Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Elliptic gamma function
Elliptic analog of the gamma function

In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by

Γ ( z ; p , q ) = ∏ m = 0 ∞ ∏ n = 0 ∞ 1 − p m + 1 q n + 1 / z 1 − p m q n z . {\displaystyle \Gamma (z;p,q)=\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1}/z}{1-p^{m}q^{n}z}}.}

It obeys several identities:

Γ ( z ; p , q ) = 1 Γ ( p q / z ; p , q ) {\displaystyle \Gamma (z;p,q)={\frac {1}{\Gamma (pq/z;p,q)}}\,} Γ ( p z ; p , q ) = θ ( z ; q ) Γ ( z ; p , q ) {\displaystyle \Gamma (pz;p,q)=\theta (z;q)\Gamma (z;p,q)\,}

and

Γ ( q z ; p , q ) = θ ( z ; p ) Γ ( z ; p , q ) {\displaystyle \Gamma (qz;p,q)=\theta (z;p)\Gamma (z;p,q)\,}

where θ is the q-theta function.

When p = 0 {\displaystyle p=0} , it essentially reduces to the infinite q-Pochhammer symbol:

Γ ( z ; 0 , q ) = 1 ( z ; q ) ∞ . {\displaystyle \Gamma (z;0,q)={\frac {1}{(z;q)_{\infty }}}.}
We don't have any images related to Elliptic gamma function yet.
We don't have any YouTube videos related to Elliptic gamma function yet.
We don't have any PDF documents related to Elliptic gamma function yet.
We don't have any Books related to Elliptic gamma function yet.
We don't have any archived web articles related to Elliptic gamma function yet.

Multiplication Formula

Define

Γ ~ ( z ; p , q ) := ( q ; q ) ∞ ( p ; p ) ∞ ( θ ( q ; p ) ) 1 − z ∏ m = 0 ∞ ∏ n = 0 ∞ 1 − p m + 1 q n + 1 − z 1 − p m q n + z . {\displaystyle {\tilde {\Gamma }}(z;p,q):={\frac {(q;q)_{\infty }}{(p;p)_{\infty }}}(\theta (q;p))^{1-z}\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1-z}}{1-p^{m}q^{n+z}}}.}

Then the following formula holds with r = q n {\displaystyle r=q^{n}} (Felder & Varchenko (2002)).

Γ ~ ( n z ; p , q ) Γ ~ ( 1 / n ; p , r ) Γ ~ ( 2 / n ; p , r ) ⋯ Γ ~ ( ( n − 1 ) / n ; p , r ) = ( θ ( r ; p ) θ ( q ; p ) ) n z − 1 Γ ~ ( z ; p , r ) Γ ~ ( z + 1 / n ; p , r ) ⋯ Γ ~ ( z + ( n − 1 ) / n ; p , r ) . {\displaystyle {\tilde {\Gamma }}(nz;p,q){\tilde {\Gamma }}(1/n;p,r){\tilde {\Gamma }}(2/n;p,r)\cdots {\tilde {\Gamma }}((n-1)/n;p,r)=\left({\frac {\theta (r;p)}{\theta (q;p)}}\right)^{nz-1}{\tilde {\Gamma }}(z;p,r){\tilde {\Gamma }}(z+1/n;p,r)\cdots {\tilde {\Gamma }}(z+(n-1)/n;p,r).}