Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
First variation

In applied mathematics and the calculus of variations, the first variation of a functional J(y) is defined as the linear functional δ J ( y ) {\displaystyle \delta J(y)} mapping the function h to

δ J ( y , h ) = lim ε → 0 J ( y + ε h ) − J ( y ) ε = d d ε J ( y + ε h ) | ε = 0 , {\displaystyle \delta J(y,h)=\lim _{\varepsilon \to 0}{\frac {J(y+\varepsilon h)-J(y)}{\varepsilon }}=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}J(y+\varepsilon h)\right|_{\varepsilon =0},}

where y and h are functions, and ε is a scalar. This is recognizable as the Gateaux derivative of the functional.

We don't have any images related to First variation yet.
We don't have any YouTube videos related to First variation yet.
We don't have any PDF documents related to First variation yet.
We don't have any Books related to First variation yet.
We don't have any archived web articles related to First variation yet.

Example

Compute the first variation of

J ( y ) = ∫ a b y y ′ d x . {\displaystyle J(y)=\int _{a}^{b}yy'\mathrm {d} x.}

From the definition above,

δ J ( y , h ) = d d ε J ( y + ε h ) | ε = 0 = d d ε ∫ a b ( y + ε h ) ( y ′ + ε h ′ )   d x | ε = 0 = d d ε ∫ a b ( y y ′ + y ε h ′ + y ′ ε h + ε 2 h h ′ )   d x | ε = 0 = ∫ a b d d ε ( y y ′ + y ε h ′ + y ′ ε h + ε 2 h h ′ )   d x | ε = 0 = ∫ a b ( y h ′ + y ′ h + 2 ε h h ′ )   d x | ε = 0 = ∫ a b ( y h ′ + y ′ h )   d x {\displaystyle {\begin{aligned}\delta J(y,h)&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}J(y+\varepsilon h)\right|_{\varepsilon =0}\\&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}(y+\varepsilon h)(y^{\prime }+\varepsilon h^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}(yy^{\prime }+y\varepsilon h^{\prime }+y^{\prime }\varepsilon h+\varepsilon ^{2}hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.\int _{a}^{b}{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}(yy^{\prime }+y\varepsilon h^{\prime }+y^{\prime }\varepsilon h+\varepsilon ^{2}hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\left.\int _{a}^{b}(yh^{\prime }+y^{\prime }h+2\varepsilon hh^{\prime })\ \mathrm {d} x\right|_{\varepsilon =0}\\&=\int _{a}^{b}(yh^{\prime }+y^{\prime }h)\ \mathrm {d} x\\\end{aligned}}}

See also