Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Exponential hierarchy

In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds 2 c n {\displaystyle 2^{cn}} for a constant c, and full exponential bounds 2 n c {\displaystyle 2^{n^{c}}} ), leading to two versions of the exponential hierarchy. This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.

We don't have any images related to Exponential hierarchy yet.
We don't have any YouTube videos related to Exponential hierarchy yet.
We don't have any PDF documents related to Exponential hierarchy yet.
We don't have any Books related to Exponential hierarchy yet.
We don't have any archived web articles related to Exponential hierarchy yet.

EH

The complexity class EH is the union of the classes Σ k E {\displaystyle \Sigma _{k}^{\mathsf {E}}} for all k, where Σ k E = N E Σ k − 1 P {\displaystyle \Sigma _{k}^{\mathsf {E}}={\mathsf {NE}}^{\Sigma _{k-1}^{\mathsf {P}}}} (i.e., languages computable in nondeterministic time 2 c n {\displaystyle 2^{cn}} for some constant c with a Σ k − 1 P {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle) and Σ 0 E = E {\displaystyle \Sigma _{0}^{\mathsf {E}}={\mathsf {E}}} . One also defines

Π k E = c o N E Σ k − 1 P {\displaystyle \Pi _{k}^{\mathsf {E}}={\mathsf {coNE}}^{\Sigma _{k-1}^{\mathsf {P}}}} and Δ k E = E Σ k − 1 P . {\displaystyle \Delta _{k}^{\mathsf {E}}={\mathsf {E}}^{\Sigma _{k-1}^{\mathsf {P}}}.}

An equivalent definition is that a language L is in Σ k E {\displaystyle \Sigma _{k}^{\mathsf {E}}} if and only if it can be written in the form

x ∈ L ⟺ ∃ y 1 ∀ y 2 … Q y k R ( x , y 1 , … , y k ) , {\displaystyle x\in L\iff \exists y_{1}\forall y_{2}\dots Qy_{k}R(x,y_{1},\ldots ,y_{k}),}

where R ( x , y 1 , … , y n ) {\displaystyle R(x,y_{1},\ldots ,y_{n})} is a predicate computable in time 2 c | x | {\displaystyle 2^{c|x|}} (which implicitly bounds the length of yi). Also equivalently, EH is the class of languages computable on an alternating Turing machine in time 2 c n {\displaystyle 2^{cn}} for some c with constantly many alternations.

EXPH

EXPH is the union of the classes Σ k E X P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}} , where Σ k E X P = N E X P Σ k − 1 P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}={\mathsf {NEXP}}^{\Sigma _{k-1}^{\mathsf {P}}}} (languages computable in nondeterministic time 2 n c {\displaystyle 2^{n^{c}}} for some constant c with a Σ k − 1 P {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle), Σ 0 E X P = E X P {\displaystyle \Sigma _{0}^{\mathsf {EXP}}={\mathsf {EXP}}} , and again:

Π k E X P = c o N E X P Σ k − 1 P , Δ k E X P = E X P Σ k − 1 P . {\displaystyle \Pi _{k}^{\mathsf {EXP}}={\mathsf {coNEXP}}^{\Sigma _{k-1}^{\mathsf {P}}},\Delta _{k}^{\mathsf {EXP}}={\mathsf {EXP}}^{\Sigma _{k-1}^{\mathsf {P}}}.}

A language L is in Σ k E X P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}} if and only if it can be written as

x ∈ L ⟺ ∃ y 1 ∀ y 2 … Q y k R ( x , y 1 , … , y k ) , {\displaystyle x\in L\iff \exists y_{1}\forall y_{2}\dots Qy_{k}R(x,y_{1},\ldots ,y_{k}),}

where R ( x , y 1 , … , y k ) {\displaystyle R(x,y_{1},\ldots ,y_{k})} is computable in time 2 | x | c {\displaystyle 2^{|x|^{c}}} for some c, which again implicitly bounds the length of yi. Equivalently, EXPH is the class of languages computable in time 2 n c {\displaystyle 2^{n^{c}}} on an alternating Turing machine with constantly many alternations.

Comparison

ENE ⊆ EH⊆ ESPACE, EXPNEXP ⊆ EXPH⊆ EXPSPACE, EH ⊆ EXPH.

Complexity Zoo: Class EH

References

  1. Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in PH, Theoretical Computer Science 158 (1996), no. 1–2, pp. 221–231. /wiki/Theoretical_Computer_Science_(journal)

  2. Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122.

  3. Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122.

  4. Hemachandra, Lane A. (1989). "The strong exponential hierarchy collapses". Journal of Computer and System Sciences. 39 (3): 299–322. doi:10.1016/0022-0000(89)90025-1. /wiki/Journal_of_Computer_and_System_Sciences