Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Ferrers function

In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions. They are named after Norman Macleod Ferrers.

We don't have any images related to Ferrers function yet.
We don't have any YouTube videos related to Ferrers function yet.
We don't have any PDF documents related to Ferrers function yet.
We don't have any Books related to Ferrers function yet.
We don't have any archived web articles related to Ferrers function yet.

Definitions

Define μ {\displaystyle \mu } the order, and the ν {\displaystyle \nu } degree are real, and assume x ∈ ( − 1 , + 1 ) {\displaystyle x\in (-1,+1)} .

Ferrers function of the first kind P v μ ( x ) = ( 1 + x 1 − x ) μ / 2 ⋅ 2 F 1 ( v + 1 , − v ; 1 − μ ; 1 / 2 − x / 2 ) Γ ( 1 − μ ) {\displaystyle P_{v}^{\mu }(x)=\left({\frac {1+x}{1-x}}\right)^{\mu /2}\cdot {\frac {{}_{2}F_{1}(v+1,-v;1-\mu ;1/2-x/2)}{\Gamma (1-\mu )}}} Ferrers function of the second kind Q v μ ( x ) = π 2 sin ⁡ ( μ π ) ( cos ⁡ ( μ π ) ( 1 + x 1 − x ) μ 2 2 F 1 ( v + 1 , − v ; 1 − μ ; 1 − x 2 ) Γ ( 1 − μ ) − Γ ( ν + μ + 1 ) Γ ( ν − μ + 1 ) ( 1 − x 1 + x ) μ 2 2 F 1 ( v + 1 , − v ; 1 + μ ; 1 − x 2 ) Γ ( 1 + μ ) ) {\displaystyle Q_{v}^{\mu }(x)={\frac {\pi }{2\sin(\mu \pi )}}\left(\cos(\mu \pi )\left({\frac {1+x}{1-x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1-\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1-\mu )}}-{\frac {\Gamma (\nu +\mu +1)}{\Gamma (\nu -\mu +1)}}\left({\frac {1-x}{1+x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1+\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1+\mu )}}\right)}

See also

References

  1. Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Ferrers Function", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  2. "DLMF: §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions". dlmf.nist.gov. Retrieved 2025-03-17. https://dlmf.nist.gov/14.3

  3. Ferrers, Norman Macleod. An elementary treatise on spherical harmonics and subjects connected with them. Macmillan and Company, 1877.