haskell (GHC) | x <- readLnorstr <- getLine | print xorputStrLn str | hPrint stderr xorhPutStrLn stderr str |
COBOL | ACCEPT x | DISPLAY x |
- ^a ALGOL 68 additionally as the "unformatted" transput routines: read, write, get, and put.
- ^b gets(x) and fgets(x, length, stdin) read unformatted text from stdin. Use of gets is not recommended.
- ^c puts(x) and fputs(x, stdout) write unformatted text to stdout.
- ^d fputs(x, stderr) writes unformatted text to stderr
- ^e INPUT_UNIT, OUTPUT_UNIT, ERROR_UNIT are defined in the ISO_FORTRAN_ENV module.31
Reading command-line arguments
Argument values | Argument counts | Program name / Script name | |
---|---|---|---|
Ada32 | Argument (n) | Argument_Count | Command_Name |
C (C99) | argv[n] | argc | first argument |
Objective-C | |||
C++ | |||
C# | args[n] | args.Length | Assembly.GetEntryAssembly().Location; |
Java | args.length | ||
D | first argument | ||
JavaScriptWindows Script Host implementation | WScript.Arguments(n) | WScript.Arguments.length | WScript.ScriptNameorWScript.ScriptFullName |
Go | os.Args[n] | len(os.Args) | first argument |
Rust[a] | std::env::args().nth(n)std::env::args_os().nth(n) | std::env::args().count()std::env::args_os().count() | std::env::args().next()std::env::args_os().next() |
Swift | Process.arguments[n] orProcess.unsafeArgv[n] | Process.arguments.count orProcess.argc | first argument |
Common Lisp | ? | ? | ? |
Scheme (R6RS) | (list-ref (command-line) n) | (length (command-line)) | first argument |
ISLISP | — | — | — |
Pascal | ParamStr(n) | ParamCount | first argument |
Visual Basic | Command[b] | — | App.Path |
Visual Basic .NET | CmdArgs(n) | CmdArgs.Length | [Assembly].GetEntryAssembly().Location |
Xojo | System.CommandLine | (string parsing) | Application.ExecutableFile.Name |
Python | sys.argv[n] | len(sys.argv) | first argument |
S-Lang | __argv[n] | __argc | first argument |
Fortran | DO i = 1,argc CALL GET_COMMAND_ARGUMENT (i,argv(i))ENDDO | argc = COMMAND_ARGUMENT_COUNT () | CALL GET_COMMAND_ARGUMENT (0,progname) |
PHP | $argv[n] | $argc | first argument |
Bash shell | $n ($1, $2, $3, ...)$@ (all arguments) | $# | $0 |
Perl | $ARGV[n] | scalar(@ARGV) | $0 |
Raku | @*ARGS[n] | @*ARGS.elems | $PROGRAM_NAME |
Ruby | ARGV[n] | ARGV.size | $0 |
Windows PowerShell | $args[n] | $args.Length | $MyInvocation.MyCommand.Name |
OCaml | Sys.argv.(n) | Array.length Sys.argv | first argument |
F# | args.[n] | args.Length | Assembly.GetEntryAssembly().Location |
Standard ML | List.nth (CommandLine.arguments (), n) | length (CommandLine.arguments ()) | CommandLine.name () |
Haskell (GHC) | do { args <- System.getArgs; return length args !! n} | do { args <- System.getArgs; return length args} | System.getProgName |
COBOL | [c] | — |
- ^a In Rust, std::env::args and std::env::args_os return iterators, std::env::Args and std::env::ArgsOs respectively. Args converts each argument to a String and it panics if it reaches an argument that cannot be converted to UTF-8. ArgsOs returns a non-lossy representation of the raw strings from the operating system (std::ffi::OsString), which can be invalid UTF-8.
- ^b In Visual Basic, command-line arguments are not separated. Separating them requires a split function Split(string).
- ^c The COBOL standard includes no means to access command-line arguments, but common compiler extensions to access them include defining parameters for the main program or using ACCEPT statements.
Execution of commands
Shell command | Execute program | Replace current program with new executed program | |
---|---|---|---|
Ada33 | Not part of the language standard. Commonly done by compiler provided packages or by interfacing to C or POSIX.34 | ||
C | system("command"); | execl(path, args);orexecv(path, arglist); | |
C++ | |||
Objective-C | [NSTask launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray *)arguments]; | ||
C# | System.Diagnostics.Process.Start(path, argstring); | ||
F# | |||
Go | exec.Run(path, argv, envv, dir, exec.DevNull, exec.DevNull, exec.DevNull) | os.Exec(path, argv, envv) | |
Visual Basic | Interaction.Shell(command «, WindowStyle» «, isWaitOnReturn») | ||
Visual Basic .NET | Microsoft.VisualBasic.Interaction.Shell(command «, WindowStyle» «, isWaitOnReturn») | System.Diagnostics.Process.Start(path, argstring) | |
Xojo | Shell.Execute(command «, Parameters») | FolderItem.Launch(parameters, activate) | — |
D | std.process.system("command"); | std.process.execv(path, arglist); | |
Java | Runtime.exec(command);ornew ProcessBuilder(command).start(); | ||
JavaScriptWindows Script Host implementation | WScript.CreateObject ("WScript.Shell").Run(command «, WindowStyle» «, isWaitOnReturn»); | WshShell.Exec(command) | |
Common Lisp | (uiop:run-program command) | ||
Scheme | (system command) | ||
ISLISP | — | — | — |
Pascal | system(command); | ||
OCaml | Sys.command command, Unix.open_process_full command env (stdout, stdin, stderr),... | Unix.create_process prog args new_stdin new_stdout new_stderr, ... | Unix.execv prog argsorUnix.execve prog args env |
Standard ML | OS.Process.system command | Unix.execute (path, args) | Posix.Process.exec (path, args) |
Haskell (GHC) | System.system command | System.Process.runProcess path args ... | Posix.Process.executeFile path True args ... |
Perl | system(command)or$output = `command`or$output = qx(command) | exec(path, args) | |
Ruby | system(command)oroutput = `command` | exec(path, args) | |
PHP | system(command)or$output = `command`orexec(command)orpassthru(command) | ||
Python | os.system(command)orsubprocess.Popen(command) | subprocess.call(["program", "arg1", "arg2", ...]) | os.execv(path, args) |
S-Lang | system(command) | ||
Fortran | CALL EXECUTE_COMMAND_LINE (COMMAND «, WAIT» «, EXITSTAT» «, CMDSTAT» «, CMDMSG»)[a] | ||
Windows PowerShell | [Diagnostics.Process]::Start(command) | «Invoke-Item »program arg1 arg2 ... | |
Bash shell | output=`command`oroutput=$(command) | program arg1 arg2 ... |
^a Fortran 2008 or newer.35
See also
References
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"Common Lisp HyperSpec (TM)". lispworks.com. Retrieved 30 January 2017. http://www.lispworks.com/documentation/HyperSpec/Front/index.htm ↩
"www.islisp.info: Specification". islisp.info. Archived from the original on 22 January 2016. Retrieved 30 January 2017. https://web.archive.org/web/20160122121427/http://islisp.info/specification.html ↩
"selected_int_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017. http://fortranwiki.org/fortran/show/selected_int_kind ↩
"Erlang — Types and Function Specifications". erlang.org. Retrieved 30 January 2017. http://www.erlang.org/doc/reference_manual/typespec.html ↩
"Erlang — Advanced". erlang.org. Retrieved 30 January 2017. http://www.erlang.org/doc/efficiency_guide/advanced.html ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
8.5 The Number Type https://www.mozilla.org/js/language/E262-3.pdf ↩
"selected_real_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017. http://fortranwiki.org/fortran/show/selected_real_kind ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"The GNU C Library: Complex Numbers". gnu.org. Retrieved 30 January 2017. https://www.gnu.org/software/libc/manual/html_node/Complex-Numbers.html#Complex-Numbers ↩
"selected_real_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017. http://fortranwiki.org/fortran/show/selected_real_kind ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"selected_int_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017. http://fortranwiki.org/fortran/show/selected_int_kind ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"Grammar vb". Visual Basic Language Specification. 2016-06-17. Archived from the original on 2019-08-29. Retrieved 2019-08-29. https://ljw1004.github.io/vbspec/vb.html ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"for...of". mozilla.org. Retrieved 30 January 2017. https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for...of ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"Try-Catch for VB". google.com. Archived from the original on 16 April 2016. Retrieved 30 January 2017. https://web.archive.org/web/20160416093023/https://sites.google.com/site/truetryforvisualbasic/ ↩
Klabnik, Steve; Nichols, Carol. "Error Handling". The Rust Programming Language. https://doc.rust-lang.org/book/ch09-00-error-handling.html ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"Prime decomposition – Rosetta Code". rosettacode.org. Retrieved 30 January 2017. http://rosettacode.org/wiki/Prime_decomposition#ALGOL_68 ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
8.5 The Number Type https://www.mozilla.org/js/language/E262-3.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"iso_fortran_env in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017. http://fortranwiki.org/fortran/show/iso_fortran_env ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19. https://web.archive.org/web/20110427190723/http://www.ada-auth.org/standards/12rm/RM-Final.pdf ↩
"Execute a system command – Rosetta Code". rosettacode.org. Retrieved 30 January 2017. http://rosettacode.org/wiki/Execute_a_system_command#Ada ↩
"EXECUTE_COMMAND_LINE – The GNU Fortran Compiler". gnu.org. Retrieved 30 January 2017. https://gcc.gnu.org/onlinedocs/gfortran/EXECUTE_005fCOMMAND_005fLINE.html ↩