Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fréchet lattice

In mathematics, specifically in order theory and functional analysis, a Fréchet lattice is a topological vector lattice that is also a Fréchet space. Fréchet lattices are important in the theory of topological vector lattices.

We don't have any images related to Fréchet lattice yet.
We don't have any YouTube videos related to Fréchet lattice yet.
We don't have any PDF documents related to Fréchet lattice yet.
We don't have any Books related to Fréchet lattice yet.
We don't have any archived web articles related to Fréchet lattice yet.

Properties

Every Fréchet lattice is a locally convex vector lattice.2 The set of all weak order units of a separable Fréchet lattice is a dense subset of its positive cone.3

Examples

Every Banach lattice is a Fréchet lattice.

See also

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Schaefer & Wolff 1999, pp. 234–242. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135