Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fractal
Infinitely detailed mathematical structure

In mathematics, a fractal is a geometric shape exhibiting detailed structure at arbitrarily small scales, characterized by a fractal dimension that exceeds its topological dimension. Many fractals display self-similarity, as seen in the Mandelbrot set and the Menger sponge, meaning parts resemble the whole at various scales. Unlike ordinary geometric figures, fractals scale non-integer dimensions, leading to complex patterns that are often nowhere differentiable. Originating from ideas of recursion in the 17th century, fractal geometry advanced through the work of mathematicians like Bolzano and Riemann, eventually being formalized by Mandelbrot. Today, fractals play a key role in chaos theory and appear widely in nature, art, and science.

Related Image Collections Add Image
We don't have any YouTube videos related to Fractal yet.
We don't have any PDF documents related to Fractal yet.
We don't have any Books related to Fractal yet.

Etymology

The term "fractal" was coined by the mathematician Benoît Mandelbrot in 1975.38 Mandelbrot based it on the Latin frāctus, meaning "broken" or "fractured", and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature.394041

Introduction

The word "fractal" often has different connotations for mathematicians and the general public, where the public is more likely to be familiar with fractal art than the mathematical concept. The mathematical concept is difficult to define formally, even for mathematicians, but key features can be understood with a little mathematical background.

The feature of "self-similarity", for instance, is easily understood by analogy to zooming in with a lens or other device that zooms in on digital images to uncover finer, previously invisible, new structure. If this is done on fractals, however, no new detail appears; nothing changes and the same pattern repeats over and over, or for some fractals, nearly the same pattern reappears over and over. Self-similarity itself is not necessarily counter-intuitive (e.g., people have pondered self-similarity informally such as in the infinite regress in parallel mirrors or the homunculus, the little man inside the head of the little man inside the head ...). The difference for fractals is that the pattern reproduced must be detailed.42: 166, 18 4344

This idea of being detailed relates to another feature that can be understood without much mathematical background: Having a fractal dimension greater than its topological dimension, for instance, refers to how a fractal scales compared to how geometric shapes are usually perceived. A straight line, for instance, is conventionally understood to be one-dimensional; if such a figure is rep-tiled into pieces each 1/3 the length of the original, then there are always three equal pieces. A solid square is understood to be two-dimensional; if such a figure is rep-tiled into pieces each scaled down by a factor of 1/3 in both dimensions, there are a total of 32 = 9 pieces.

We see that for ordinary self-similar objects, being n-dimensional means that when it is rep-tiled into pieces each scaled down by a scale-factor of 1/r, there are a total of rn pieces. Now, consider the Koch curve. It can be rep-tiled into four sub-copies, each scaled down by a scale-factor of 1/3. So, strictly by analogy, we can consider the "dimension" of the Koch curve as being the unique real number D that satisfies 3D = 4. This number is called the fractal dimension of the Koch curve; it is not the conventionally perceived dimension of a curve. In general, a key property of fractals is that the fractal dimension differs from the conventionally understood dimension (formally called the topological dimension).

This also leads to understanding a third feature, that fractals as mathematical equations are "nowhere differentiable". In a concrete sense, this means fractals cannot be measured in traditional ways.454647 To elaborate, in trying to find the length of a wavy non-fractal curve, one could find straight segments of some measuring tool small enough to lay end to end over the waves, where the pieces could get small enough to be considered to conform to the curve in the normal manner of measuring with a tape measure. But in measuring an infinitely "wiggly" fractal curve such as the Koch snowflake, one would never find a small enough straight segment to conform to the curve, because the jagged pattern would always re-appear, at arbitrarily small scales, essentially pulling a little more of the tape measure into the total length measured each time one attempted to fit it tighter and tighter to the curve. The result is that one must need infinite tape to perfectly cover the entire curve, i.e. the snowflake has an infinite perimeter.48

History

The history of fractals traces a path from chiefly theoretical studies to modern applications in computer graphics, with several notable people contributing canonical fractal forms along the way.4950 A common theme in traditional African architecture is the use of fractal scaling, whereby small parts of the structure tend to look similar to larger parts, such as a circular village made of circular houses.51 According to Pickover, the mathematics behind fractals began to take shape in the 17th century when the mathematician and philosopher Gottfried Leibniz pondered recursive self-similarity (although he made the mistake of thinking that only the straight line was self-similar in this sense).52

In his writings, Leibniz used the term "fractional exponents", but lamented that "Geometry" did not yet know of them.53: 405  Indeed, according to various historical accounts, after that point few mathematicians tackled the issues and the work of those who did remained obscured largely because of resistance to such unfamiliar emerging concepts, which were sometimes referred to as mathematical "monsters".545556 Thus, it was not until two centuries had passed that on July 18, 1872 Karl Weierstrass presented the first definition of a function with a graph that would today be considered a fractal, having the non-intuitive property of being everywhere continuous but nowhere differentiable at the Royal Prussian Academy of Sciences.57: 7 58

In addition, the quotient difference becomes arbitrarily large as the summation index increases.59 Not long after that, in 1883, Georg Cantor, who attended lectures by Weierstrass,60 published examples of subsets of the real line known as Cantor sets, which had unusual properties and are now recognized as fractals.61: 11–24  Also in the last part of that century, Felix Klein and Henri Poincaré introduced a category of fractal that has come to be called "self-inverse" fractals.62: 166 

One of the next milestones came in 1904, when Helge von Koch, extending ideas of Poincaré and dissatisfied with Weierstrass's abstract and analytic definition, gave a more geometric definition including hand-drawn images of a similar function, which is now called the Koch snowflake.63: 25 64 Another milestone came a decade later in 1915, when Wacław Sierpiński constructed his famous triangle then, one year later, his carpet. By 1918, two French mathematicians, Pierre Fatou and Gaston Julia, though working independently, arrived essentially simultaneously at results describing what is now seen as fractal behaviour associated with mapping complex numbers and iterative functions and leading to further ideas about attractors and repellors (i.e., points that attract or repel other points), which have become very important in the study of fractals.656667

Very shortly after that work was submitted, by March 1918, Felix Hausdorff expanded the definition of "dimension", significantly for the evolution of the definition of fractals, to allow for sets to have non-integer dimensions.68 The idea of self-similar curves was taken further by Paul Lévy, who, in his 1938 paper Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole, described a new fractal curve, the Lévy C curve.69

Different researchers have postulated that without the aid of modern computer graphics, early investigators were limited to what they could depict in manual drawings, so lacked the means to visualize the beauty and appreciate some of the implications of many of the patterns they had discovered (the Julia set, for instance, could only be visualized through a few iterations as very simple drawings).70: 179 7172 That changed, however, in the 1960s, when Benoit Mandelbrot started writing about self-similarity in papers such as How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension,7374 which built on earlier work by Lewis Fry Richardson.

In 1975,75 Mandelbrot solidified hundreds of years of thought and mathematical development in coining the word "fractal" and illustrated his mathematical definition with striking computer-constructed visualizations. These images, such as of his canonical Mandelbrot set, captured the popular imagination; many of them were based on recursion, leading to the popular meaning of the term "fractal".76777879

In 1980, Loren Carpenter gave a presentation at the SIGGRAPH where he introduced his software for generating and rendering fractally generated landscapes.80

Definition and characteristics

One often cited description that Mandelbrot published to describe geometric fractals is "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole";81 this is generally helpful but limited. Authors disagree on the exact definition of fractal, but most usually elaborate on the basic ideas of self-similarity and the unusual relationship fractals have with the space they are embedded in.8283848586

One point agreed on is that fractal patterns are characterized by fractal dimensions, but whereas these numbers quantify complexity (i.e., changing detail with changing scale), they neither uniquely describe nor specify details of how to construct particular fractal patterns.87 In 1975 when Mandelbrot coined the word "fractal", he did so to denote an object whose Hausdorff–Besicovitch dimension is greater than its topological dimension.88 However, this requirement is not met by space-filling curves such as the Hilbert curve.89

Because of the trouble involved in finding one definition for fractals, some argue that fractals should not be strictly defined at all. According to Falconer, fractals should be only generally characterized by a gestalt of the following features;90

  • Self-similarity, which may include:
  • Exact self-similarity: identical at all scales, such as the Koch snowflake
  • Quasi self-similarity: approximates the same pattern at different scales; may contain small copies of the entire fractal in distorted and degenerate forms; e.g., the Mandelbrot set's satellites are approximations of the entire set, but not exact copies.
  • Statistical self-similarity: repeats a pattern stochastically so numerical or statistical measures are preserved across scales; e.g., randomly generated fractals like the well-known example of the coastline of Britain for which one would not expect to find a segment scaled and repeated as neatly as the repeated unit that defines fractals like the Koch snowflake.91
  • Qualitative self-similarity: as in a time series92
  • Multifractal scaling: characterized by more than one fractal dimension or scaling rule
  • Fine or detailed structure at arbitrarily small scales. A consequence of this structure is fractals may have emergent properties93 (related to the next criterion in this list).
  • Irregularity locally and globally that cannot easily be described in the language of traditional Euclidean geometry other than as the limit of a recursively defined sequence of stages. For images of fractal patterns, this has been expressed by phrases such as "smoothly piling up surfaces" and "swirls upon swirls";94see Common techniques for generating fractals.

As a group, these criteria form guidelines for excluding certain cases, such as those that may be self-similar without having other typically fractal features. A straight line, for instance, is self-similar but not fractal because it lacks detail, and is easily described in Euclidean language without a need for recursion.9596

Common techniques for generating fractals

See also: Fractal-generating software

Images of fractals can be created by fractal generating programs. Because of the butterfly effect, a small change in a single variable can have an unpredictable outcome.

Applications

Simulated fractals

Fractal patterns have been modeled extensively, albeit within a range of scales rather than infinitely, owing to the practical limits of physical time and space. Models may simulate theoretical fractals or natural phenomena with fractal features. The outputs of the modelling process may be highly artistic renderings, outputs for investigation, or benchmarks for fractal analysis. Some specific applications of fractals to technology are listed elsewhere. Images and other outputs of modelling are normally referred to as being "fractals" even if they do not have strictly fractal characteristics, such as when it is possible to zoom into a region of the fractal image that does not exhibit any fractal properties. Also, these may include calculation or display artifacts which are not characteristics of true fractals.

Modeled fractals may be sounds,104 digital images, electrochemical patterns, circadian rhythms,105 etc. Fractal patterns have been reconstructed in physical 3-dimensional space106: 10  and virtually, often called "in silico" modeling.107 Models of fractals are generally created using fractal-generating software that implements techniques such as those outlined above.108109110 As one illustration, trees, ferns, cells of the nervous system,111 blood and lung vasculature,112 and other branching patterns in nature can be modeled on a computer by using recursive algorithms and L-systems techniques.113

The recursive nature of some patterns is obvious in certain examples—a branch from a tree or a frond from a fern is a miniature replica of the whole: not identical, but similar in nature. Similarly, random fractals have been used to describe/create many highly irregular real-world objects, such as coastlines and mountains. A limitation of modeling fractals is that resemblance of a fractal model to a natural phenomenon does not prove that the phenomenon being modeled is formed by a process similar to the modeling algorithms.

Natural phenomena with fractal features

Further information: Patterns in nature

Approximate fractals found in nature display self-similarity over extended, but finite, scale ranges. The connection between fractals and leaves, for instance, is currently being used to determine how much carbon is contained in trees.114 Phenomena known to have fractal features include:

Fractals in cell biology

Fractals often appear in the realm of living organisms where they arise through branching processes and other complex pattern formation. Ian Wong and co-workers have shown that migrating cells can form fractals by clustering and branching.141 Nerve cells function through processes at the cell surface, with phenomena that are enhanced by largely increasing the surface to volume ratio. As a consequence nerve cells often are found to form into fractal patterns.142 These processes are crucial in cell physiology and different pathologies.143

Multiple subcellular structures also are found to assemble into fractals. Diego Krapf has shown that through branching processes the actin filaments in human cells assemble into fractal patterns.144 Similarly Matthias Weiss showed that the endoplasmic reticulum displays fractal features.145 The current understanding is that fractals are ubiquitous in cell biology, from proteins, to organelles, to whole cells.

In creative works

Further information: Fractal art and Mathematics and art

Since 1999 numerous scientific groups have performed fractal analysis on over 50 paintings created by Jackson Pollock by pouring paint directly onto horizontal canvasses.146147148

Recently, fractal analysis has been used to achieve a 93% success rate in distinguishing real from imitation Pollocks.149 Cognitive neuroscientists have shown that Pollock's fractals induce the same stress-reduction in observers as computer-generated fractals and Nature's fractals.150

Decalcomania, a technique used by artists such as Max Ernst, can produce fractal-like patterns.151 It involves pressing paint between two surfaces and pulling them apart.

Cyberneticist Ron Eglash has suggested that fractal geometry and mathematics are prevalent in African art, games, divination, trade, and architecture. Circular houses appear in circles of circles, rectangular houses in rectangles of rectangles, and so on. Such scaling patterns can also be found in African textiles, sculpture, and even cornrow hairstyles.152153 Hokky Situngkir also suggested the similar properties in Indonesian traditional art, batik, and ornaments found in traditional houses.154155

Ethnomathematician Ron Eglash has discussed the planned layout of Benin city using fractals as the basis, not only in the city itself and the villages but even in the rooms of houses. He commented that "When Europeans first came to Africa, they considered the architecture very disorganised and thus primitive. It never occurred to them that the Africans might have been using a form of mathematics that they hadn't even discovered yet."156

In a 1996 interview with Michael Silverblatt, David Foster Wallace explained that the structure of the first draft of Infinite Jest he gave to his editor Michael Pietsch was inspired by fractals, specifically the Sierpinski triangle (a.k.a. Sierpinski gasket), but that the edited novel is "more like a lopsided Sierpinsky Gasket".157

Some works by the Dutch artist M. C. Escher, such as Circle Limit III, contain shapes repeated to infinity that become smaller and smaller as they get near to the edges, in a pattern that would always look the same if zoomed in.

Aesthetics and Psychological Effects of Fractal Based Design:158 Highly prevalent in nature, fractal patterns possess self-similar components that repeat at varying size scales. The perceptual experience of human-made environments can be impacted with inclusion of these natural patterns. Previous work has demonstrated consistent trends in preference for and complexity estimates of fractal patterns. However, limited information has been gathered on the impact of other visual judgments. Here we examine the aesthetic and perceptual experience of fractal ‘global-forest’ designs already installed in humanmade spaces and demonstrate how fractal pattern components are associated with positive psychological experiences that can be utilized to promote occupant well-being. These designs are composite fractal patterns consisting of individual fractal ‘tree-seeds’ which combine to create a ‘global fractal forest.’ The local ‘tree-seed’ patterns, global configuration of tree-seed locations, and overall resulting ‘global-forest’ patterns have fractal qualities. These designs span multiple mediums yet are all intended to lower occupant stress without detracting from the function and overall design of the space. In this series of studies, we first establish divergent relationships between various visual attributes, with pattern complexity, preference, and engagement ratings increasing with fractal complexity compared to ratings of refreshment and relaxation which stay the same or decrease with complexity. Subsequently, we determine that the local constituent fractal (‘tree-seed’) patterns contribute to the perception of the overall fractal design, and address how to balance aesthetic and psychological effects (such as individual experiences of perceived engagement and relaxation) in fractal design installations. This set of studies demonstrates that fractal preference is driven by a balance between increased arousal (desire for engagement and complexity) and decreased tension (desire for relaxation or refreshment). Installations of these composite mid-high complexity ‘global-forest’ patterns consisting of ‘tree-seed’ components balance these contrasting needs, and can serve as a practical implementation of biophilic patterns in human-made environments to promote occupant well-being.

Physiological responses

Humans appear to be especially well-adapted to processing fractal patterns with fractal dimension between 1.3 and 1.5.159 When humans view fractal patterns with fractal dimension between 1.3 and 1.5, this tends to reduce physiological stress.160161

Applications in technology

Main article: Fractal analysis

See also

  • Mathematics portal
  • Systems science portal

Notes

Further reading

  • Stanley, Eugene H, Ostrowsky, N. (editors); On Growth and Fractal Form Fractal and Non-Fractal Patterns in Physics, Martinus Nijhoff Publisher, 1986. ISBN 0-89838-850-3
  • Barnsley, Michael F.; and Rising, Hawley; Fractals Everywhere. Boston: Academic Press Professional, 1993. ISBN 0-12-079061-0
  • Duarte, German A.; Fractal Narrative. About the Relationship Between Geometries and Technology and Its Impact on Narrative Spaces. Bielefeld: Transcript, 2014. ISBN 978-3-8376-2829-6
  • Falconer, Kenneth; Techniques in Fractal Geometry. John Wiley and Sons, 1997. ISBN 0-471-92287-0
  • Jürgens, Hartmut; Peitgen, Heinz-Otto; and Saupe, Dietmar; Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992. ISBN 0-387-97903-4
  • Mandelbrot, Benoit B.; The Fractal Geometry of Nature. New York: W. H. Freeman and Co., 1982. ISBN 0-7167-1186-9
  • Peitgen, Heinz-Otto; and Saupe, Dietmar; eds.; The Science of Fractal Images. New York: Springer-Verlag, 1988. ISBN 0-387-96608-0
  • Pickover, Clifford A.; ed.; Chaos and Fractals: A Computer Graphical Journey – A 10 Year Compilation of Advanced Research. Elsevier, 1998. ISBN 0-444-50002-2
  • Jones, Jesse; Fractals for the Macintosh, Waite Group Press, Corte Madera, CA, 1993. ISBN 1-878739-46-8.
  • Lauwerier, Hans; Fractals: Endlessly Repeated Geometrical Figures, Translated by Sophia Gill-Hoffstadt, Princeton University Press, Princeton NJ, 1991. ISBN 0-691-08551-X, cloth. ISBN 0-691-02445-6 paperback. "This book has been written for a wide audience..." Includes sample BASIC programs in an appendix.
  • Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 978-0-19-850839-7.
  • Wahl, Bernt; Van Roy, Peter; Larsen, Michael; and Kampman, Eric; Exploring Fractals on the Macintosh, Addison Wesley, 1995. ISBN 0-201-62630-6
  • Lesmoir-Gordon, Nigel; The Colours of Infinity: The Beauty, The Power and the Sense of Fractals. 2004. ISBN 1-904555-05-5 (The book comes with a related DVD of the Arthur C. Clarke documentary introduction to the fractal concept and the Mandelbrot set.)
  • Liu, Huajie; Fractal Art, Changsha: Hunan Science and Technology Press, 1997, ISBN 9787535722348.
  • Gouyet, Jean-François; Physics and Fractal Structures (Foreword by B. Mandelbrot); Masson, 1996. ISBN 2-225-85130-1, and New York: Springer-Verlag, 1996. ISBN 978-0-387-94153-0. Out-of-print. Available in PDF version at."Physics and Fractal Structures" (in French). Jfgouyet.fr. Retrieved October 17, 2010.
  • Falconer, Kenneth (2013). Fractals, A Very Short Introduction. Oxford University Press.
Wikimedia Commons has media related to Fractal. Wikibooks has a book on the topic of: Fractals

References

  1. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  2. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 978-0-470-84862-3. 978-0-470-84862-3

  3. Briggs, John (1992). Fractals:The Patterns of Chaos. London: Thames and Hudson. p. 148. ISBN 978-0-500-27693-8. 978-0-500-27693-8

  4. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  5. Gouyet, Jean-François (1996). Physics and fractal structures. Paris/New York: Masson Springer. ISBN 978-0-387-94153-0. 978-0-387-94153-0

  6. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  7. Mandelbrot, Benoît B. (2004). Fractals and Chaos. Berlin: Springer. p. 38. ISBN 978-0-387-20158-0. A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension 978-0-387-20158-0

  8. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  9. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  10. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  11. Mandelbrot, Benoît B. (2004). Fractals and Chaos. Berlin: Springer. p. 38. ISBN 978-0-387-20158-0. A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension 978-0-387-20158-0

  12. Segal, S. L. (June 1978). "Riemann's example of a continuous 'nondifferentiable' function continued". The Mathematical Intelligencer. 1 (2): 81–82. doi:10.1007/BF03023065. S2CID 120037858. /wiki/Doi_(identifier)

  13. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  14. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  15. Mandelbrot, Benoit (July 8, 2013). "24/7 Lecture on Fractals". 2006 Ig Nobel Awards. Improbable Research. Archived from the original on December 11, 2021. https://www.youtube.com/watch?v=5e7HB5Oze4g#t=70

  16. Mandelbrot, B. B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1982); p. 15.

  17. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  18. Edgar, Gerald (2007). Measure, Topology, and Fractal Geometry. Springer Science & Business Media. p. 7. ISBN 978-0-387-74749-1. 978-0-387-74749-1

  19. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  20. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 978-0-470-84862-3. 978-0-470-84862-3

  21. Briggs, John (1992). Fractals:The Patterns of Chaos. London: Thames and Hudson. p. 148. ISBN 978-0-500-27693-8. 978-0-500-27693-8

  22. Gouyet, Jean-François (1996). Physics and fractal structures. Paris/New York: Masson Springer. ISBN 978-0-387-94153-0. 978-0-387-94153-0

  23. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  24. Peters, Edgar (1996). Chaos and order in the capital markets : a new view of cycles, prices, and market volatility. New York: Wiley. ISBN 978-0-471-13938-6. 978-0-471-13938-6

  25. Brothers, Harlan J. (2007). "Structural Scaling in Bach's Cello Suite No. 3". Fractals. 15 (1): 89–95. doi:10.1142/S0218348X0700337X. /wiki/Doi_(identifier)

  26. Tan, Can Ozan; Cohen, Michael A.; Eckberg, Dwain L.; Taylor, J. Andrew (2009). "Fractal properties of human heart period variability: Physiological and methodological implications". The Journal of Physiology. 587 (15): 3929–41. doi:10.1113/jphysiol.2009.169219. PMC 2746620. PMID 19528254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746620

  27. Liu, Jing Z.; Zhang, Lu D.; Yue, Guang H. (2003). "Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging". Biophysical Journal. 85 (6): 4041–4046. Bibcode:2003BpJ....85.4041L. doi:10.1016/S0006-3495(03)74817-6. PMC 1303704. PMID 14645092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303704

  28. Karperien, Audrey L.; Jelinek, Herbert F.; Buchan, Alastair M. (2008). "Box-Counting Analysis of Microglia Form in Schizophrenia, Alzheimer's Disease and Affective Disorder". Fractals. 16 (2): 103. doi:10.1142/S0218348X08003880. /wiki/Doi_(identifier)

  29. Jelinek, Herbert F.; Karperien, Audrey; Cornforth, David; Cesar, Roberto; Leandro, Jorge de Jesus Gomes (2002). "MicroMod-an L-systems approach to neural modelling". In Sarker, Ruhul (ed.). Workshop proceedings: the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, University House, ANU. University of New South Wales. ISBN 978-0-7317-0505-4. OCLC 224846454. Retrieved February 3, 2012. Event location: Canberra, Australia 978-0-7317-0505-4

  30. Hu, Shougeng; Cheng, Qiuming; Wang, Le; Xie, Shuyun (2012). "Multifractal characterization of urban residential land price in space and time". Applied Geography. 34: 161–170. Bibcode:2012AppGe..34..161H. doi:10.1016/j.apgeog.2011.10.016. /wiki/Bibcode_(identifier)

  31. Karperien, Audrey; Jelinek, Herbert F.; Leandro, Jorge de Jesus Gomes; Soares, João V. B.; Cesar Jr, Roberto M.; Luckie, Alan (2008). "Automated detection of proliferative retinopathy in clinical practice". Clinical Ophthalmology. 2 (1): 109–122. doi:10.2147/OPTH.S1579. PMC 2698675. PMID 19668394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698675

  32. Losa, Gabriele A.; Nonnenmacher, Theo F. (2005). Fractals in biology and medicine. Springer. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  33. Vannucchi, Paola; Leoni, Lorenzo (2007). "Structural characterization of the Costa Rica décollement: Evidence for seismically-induced fluid pulsing". Earth and Planetary Science Letters. 262 (3–4): 413. Bibcode:2007E&PSL.262..413V. doi:10.1016/j.epsl.2007.07.056. hdl:2158/257208. S2CID 128467785. /wiki/Paola_Vannucchi

  34. Wallace, David Foster (August 4, 2006). "Bookworm on KCRW". Kcrw.com. Archived from the original on November 11, 2010. Retrieved October 17, 2010. https://web.archive.org/web/20101111033857/http://www.kcrw.com/etc/programs/bw/bw960411david_foster_wallace

  35. Eglash, Ron (1999). "African Fractals: Modern Computing and Indigenous Design". New Brunswick: Rutgers University Press. Archived from the original on January 3, 2018. Retrieved October 17, 2010. https://web.archive.org/web/20180103005701/http://homepages.rpi.edu/~eglash/eglash.dir/afractal/afbook.htm

  36. Ostwald, Michael J., and Vaughan, Josephine (2016) The Fractal Dimension of Architecture Birhauser, Basel. doi:10.1007/978-3-319-32426-5. /wiki/The_Fractal_Dimension_of_Architecture

  37. Baranger, Michael. "Chaos, Complexity, and Entropy: A physics talk for non-physicists" (PDF). http://necsi.edu/projects/baranger/cce.pdf

  38. Benoît Mandelbrot, Objets fractals, 1975, p. 4

  39. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  40. Albers, Donald J.; Alexanderson, Gerald L. (2008). "Benoît Mandelbrot: In his own words". Mathematical people : profiles and interviews. Wellesley, MA: AK Peters. p. 214. ISBN 978-1-56881-340-0. 978-1-56881-340-0

  41. "fractal". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) https://www.oed.com/view/Entry/74094

  42. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  43. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 978-0-470-84862-3. 978-0-470-84862-3

  44. Albers, Donald J.; Alexanderson, Gerald L. (2008). "Benoît Mandelbrot: In his own words". Mathematical people : profiles and interviews. Wellesley, MA: AK Peters. p. 214. ISBN 978-1-56881-340-0. 978-1-56881-340-0

  45. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  46. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  47. Gordon, Nigel (2000). Introducing fractal geometry. Duxford: Icon. p. 71. ISBN 978-1-84046-123-7. 978-1-84046-123-7

  48. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  49. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  50. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  51. Eglash, Ron (1999). African Fractals Modern Computing and Indigenous Design. Rutgers University Press. ISBN 978-0-8135-2613-3. 978-0-8135-2613-3

  52. Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling. p. 310. ISBN 978-1-4027-5796-9. 978-1-4027-5796-9

  53. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  54. Gordon, Nigel (2000). Introducing fractal geometry. Duxford: Icon. p. 71. ISBN 978-1-84046-123-7. 978-1-84046-123-7

  55. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  56. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  57. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  58. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  59. "Fractal Geometry". www-history.mcs.st-and.ac.uk. Retrieved April 11, 2017. http://www-history.mcs.st-and.ac.uk/HistTopics/fractals.html

  60. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  61. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  62. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  63. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  64. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  65. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  66. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  67. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  68. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  69. The original paper, Lévy, Paul (1938). "Les Courbes planes ou gauches et les surfaces composées de parties semblables au tout". Journal de l'École Polytechnique: 227–247, 249–291., is translated in Edgar, pages 181–239.

  70. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  71. Gordon, Nigel (2000). Introducing fractal geometry. Duxford: Icon. p. 71. ISBN 978-1-84046-123-7. 978-1-84046-123-7

  72. Trochet, Holly (2009). "A History of Fractal Geometry". MacTutor History of Mathematics. Archived from the original on March 12, 2012. https://web.archive.org/web/20120312153006/http://www-groups.dcs.st-and.ac.uk/%7Ehistory/HistTopics/fractals.html

  73. Mandelbrot, B. (1967). "How Long Is the Coast of Britain?". Science. 156 (3775): 636–638. Bibcode:1967Sci...156..636M. doi:10.1126/science.156.3775.636. PMID 17837158. S2CID 15662830. Archived from the original on October 19, 2021. Retrieved October 31, 2020. https://web.archive.org/web/20211019193011/http://ena.lp.edu.ua:8080/handle/ntb/52473

  74. Batty, Michael (April 4, 1985). "Fractals – Geometry Between Dimensions". New Scientist. 105 (1450): 31.

  75. Albers, Donald J.; Alexanderson, Gerald L. (2008). "Benoît Mandelbrot: In his own words". Mathematical people : profiles and interviews. Wellesley, MA: AK Peters. p. 214. ISBN 978-1-56881-340-0. 978-1-56881-340-0

  76. Russ, John C. (1994). Fractal surfaces. Vol. 1. Springer. p. 1. ISBN 978-0-306-44702-0. Retrieved February 5, 2011. 978-0-306-44702-0

  77. Gordon, Nigel (2000). Introducing fractal geometry. Duxford: Icon. p. 71. ISBN 978-1-84046-123-7. 978-1-84046-123-7

  78. Edgar, Gerald (2004). Classics on Fractals. Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8. 978-0-8133-4153-8

  79. Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling. p. 310. ISBN 978-1-4027-5796-9. 978-1-4027-5796-9

  80. "Vol Libre, an amazing CG film from 1980". kottke.org. July 29, 2009. Retrieved February 12, 2023. https://kottke.org/09/07/vol-libre-an-amazing-cg-film-from-1980

  81. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  82. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  83. Gouyet, Jean-François (1996). Physics and fractal structures. Paris/New York: Masson Springer. ISBN 978-0-387-94153-0. 978-0-387-94153-0

  84. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 978-0-470-84862-3. 978-0-470-84862-3

  85. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  86. Edgar, Gerald (2008). Measure, topology, and fractal geometry. New York: Springer-Verlag. p. 1. ISBN 978-0-387-74748-4. 978-0-387-74748-4

  87. Karperien, Audrey (2004). Defining microglial morphology: Form, Function, and Fractal Dimension. Charles Sturt University. doi:10.13140/2.1.2815.9048. /wiki/Doi_(identifier)

  88. Albers, Donald J.; Alexanderson, Gerald L. (2008). "Benoît Mandelbrot: In his own words". Mathematical people : profiles and interviews. Wellesley, MA: AK Peters. p. 214. ISBN 978-1-56881-340-0. 978-1-56881-340-0

  89. The Hilbert curve map is not a homeomorphism, so it does not preserve topological dimension. The topological dimension and Hausdorff dimension of the image of the Hilbert map in R2 are both 2. Note, however, that the topological dimension of the graph of the Hilbert map (a set in R3) is 1. /wiki/Homeomorphism

  90. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons. xxv. ISBN 978-0-470-84862-3. 978-0-470-84862-3

  91. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  92. Peters, Edgar (1996). Chaos and order in the capital markets : a new view of cycles, prices, and market volatility. New York: Wiley. ISBN 978-0-471-13938-6. 978-0-471-13938-6

  93. Spencer, John; Thomas, Michael S. C.; McClelland, James L. (2009). Toward a unified theory of development : connectionism and dynamic systems theory re-considered. Oxford/New York: Oxford University Press. ISBN 978-0-19-530059-8. 978-0-19-530059-8

  94. Mandelbrot, Benoît B. (2004). Fractals and Chaos. Berlin: Springer. p. 38. ISBN 978-0-387-20158-0. A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension 978-0-387-20158-0

  95. Mandelbrot, Benoît B. (1983). The fractal geometry of nature. Macmillan. ISBN 978-0-7167-1186-5. 978-0-7167-1186-5

  96. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  97. Frame, Angus (August 3, 1998). "Iterated Function Systems". In Pickover, Clifford A. (ed.). Chaos and fractals: a computer graphical journey : ten year compilation of advanced research. Elsevier. pp. 349–351. ISBN 978-0-444-50002-1. Retrieved February 4, 2012. 978-0-444-50002-1

  98. "Haferman Carpet". WolframAlpha. Retrieved October 18, 2012. http://www.wolframalpha.com/input/?i=Haferman+carpet

  99. Jelinek, Herbert F.; Karperien, Audrey; Cornforth, David; Cesar, Roberto; Leandro, Jorge de Jesus Gomes (2002). "MicroMod-an L-systems approach to neural modelling". In Sarker, Ruhul (ed.). Workshop proceedings: the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, University House, ANU. University of New South Wales. ISBN 978-0-7317-0505-4. OCLC 224846454. Retrieved February 3, 2012. Event location: Canberra, Australia 978-0-7317-0505-4

  100. Hahn, Horst K.; Georg, Manfred; Peitgen, Heinz-Otto (2005). "Fractal aspects of three-dimensional vascular constructive optimization". In Losa, Gabriele A.; Nonnenmacher, Theo F. (eds.). Fractals in biology and medicine. Springer. pp. 55–66. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  101. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  102. J. W. Cannon, W. J. Floyd, W. R. Parry. Finite subdivision rules. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196.

  103. Carbone, Alessandra; Gromov, Mikhael; Prusinkiewicz, Przemyslaw (2000). Pattern Formation in Biology, Vision and Dynamics. World Scientific. ISBN 978-981-02-3792-9. 978-981-02-3792-9

  104. Brothers, Harlan J. (2007). "Structural Scaling in Bach's Cello Suite No. 3". Fractals. 15 (1): 89–95. doi:10.1142/S0218348X0700337X. /wiki/Doi_(identifier)

  105. Fathallah-Shaykh, Hassan M. (2011). "Fractal Dimension of the Drosophila Circadian Clock". Fractals. 19 (4): 423–430. doi:10.1142/S0218348X11005476. /wiki/Doi_(identifier)

  106. Losa, Gabriele A.; Nonnenmacher, Theo F. (2005). Fractals in biology and medicine. Springer. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  107. Hahn, Horst K.; Georg, Manfred; Peitgen, Heinz-Otto (2005). "Fractal aspects of three-dimensional vascular constructive optimization". In Losa, Gabriele A.; Nonnenmacher, Theo F. (eds.). Fractals in biology and medicine. Springer. pp. 55–66. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  108. Vicsek, Tamás (1992). Fractal growth phenomena. Singapore/New Jersey: World Scientific. pp. 31, 139–146. ISBN 978-981-02-0668-0. 978-981-02-0668-0

  109. Peters, Edgar (1996). Chaos and order in the capital markets : a new view of cycles, prices, and market volatility. New York: Wiley. ISBN 978-0-471-13938-6. 978-0-471-13938-6

  110. Losa, Gabriele A.; Nonnenmacher, Theo F. (2005). Fractals in biology and medicine. Springer. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  111. Jelinek, Herbert F.; Karperien, Audrey; Cornforth, David; Cesar, Roberto; Leandro, Jorge de Jesus Gomes (2002). "MicroMod-an L-systems approach to neural modelling". In Sarker, Ruhul (ed.). Workshop proceedings: the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, University House, ANU. University of New South Wales. ISBN 978-0-7317-0505-4. OCLC 224846454. Retrieved February 3, 2012. Event location: Canberra, Australia 978-0-7317-0505-4

  112. Hahn, Horst K.; Georg, Manfred; Peitgen, Heinz-Otto (2005). "Fractal aspects of three-dimensional vascular constructive optimization". In Losa, Gabriele A.; Nonnenmacher, Theo F. (eds.). Fractals in biology and medicine. Springer. pp. 55–66. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  113. Jelinek, Herbert F.; Karperien, Audrey; Cornforth, David; Cesar, Roberto; Leandro, Jorge de Jesus Gomes (2002). "MicroMod-an L-systems approach to neural modelling". In Sarker, Ruhul (ed.). Workshop proceedings: the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, University House, ANU. University of New South Wales. ISBN 978-0-7317-0505-4. OCLC 224846454. Retrieved February 3, 2012. Event location: Canberra, Australia 978-0-7317-0505-4

  114. "Hunting the Hidden Dimensional". Nova. PBS. WPMB-Maryland. October 28, 2008.

  115. Sadegh, Sanaz (2017). "Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork". Physical Review X. 7 (1): 011031. arXiv:1702.03997. Bibcode:2017PhRvX...7a1031S. doi:10.1103/PhysRevX.7.011031. PMC 5500227. PMID 28690919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500227

  116. Hahn, Horst K.; Georg, Manfred; Peitgen, Heinz-Otto (2005). "Fractal aspects of three-dimensional vascular constructive optimization". In Losa, Gabriele A.; Nonnenmacher, Theo F. (eds.). Fractals in biology and medicine. Springer. pp. 55–66. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  117. Falconer, Kenneth (2013). Fractals, A Very Short Introduction. Oxford University Press.

  118. Lovejoy, Shaun (1982). "Area-perimeter relation for rain and cloud areas". Science. 216 (4542): 185–187. Bibcode:1982Sci...216..185L. doi:10.1126/science.216.4542.185. PMID 17736252. S2CID 32255821. /wiki/Bibcode_(identifier)

  119. Boffetta, G.; Celani, A.; Dezzani, D.; Seminara, A. (2008). "How winding is the coast of Britain? Conformal invariance of rocky shorelines". Geophysical Research Letters. 35 (3). arXiv:0712.3076. Bibcode:2008GeoRL..35.3615B. doi:10.1029/2007GL033093. ISSN 0094-8276. https://doi.org/10.1029%2F2007GL033093

  120. Cannon, James W.; Floyd, William J.; Perry, Walter R. (2000). "Crystal growth, biological cell growth and geometry". In Carbone, Alessandra; Gromov, Mikhael; Prusinkiewicz, Przemyslaw (eds.). Pattern formation in biology, vision and dynamics. World Scientific. pp. 65–82. ISBN 978-981-02-3792-9. 978-981-02-3792-9

  121. Singh, Chamkor; Mazza, Marco (2019), "Electrification in granular gases leads to constrained fractal growth", Scientific Reports, 9 (1), Nature Publishing Group: 9049, arXiv:1812.06073, Bibcode:2019NatSR...9.9049S, doi:10.1038/s41598-019-45447-x, PMC 6588598, PMID 31227758 /wiki/ArXiv_(identifier)

  122. Vannucchi, Paola; Leoni, Lorenzo (2007). "Structural characterization of the Costa Rica décollement: Evidence for seismically-induced fluid pulsing". Earth and Planetary Science Letters. 262 (3–4): 413. Bibcode:2007E&PSL.262..413V. doi:10.1016/j.epsl.2007.07.056. hdl:2158/257208. S2CID 128467785. /wiki/Paola_Vannucchi

  123. Sornette, Didier (2004). Critical phenomena in natural sciences: chaos, fractals, selforganization, and disorder: concepts and tools. Springer. pp. 128–140. ISBN 978-3-540-40754-6. 978-3-540-40754-6

  124. Sweet, D.; Ott, E.; Yorke, J. A. (1999), "Complex topology in Chaotic scattering: A Laboratory Observation", Nature, 399 (6734): 315, Bibcode:1999Natur.399..315S, doi:10.1038/20573, S2CID 4361904 /wiki/Bibcode_(identifier)

  125. Tan, Can Ozan; Cohen, Michael A.; Eckberg, Dwain L.; Taylor, J. Andrew (2009). "Fractal properties of human heart period variability: Physiological and methodological implications". The Journal of Physiology. 587 (15): 3929–41. doi:10.1113/jphysiol.2009.169219. PMC 2746620. PMID 19528254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746620

  126. D. Seekell; B. Cael; E. Lindmark; P. Byström (2021). "The fractal scaling relationship for river inlets to lakes". Geophysical Research Letters. 48 (9): e2021GL093366. Bibcode:2021GeoRL..4893366S. doi:10.1029/2021GL093366. ISSN 0094-8276. S2CID 235508504. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-183511

  127. D. Seekell; M. L. Pace; L. J. Tranvik; C. Verpoorter (2013). "A fractal-based approach to lake size-distributions" (PDF). Geophysical Research Letters. 40 (3): 517–521. Bibcode:2013GeoRL..40..517S. doi:10.1002/grl.50139. S2CID 14482711. https://hal.archives-ouvertes.fr/hal-00932495/file/grl.50139.pdf

  128. B. B. Cael; D. A. Seekell (2016). "The size-distribution of Earth's lakes". Scientific Reports. 6: 29633. Bibcode:2016NatSR...629633C. doi:10.1038/srep29633. PMC 4937396. PMID 27388607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937396

  129. Addison, Paul S. (1997). Fractals and chaos: an illustrated course. CRC Press. pp. 44–46. ISBN 978-0-7503-0400-9. Retrieved February 5, 2011. 978-0-7503-0400-9

  130. Enright, Matthew B.; Leitner, David M. (January 27, 2005). "Mass fractal dimension and the compactness of proteins". Physical Review E. 71 (1): 011912. Bibcode:2005PhRvE..71a1912E. doi:10.1103/PhysRevE.71.011912. PMID 15697635. https://zenodo.org/record/895378

  131. Thomas F. Varley; Robin Carhart-Harris; Leor Roseman; David K. Menon; Emmanuel A. Stamatakis (2020). "Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains". NeuroImage. 220. doi:10.1016/j.neuroimage.2020.117049. https://doi.org/10.1016%2Fj.neuroimage.2020.117049

  132. Takeda, T; Ishikawa, A; Ohtomo, K; Kobayashi, Y; Matsuoka, T (February 1992). "Fractal dimension of dendritic tree of cerebellar Purkinje cell during onto- and phylogenetic development". Neurosci Research. 13 (1): 19–31. doi:10.1016/0168-0102(92)90031-7. PMID 1314350. S2CID 4158401. /wiki/Doi_(identifier)

  133. Takayasu, H. (1990). Fractals in the physical sciences. Manchester: Manchester University Press. p. 36. ISBN 978-0-7190-3434-3. 978-0-7190-3434-3

  134. Jun, Li; Ostoja-Starzewski, Martin (April 1, 2015). "Edges of Saturn's Rings are Fractal". SpringerPlus. 4, 158: 158. doi:10.1186/s40064-015-0926-6. PMC 4392038. PMID 25883885. /wiki/Martin_Ostoja-Starzewski

  135. Tarboton, David G; Bras, Rafael L; Rodriguez-Iturbe, Ignacio (1988). "The fractal nature of river networks". Water Resources Research. 24 (8): 1317. Bibcode:1988WRR....24.1317T. doi:10.1029/WR024i008p01317. /wiki/Bibcode_(identifier)

  136. Meyer, Yves; Roques, Sylvie (1993). Progress in wavelet analysis and applications: proceedings of the International Conference "Wavelets and Applications", Toulouse, France – June 1992. Atlantica Séguier Frontières. p. 25. ISBN 978-2-86332-130-0. Retrieved February 5, 2011. 978-2-86332-130-0

  137. Ozhovan M. I., Dmitriev I. E., Batyukhnova O. G. Fractal structure of pores of clay soil. Atomic Energy, 74, 241–243 (1993).

  138. Sreenivasan, K. R.; Meneveau, C. (1986). "The Fractal Facets of Turbulence". Journal of Fluid Mechanics. 173: 357–386. Bibcode:1986JFM...173..357S. doi:10.1017/S0022112086001209. S2CID 55578215. /wiki/Bibcode_(identifier)

  139. de Silva, C. M.; Philip, J.; Chauhan, K.; Meneveau, C.; Marusic, I. (2013). "Multiscale Geometry and Scaling of the Turbulent–Nonturbulent Interface in High Reynolds Number Boundary Layers". Phys. Rev. Lett. 111 (6039): 192–196. Bibcode:2011Sci...333..192A. doi:10.1126/science.1203223. PMID 21737736. S2CID 22560587. /wiki/Bibcode_(identifier)

  140. Mandelbrot, Benoit B (1978). "The fractal geometry of trees and other natural phenomena". Geometrical Probability and Biological Structures: Buffon's 200th Anniversary: Proceedings of the Buffon Bicentenary Symposium on Geometrical Probability, Image Analysis, Mathematical Stereology, and Their Relevance to the Determination of Biological Structures: 235–249.

  141. Leggett, Susan E.; Neronha, Zachary J.; Bhaskar, Dhananjay; Sim, Jea Yun; Perdikari, Theodora Myrto; Wong, Ian Y. (August 27, 2019). "Motility-limited aggregation of mammary epithelial cells into fractal-like clusters". Proceedings of the National Academy of Sciences. 116 (35): 17298–17306. Bibcode:2019PNAS..11617298L. doi:10.1073/pnas.1905958116. ISSN 0027-8424. PMC 6717304. PMID 31413194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717304

  142. Jelinek, Herbert F; Fernandez, Eduardo (June 1998). "Neurons and fractals: how reliable and useful are calculations of fractal dimensions?". Journal of Neuroscience Methods. 81 (1–2): 9–18. doi:10.1016/S0165-0270(98)00021-1. PMID 9696304. S2CID 3811866. https://linkinghub.elsevier.com/retrieve/pii/S0165027098000211

  143. Cross, Simon S. (1997). "Fractals in Pathology". The Journal of Pathology. 182 (1): 1–8. doi:10.1002/(SICI)1096-9896(199705)182:1<1::AID-PATH808>3.0.CO;2-B. ISSN 1096-9896. PMID 9227334. S2CID 23274235. https://doi.org/10.1002%2F%28SICI%291096-9896%28199705%29182%3A1%3C1%3A%3AAID-PATH808%3E3.0.CO%3B2-B

  144. Sadegh, Sanaz; Higgins, Jenny L.; Mannion, Patrick C.; Tamkun, Michael M.; Krapf, Diego (March 9, 2017). "Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork". Physical Review X. 7 (1): 011031. arXiv:1702.03997. Bibcode:2017PhRvX...7a1031S. doi:10.1103/PhysRevX.7.011031. ISSN 2160-3308. PMC 5500227. PMID 28690919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500227

  145. Speckner, Konstantin; Stadler, Lorenz; Weiss, Matthias (July 9, 2018). "Anomalous dynamics of the endoplasmic reticulum network". Physical Review E. 98 (1): 012406. Bibcode:2018PhRvE..98a2406S. doi:10.1103/PhysRevE.98.012406. ISSN 2470-0045. PMID 30110830. S2CID 52010780. https://link.aps.org/doi/10.1103/PhysRevE.98.012406

  146. Taylor, R. P.; et al. (1999). "Fractal Analysis of Pollock's Drip Paintings". Nature. 399 (6735): 422. Bibcode:1999Natur.399..422T. doi:10.1038/20833. S2CID 204993516. https://doi.org/10.1038%2F20833

  147. Taylor, R. P.; et al. (2006). "Fractal Analysis: Revisiting Pollock's Paintings (Reply)". Nature. 444 (7119): E10–11. Bibcode:2006Natur.444E..10T. doi:10.1038/nature05399. S2CID 31353634. /wiki/Bibcode_(identifier)

  148. Lee, S.; Olsen, S.; Gooch, B. (2007). "Simulating and Analyzing Jackson Pollock's Paintings". Journal of Mathematics and the Arts. 1 (2): 73–83. CiteSeerX 10.1.1.141.7470. doi:10.1080/17513470701451253. S2CID 8529592. /wiki/CiteSeerX_(identifier)

  149. Shamar, L. (2015). "What Makes a Pollock Pollock: A Machine Vision Approach" (PDF). International Journal of Arts and Technology. 8: 1–10. CiteSeerX 10.1.1.647.365. doi:10.1504/IJART.2015.067389. Archived from the original (PDF) on October 25, 2017. Retrieved October 24, 2017. https://web.archive.org/web/20171025022609/http://vfacstaff.ltu.edu/lshamir/publications/wm_pollock.pdf

  150. Taylor, R. P.; Spehar, B.; Van Donkelaar, P.; Hagerhall, C. M. (2011). "Perceptual and Physiological Responses to Jackson Pollock's Fractals". Frontiers in Human Neuroscience. 5: 1–13. doi:10.3389/fnhum.2011.00060. PMC 3124832. PMID 21734876. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124832

  151. Frame, Michael; and Mandelbrot, Benoît B.; A Panorama of Fractals and Their Uses Archived December 23, 2007, at the Wayback Machine http://classes.yale.edu/Fractals/Panorama/

  152. Eglash, Ron (1999). "African Fractals: Modern Computing and Indigenous Design". New Brunswick: Rutgers University Press. Archived from the original on January 3, 2018. Retrieved October 17, 2010. https://web.archive.org/web/20180103005701/http://homepages.rpi.edu/~eglash/eglash.dir/afractal/afbook.htm

  153. Nelson, Bryn (February 23, 2000). "Sophisticated Mathematics Behind African Village Designs / Fractal patterns use repetition on large, small scale". SFGATE. Retrieved February 12, 2023. https://www.sfgate.com/education/article/Sophisticated-Mathematics-Behind-African-Village-2774181.php

  154. Situngkir, Hokky; Dahlan, Rolan (2009). Fisika batik: implementasi kreatif melalui sifat fraktal pada batik secara komputasional. Jakarta: Gramedia Pustaka Utama. ISBN 978-979-22-4484-7 /wiki/ISBN_(identifier)

  155. Rulistia, Novia D. (October 6, 2015). "Application maps out nation's batik story". The Jakarta Post. Retrieved September 25, 2016. https://www.thejakartapost.com/news/2015/10/06/application-maps-out-nation-s-batik-story.html

  156. Koutonin, Mawuna (March 18, 2016). "Story of cities #5: Benin City, the mighty medieval capital now lost without trace". Retrieved April 2, 2018.

  157. Wallace, David Foster (August 4, 2006). "Bookworm on KCRW". Kcrw.com. Archived from the original on November 11, 2010. Retrieved October 17, 2010. https://web.archive.org/web/20101111033857/http://www.kcrw.com/etc/programs/bw/bw960411david_foster_wallace

  158. Robles, Kelly E.; Roberts, Michelle; Viengkham, Catherine; Smith, Julian H.; Rowland, Conor; Moslehi, Saba; Stadlober, Sabrina; Lesjak, Anastasija; Lesjak, Martin; Taylor, Richard P.; Spehar, Branka; Sereno, Margaret E. (2021). "Aesthetics and Psychological Effects of Fractal Based Design". Frontiers in Psychology. 12. doi:10.3389/fpsyg.2021.699962. ISSN 1664-1078. PMC 8416160. PMID 34484047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416160

  159. Taylor, Richard P. (2016). "Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli". In Di Ieva, Antonio (ed.). The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer. pp. 485–496. ISBN 978-1-4939-3995-4. 978-1-4939-3995-4

  160. Taylor, Richard P. (2006). "Reduction of Physiological Stress Using Fractal Art and Architecture". Leonardo. 39 (3): 245–251. doi:10.1162/leon.2006.39.3.245. S2CID 8495221. https://zenodo.org/record/894740

  161. For further discussion of this effect, see Taylor, Richard P.; Spehar, Branka; Donkelaar, Paul Van; Hagerhall, Caroline M. (2011). "Perceptual and Physiological Responses to Jackson Pollock's Fractals". Frontiers in Human Neuroscience. 5: 60. doi:10.3389/fnhum.2011.00060. PMC 3124832. PMID 21734876. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124832

  162. Hohlfeld, Robert G.; Cohen, Nathan (1999). "Self-similarity and the geometric requirements for frequency independence in Antennae". Fractals. 7 (1): 79–84. doi:10.1142/S0218348X99000098. /wiki/Doi_(identifier)

  163. Reiner, Richard; Waltereit, Patrick; Benkhelifa, Fouad; Müller, Stefan; Walcher, Herbert; Wagner, Sandrine; Quay, Rüdiger; Schlechtweg, Michael; Ambacher, Oliver; Ambacher, O. (2012). "Fractal structures for low-resistance large area AlGaN/GaN power transistors". 2012 24th International Symposium on Power Semiconductor Devices and ICs. pp. 341–344. doi:10.1109/ISPSD.2012.6229091. ISBN 978-1-4577-1596-9. S2CID 43053855. 978-1-4577-1596-9

  164. Zhiwei Huang; Yunho Hwang; Vikrant Aute; Reinhard Radermacher (2016). "Review of Fractal Heat Exchangers" (PDF) International Refrigeration and Air Conditioning Conference. Paper 1725{{cite web}}: CS1 maint: postscript (link) http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2724&context=iracc

  165. Ostwald, Michael J., and Vaughan, Josephine (2016) The Fractal Dimension of Architecture Birhauser, Basel. doi:10.1007/978-3-319-32426-5. /wiki/The_Fractal_Dimension_of_Architecture

  166. Chen, Yanguang (2011). "Modeling Fractal Structure of City-Size Distributions Using Correlation Functions". PLOS ONE. 6 (9): e24791. arXiv:1104.4682. Bibcode:2011PLoSO...624791C. doi:10.1371/journal.pone.0024791. PMC 3176775. PMID 21949753. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176775

  167. "Applications". Archived from the original on October 12, 2007. Retrieved October 21, 2007. https://web.archive.org/web/20071012223212/http://library.thinkquest.org/26242/full/ap/ap.html

  168. Azua-Bustos, Armando; Vega-Martínez, Cristian (October 2013). ""Detecting 'life as we don't know it' by fractal analysis"". International Journal of Astrobiology. 12 (4): 314–320. doi:10.1017/S1473550413000177. hdl:11336/26238. S2CID 122793675. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9012687&fileId=S1473550413000177

  169. Losa, Gabriele A.; Nonnenmacher, Theo F. (2005). Fractals in biology and medicine. Springer. ISBN 978-3-7643-7172-2. 978-3-7643-7172-2

  170. Liu, Jing Z.; Zhang, Lu D.; Yue, Guang H. (2003). "Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging". Biophysical Journal. 85 (6): 4041–4046. Bibcode:2003BpJ....85.4041L. doi:10.1016/S0006-3495(03)74817-6. PMC 1303704. PMID 14645092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303704

  171. Karperien, Audrey L.; Jelinek, Herbert F.; Buchan, Alastair M. (2008). "Box-Counting Analysis of Microglia Form in Schizophrenia, Alzheimer's Disease and Affective Disorder". Fractals. 16 (2): 103. doi:10.1142/S0218348X08003880. /wiki/Doi_(identifier)

  172. Karperien, Audrey; Jelinek, Herbert F.; Leandro, Jorge de Jesus Gomes; Soares, João V. B.; Cesar Jr, Roberto M.; Luckie, Alan (2008). "Automated detection of proliferative retinopathy in clinical practice". Clinical Ophthalmology. 2 (1): 109–122. doi:10.2147/OPTH.S1579. PMC 2698675. PMID 19668394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698675

  173. Smith, Robert F.; Mohr, David N.; Torres, Vicente E.; Offord, Kenneth P.; Melton III, L. Joseph (1989). "Renal insufficiency in community patients with mild asymptomatic microhematuria". Mayo Clinic Proceedings. 64 (4): 409–414. doi:10.1016/s0025-6196(12)65730-9. PMID 2716356. /wiki/Doi_(identifier)

  174. Landini, Gabriel (2011). "Fractals in microscopy". Journal of Microscopy. 241 (1): 1–8. doi:10.1111/j.1365-2818.2010.03454.x. PMID 21118245. S2CID 40311727. /wiki/Doi_(identifier)

  175. Cheng, Qiuming (1997). "Multifractal Modeling and Lacunarity Analysis". Mathematical Geology. 29 (7): 919–932. Bibcode:1997MatG...29..919C. doi:10.1023/A:1022355723781. S2CID 118918429. /wiki/Qiuming_Cheng

  176. Chen, Yanguang (2011). "Modeling Fractal Structure of City-Size Distributions Using Correlation Functions". PLOS ONE. 6 (9): e24791. arXiv:1104.4682. Bibcode:2011PLoSO...624791C. doi:10.1371/journal.pone.0024791. PMC 3176775. PMID 21949753. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176775

  177. Burkle-Elizondo, Gerardo; Valdéz-Cepeda, Ricardo David (2006). "Fractal analysis of Mesoamerican pyramids". Nonlinear Dynamics, Psychology, and Life Sciences. 10 (1): 105–122. PMID 16393505. /wiki/PMID_(identifier)

  178. Brown, Clifford T.; Witschey, Walter R. T.; Liebovitch, Larry S. (2005). "The Broken Past: Fractals in Archaeology". Journal of Archaeological Method and Theory. 12: 37–78. doi:10.1007/s10816-005-2396-6. S2CID 7481018. /wiki/Doi_(identifier)

  179. Hu, Shougeng; Cheng, Qiuming; Wang, Le; Xie, Shuyun (2012). "Multifractal characterization of urban residential land price in space and time". Applied Geography. 34: 161–170. Bibcode:2012AppGe..34..161H. doi:10.1016/j.apgeog.2011.10.016. /wiki/Bibcode_(identifier)

  180. Vannucchi, Paola; Leoni, Lorenzo (2007). "Structural characterization of the Costa Rica décollement: Evidence for seismically-induced fluid pulsing". Earth and Planetary Science Letters. 262 (3–4): 413. Bibcode:2007E&PSL.262..413V. doi:10.1016/j.epsl.2007.07.056. hdl:2158/257208. S2CID 128467785. /wiki/Paola_Vannucchi

  181. Saeedi, Panteha; Sorensen, Soren A. (2009). "An Algorithmic Approach to Generate After-disaster Test Fields for Search and Rescue Agents" (PDF). Proceedings of the World Congress on Engineering 2009: 93–98. ISBN 978-988-17-0125-1. 978-988-17-0125-1

  182. "GPU internals" (PDF). http://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/doggett12-tc.pdf

  183. "sony patents". https://www.google.ch/patents/US20150287166?dq=morton+order+texture+swizzling

  184. "description of swizzled and hybrid tiled swizzled textures". https://news.ycombinator.com/item?id=2239173

  185. "US8773422B1 - System, method, and computer program product for grouping linearly ordered primitives". Google Patents. December 4, 2007. Retrieved December 28, 2019. https://patents.google.com/patent/US8773422

  186. "US20110227921A1 - Processing of 3D computer graphics data on multiple shading engines". Google Patents. December 15, 2010. Retrieved December 27, 2019. http://www.google.ch/patents/US20110227921

  187. "Johns Hopkins Turbulence Databases". http://turbulence.pha.jhu.edu

  188. Li, Y.; Perlman, E.; Wang, M.; Yang, y.; Meneveau, C.; Burns, R.; Chen, S.; Szalay, A.; Eyink, G. (2008). "A Public Turbulence Database Cluster and Applications to Study Lagrangian Evolution of Velocity Increments in Turbulence". Journal of Turbulence. 9: N31. arXiv:0804.1703. Bibcode:2008JTurb...9...31L. doi:10.1080/14685240802376389. S2CID 15768582. /wiki/ArXiv_(identifier)