Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Heptagonal triangle
Triangle with angles in the ratio 1:2:4

In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex). Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar (have the same shape), and so they are collectively known as the heptagonal triangle. Its angles have measures π / 7 , 2 π / 7 , {\displaystyle \pi /7,2\pi /7,} and 4 π / 7 , {\displaystyle 4\pi /7,} and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.

Related Image Collections Add Image
We don't have any YouTube videos related to Heptagonal triangle yet.
We don't have any PDF documents related to Heptagonal triangle yet.
We don't have any Books related to Heptagonal triangle yet.
We don't have any archived web articles related to Heptagonal triangle yet.

Key points

The heptagonal triangle's nine-point center is also its first Brocard point.1: Propos. 12 

The second Brocard point lies on the nine-point circle.2: p. 19 

The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.3: Thm. 22 

The distance between the circumcenter O and the orthocenter H is given by4: p. 19 

O H = R 2 , {\displaystyle OH=R{\sqrt {2}},}

where R is the circumradius. The squared distance from the incenter I to the orthocenter is5: p. 19 

I H 2 = R 2 + 4 r 2 2 , {\displaystyle IH^{2}={\frac {R^{2}+4r^{2}}{2}},}

where r is the inradius.

The two tangents from the orthocenter to the circumcircle are mutually perpendicular.6: p. 19 

Relations of distances

Sides

The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy7: Lemma 1 

a 2 = c ( c − b ) , b 2 = a ( c + a ) , c 2 = b ( a + b ) , 1 a = 1 b + 1 c {\displaystyle {\begin{aligned}a^{2}&=c(c-b),\\[5pt]b^{2}&=a(c+a),\\[5pt]c^{2}&=b(a+b),\\[5pt]{\frac {1}{a}}&={\frac {1}{b}}+{\frac {1}{c}}\end{aligned}}}

(the latter8: p. 13  being the optic equation) and hence

a b + a c = b c , {\displaystyle ab+ac=bc,}

and9: Coro. 2 

b 3 + 2 b 2 c − b c 2 − c 3 = 0 , {\displaystyle b^{3}+2b^{2}c-bc^{2}-c^{3}=0,} c 3 − 2 c 2 a − c a 2 + a 3 = 0 , {\displaystyle c^{3}-2c^{2}a-ca^{2}+a^{3}=0,} a 3 − 2 a 2 b − a b 2 + b 3 = 0. {\displaystyle a^{3}-2a^{2}b-ab^{2}+b^{3}=0.}

Thus –b/c, c/a, and a/b all satisfy the cubic equation

t 3 − 2 t 2 − t + 1 = 0. {\displaystyle t^{3}-2t^{2}-t+1=0.}

However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.

The approximate relation of the sides is

b ≈ 1.80193 ⋅ a , c ≈ 2.24698 ⋅ a . {\displaystyle b\approx 1.80193\cdot a,\qquad c\approx 2.24698\cdot a.}

We also have1011

a 2 b c , − b 2 c a , − c 2 a b {\displaystyle {\frac {a^{2}}{bc}},\quad -{\frac {b^{2}}{ca}},\quad -{\frac {c^{2}}{ab}}}

satisfy the cubic equation

t 3 + 4 t 2 + 3 t − 1 = 0. {\displaystyle t^{3}+4t^{2}+3t-1=0.}

We also have12

a 3 b c 2 , − b 3 c a 2 , c 3 a b 2 {\displaystyle {\frac {a^{3}}{bc^{2}}},\quad -{\frac {b^{3}}{ca^{2}}},\quad {\frac {c^{3}}{ab^{2}}}}

satisfy the cubic equation

t 3 − t 2 − 9 t + 1 = 0. {\displaystyle t^{3}-t^{2}-9t+1=0.}

We also have13

a 3 b 2 c , b 3 c 2 a , − c 3 a 2 b {\displaystyle {\frac {a^{3}}{b^{2}c}},\quad {\frac {b^{3}}{c^{2}a}},\quad -{\frac {c^{3}}{a^{2}b}}}

satisfy the cubic equation

t 3 + 5 t 2 − 8 t + 1 = 0. {\displaystyle t^{3}+5t^{2}-8t+1=0.}

We also have14: p. 14 

b 2 − a 2 = a c , {\displaystyle b^{2}-a^{2}=ac,} c 2 − b 2 = a b , {\displaystyle c^{2}-b^{2}=ab,} a 2 − c 2 = − b c , {\displaystyle a^{2}-c^{2}=-bc,}

and15: p. 15 

b 2 a 2 + c 2 b 2 + a 2 c 2 = 5. {\displaystyle {\frac {b^{2}}{a^{2}}}+{\frac {c^{2}}{b^{2}}}+{\frac {a^{2}}{c^{2}}}=5.}

We also have16

a b − b c + c a = 0 , {\displaystyle ab-bc+ca=0,} a 3 b − b 3 c + c 3 a = 0 , {\displaystyle a^{3}b-b^{3}c+c^{3}a=0,} a 4 b + b 4 c − c 4 a = 0 , {\displaystyle a^{4}b+b^{4}c-c^{4}a=0,} a 11 b 3 − b 11 c 3 + c 11 a 3 = 0. {\displaystyle a^{11}b^{3}-b^{11}c^{3}+c^{11}a^{3}=0.}

Altitudes

The altitudes ha, hb, and hc satisfy

h a = h b + h c {\displaystyle h_{a}=h_{b}+h_{c}} 17: p. 13 

and

h a 2 + h b 2 + h c 2 = a 2 + b 2 + c 2 2 . {\displaystyle h_{a}^{2}+h_{b}^{2}+h_{c}^{2}={\frac {a^{2}+b^{2}+c^{2}}{2}}.} 18: p. 14 

The altitude from side b (opposite angle B) is half the internal angle bisector w A {\displaystyle w_{A}} of A:19: p. 19 

2 h b = w A . {\displaystyle 2h_{b}=w_{A}.}

Here angle A is the smallest angle, and B is the second smallest.

Internal angle bisectors

We have these properties of the internal angle bisectors w A , w B , {\displaystyle w_{A},w_{B},} and w C {\displaystyle w_{C}} of angles A, B, and C respectively:20: p. 16 

w A = b + c , {\displaystyle w_{A}=b+c,} w B = c − a , {\displaystyle w_{B}=c-a,} w C = b − a . {\displaystyle w_{C}=b-a.}

Circumradius, inradius, and exradius

The triangle's area is21

A = 7 4 R 2 , {\displaystyle A={\frac {\sqrt {7}}{4}}R^{2},}

where R is the triangle's circumradius.

We have22: p. 12 

a 2 + b 2 + c 2 = 7 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}=7R^{2}.}

We also have23

a 4 + b 4 + c 4 = 21 R 4 . {\displaystyle a^{4}+b^{4}+c^{4}=21R^{4}.} a 6 + b 6 + c 6 = 70 R 6 . {\displaystyle a^{6}+b^{6}+c^{6}=70R^{6}.}

The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation24

8 x 3 + 28 x 2 + 14 x − 7 = 0. {\displaystyle 8x^{3}+28x^{2}+14x-7=0.}

In addition,25: p. 15 

1 a 2 + 1 b 2 + 1 c 2 = 2 R 2 . {\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}+{\frac {1}{c^{2}}}={\frac {2}{R^{2}}}.}

We also have26

1 a 4 + 1 b 4 + 1 c 4 = 2 R 4 . {\displaystyle {\frac {1}{a^{4}}}+{\frac {1}{b^{4}}}+{\frac {1}{c^{4}}}={\frac {2}{R^{4}}}.} 1 a 6 + 1 b 6 + 1 c 6 = 17 7 R 6 . {\displaystyle {\frac {1}{a^{6}}}+{\frac {1}{b^{6}}}+{\frac {1}{c^{6}}}={\frac {17}{7R^{6}}}.}

In general for all integer n,

a 2 n + b 2 n + c 2 n = g ( n ) ( 2 R ) 2 n {\displaystyle a^{2n}+b^{2n}+c^{2n}=g(n)(2R)^{2n}}

where

g ( − 1 ) = 8 , g ( 0 ) = 3 , g ( 1 ) = 7 {\displaystyle g(-1)=8,\quad g(0)=3,\quad g(1)=7}

and

g ( n ) = 7 g ( n − 1 ) − 14 g ( n − 2 ) + 7 g ( n − 3 ) . {\displaystyle g(n)=7g(n-1)-14g(n-2)+7g(n-3).}

We also have27

2 b 2 − a 2 = 7 b R , 2 c 2 − b 2 = 7 c R , 2 a 2 − c 2 = − 7 a R . {\displaystyle 2b^{2}-a^{2}={\sqrt {7}}bR,\quad 2c^{2}-b^{2}={\sqrt {7}}cR,\quad 2a^{2}-c^{2}=-{\sqrt {7}}aR.}

We also have28

a 3 c + b 3 a − c 3 b = − 7 R 4 , {\displaystyle a^{3}c+b^{3}a-c^{3}b=-7R^{4},} a 4 c − b 4 a + c 4 b = 7 7 R 5 , {\displaystyle a^{4}c-b^{4}a+c^{4}b=7{\sqrt {7}}R^{5},} a 11 c 3 + b 11 a 3 − c 11 b 3 = − 7 3 17 R 14 . {\displaystyle a^{11}c^{3}+b^{11}a^{3}-c^{11}b^{3}=-7^{3}17R^{14}.}

The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.29: p. 15 

Orthic triangle

The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).30: pp. 12–13 

Hyperbola

The rectangular hyperbola through A , B , C , G = X ( 2 ) , H = X ( 4 ) {\displaystyle A,B,C,G=X(2),H=X(4)} has the following properties:

  • first focus F 1 = X ( 5 ) {\displaystyle F_{1}=X(5)}
  • center U {\displaystyle U} is on Euler circle (general property) and on circle ( O , F 1 ) {\displaystyle (O,F_{1})}
  • second focus F 2 {\displaystyle F_{2}} is on the circumcircle

Trigonometric properties

Trigonometric identities

The various trigonometric identities associated with the heptagonal triangle include these:31: pp. 13–14 3233

A = π 7 cos ⁡ A = b 2 a B = 2 π 7 cos ⁡ B = c 2 b C = 4 π 7 cos ⁡ C = − a 2 c {\displaystyle {\begin{aligned}A&={\frac {\pi }{7}}\\[6pt]\cos A&={\frac {b}{2a}}\end{aligned}}\quad {\begin{aligned}B&={\frac {2\pi }{7}}\\[6pt]\cos B&={\frac {c}{2b}}\end{aligned}}\quad {\begin{aligned}C&={\frac {4\pi }{7}}\\[6pt]\cos C&=-{\frac {a}{2c}}\end{aligned}}} 34: Proposition 10 

sin ⁡ A × sin ⁡ B × sin ⁡ C = 7 8 sin ⁡ A − sin ⁡ B − sin ⁡ C = − 7 2 cos ⁡ A × cos ⁡ B × cos ⁡ C = − 1 8 tan ⁡ A × tan ⁡ B × tan ⁡ C = − 7 tan ⁡ A + tan ⁡ B + tan ⁡ C = − 7 cot ⁡ A + cot ⁡ B + cot ⁡ C = 7 sin 2 A × sin 2 B × sin 2 C = 7 64 sin 2 A + sin 2 B + sin 2 C = 7 4 cos 2 A + cos 2 B + cos 2 C = 5 4 tan 2 A + tan 2 B + tan 2 C = 21 sec 2 A + sec 2 B + sec 2 C = 24 csc 2 A + csc 2 B + csc 2 C = 8 cot 2 A + cot 2 B + cot 2 C = 5 sin 4 A + sin 4 B + sin 4 C = 21 16 cos 4 A + cos 4 B + cos 4 C = 13 16 sec 4 A + sec 4 B + sec 4 C = 416 csc 4 A + csc 4 B + csc 4 C = 32 {\displaystyle {\begin{array}{rcccccl}\sin A\!&\!\times \!&\!\sin B\!&\!\times \!&\!\sin C\!&\!=\!&\!{\frac {\sqrt {7}}{8}}\\[2pt]\sin A\!&\!-\!&\!\sin B\!&\!-\!&\!\sin C\!&\!=\!&\!-{\frac {\sqrt {7}}{2}}\\[2pt]\cos A\!&\!\times \!&\!\cos B\!&\!\times \!&\!\cos C\!&\!=\!&\!-{\frac {1}{8}}\\[2pt]\tan A\!&\!\times \!&\!\tan B\!&\!\times \!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan A\!&\!+\!&\!\tan B\!&\!+\!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\cot A\!&\!+\!&\!\cot B\!&\!+\!&\!\cot C\!&\!=\!&\!{\sqrt {7}}\\[8pt]\sin ^{2}\!A\!&\!\times \!&\!\sin ^{2}\!B\!&\!\times \!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{64}}\\[2pt]\sin ^{2}\!A\!&\!+\!&\!\sin ^{2}\!B\!&\!+\!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{4}}\\[2pt]\cos ^{2}\!A\!&\!+\!&\!\cos ^{2}\!B\!&\!+\!&\!\cos ^{2}\!C\!&\!=\!&\!{\frac {5}{4}}\\[2pt]\tan ^{2}\!A\!&\!+\!&\!\tan ^{2}\!B\!&\!+\!&\!\tan ^{2}\!C\!&\!=\!&\!21\\[2pt]\sec ^{2}\!A\!&\!+\!&\!\sec ^{2}\!B\!&\!+\!&\!\sec ^{2}\!C\!&\!=\!&\!24\\[2pt]\csc ^{2}\!A\!&\!+\!&\!\csc ^{2}\!B\!&\!+\!&\!\csc ^{2}\!C\!&\!=\!&\!8\\[2pt]\cot ^{2}\!A\!&\!+\!&\!\cot ^{2}\!B\!&\!+\!&\!\cot ^{2}\!C\!&\!=\!&\!5\\[8pt]\sin ^{4}\!A\!&\!+\!&\!\sin ^{4}\!B\!&\!+\!&\!\sin ^{4}\!C\!&\!=\!&\!{\frac {21}{16}}\\[2pt]\cos ^{4}\!A\!&\!+\!&\!\cos ^{4}\!B\!&\!+\!&\!\cos ^{4}\!C\!&\!=\!&\!{\frac {13}{16}}\\[2pt]\sec ^{4}\!A\!&\!+\!&\!\sec ^{4}\!B\!&\!+\!&\!\sec ^{4}\!C\!&\!=\!&\!416\\[2pt]\csc ^{4}\!A\!&\!+\!&\!\csc ^{4}\!B\!&\!+\!&\!\csc ^{4}\!C\!&\!=\!&\!32\\[8pt]\end{array}}}

tan ⁡ A − 4 sin ⁡ B = − 7 tan ⁡ B − 4 sin ⁡ C = − 7 tan ⁡ C + 4 sin ⁡ A = − 7 {\displaystyle {\begin{array}{ccccl}\tan A\!&\!-\!&\!4\sin B\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan B\!&\!-\!&\!4\sin C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan C\!&\!+\!&\!4\sin A\!&\!=\!&\!-{\sqrt {7}}\end{array}}} 3536

cot 2 A = 1 − 2 tan ⁡ C 7 cot 2 B = 1 − 2 tan ⁡ A 7 cot 2 C = 1 − 2 tan ⁡ B 7 {\displaystyle {\begin{aligned}\cot ^{2}\!A&=1-{\frac {2\tan C}{\sqrt {7}}}\\[2pt]\cot ^{2}\!B&=1-{\frac {2\tan A}{\sqrt {7}}}\\[2pt]\cot ^{2}\!C&=1-{\frac {2\tan B}{\sqrt {7}}}\end{aligned}}} 37

cos ⁡ A = − 1 2 + 4 7 × sin 3 C sec ⁡ A = 2 + 4 × cos ⁡ C sec ⁡ A = 6 − 8 × sin 2 B sec ⁡ A = 4 − 16 7 × sin 3 B cot ⁡ A = 7 + 8 7 × sin 2 B cot ⁡ A = 3 7 + 4 7 × cos ⁡ B sin 2 A = 1 2 + 1 2 × cos ⁡ B cos 2 A = 3 4 + 2 7 × sin 3 A cot 2 A = 3 + 8 7 × sin ⁡ A sin 3 A = − 7 8 + 7 4 × cos ⁡ B csc 3 A = − 6 7 + 2 7 × tan 2 C {\displaystyle {\begin{array}{rcccccl}\cos A\!&\!=\!&\!{\frac {-1}{2}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!C\\[2pt]\sec A\!&\!=\!&\!2\!&\!+\!&\!4\!&\!\times \!&\!\cos C\\[4pt]\sec A\!&\!=\!&\!6\!&\!-\!&\!8\!&\!\times \!&\!\sin ^{2}\!B\\[4pt]\sec A\!&\!=\!&\!4\!&\!-\!&\!{\frac {16}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!B\\[2pt]\cot A\!&\!=\!&\!{\sqrt {7}}\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{2}\!B\\[2pt]\cot A\!&\!=\!&\!{\frac {3}{\sqrt {7}}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\cos B\\[2pt]\sin ^{2}\!A\!&\!=\!&\!{\frac {1}{2}}\!&\!+\!&\!{\frac {1}{2}}\!&\!\times \!&\!\cos B\\[2pt]\cos ^{2}\!A\!&\!=\!&\!{\frac {3}{4}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!A\\[2pt]\cot ^{2}\!A\!&\!=\!&\!3\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin A\\[2pt]\sin ^{3}\!A\!&\!=\!&\!{\frac {-{\sqrt {7}}}{8}}\!&\!+\!&\!{\frac {\sqrt {7}}{4}}\!&\!\times \!&\!\cos B\\[2pt]\csc ^{3}\!A\!&\!=\!&\!{\frac {-6}{\sqrt {7}}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\tan ^{2}\!C\end{array}}} 38

sin ⁡ A sin ⁡ B − sin ⁡ B sin ⁡ C + sin ⁡ C sin ⁡ A = 0 {\displaystyle \sin A\sin B-\sin B\sin C+\sin C\sin A=0} sin 3 B sin ⁡ C − sin 3 C sin ⁡ A − sin 3 A sin ⁡ B = 0 sin ⁡ B sin 3 C − sin ⁡ C sin 3 A − sin ⁡ A sin 3 B = 7 2 4 sin 4 B sin ⁡ C − sin 4 C sin ⁡ A + sin 4 A sin ⁡ B = 0 sin ⁡ B sin 4 C + sin ⁡ C sin 4 A − sin ⁡ A sin 4 B = 7 7 2 5 {\displaystyle {\begin{aligned}\sin ^{3}\!B\sin C-\sin ^{3}\!C\sin A-\sin ^{3}\!A\sin B&=0\\[3pt]\sin B\sin ^{3}\!C-\sin C\sin ^{3}\!A-\sin A\sin ^{3}\!B&={\frac {7}{2^{4}\!}}\\[2pt]\sin ^{4}\!B\sin C-\sin ^{4}\!C\sin A+\sin ^{4}\!A\sin B&=0\\[2pt]\sin B\sin ^{4}\!C+\sin C\sin ^{4}\!A-\sin A\sin ^{4}\!B&={\frac {7{\sqrt {7}}}{2^{5}}}\end{aligned}}} sin 11 B sin 3 C − sin 11 C sin 3 A − sin 11 A sin 3 B = 0 sin 3 B sin 11 C − sin 3 C sin 11 A − sin 3 A sin 11 B = 7 3 ⋅ 17 2 14 {\displaystyle {\begin{aligned}\sin ^{11}\!B\sin ^{3}\!C-\sin ^{11}\!C\sin ^{3}\!A-\sin ^{11}\!A\sin ^{3}\!B&=0\\[2pt]\sin ^{3}\!B\sin ^{11}\!C-\sin ^{3}\!C\sin ^{11}\!A-\sin ^{3}\!A\sin ^{11}\!B&={\frac {7^{3}\cdot 17}{2^{14}}}\end{aligned}}} 39

Cubic polynomials

The cubic equation 64 y 3 − 112 y 2 + 56 y − 7 = 0 {\displaystyle 64y^{3}-112y^{2}+56y-7=0} has solutions40: p. 14  sin 2 A ,   sin 2 B ,   sin 2 C . {\displaystyle \sin ^{2}\!A,\ \sin ^{2}\!B,\ \sin ^{2}\!C.}

The positive solution of the cubic equation x 3 + x 2 − 2 x − 1 = 0 {\displaystyle x^{3}+x^{2}-2x-1=0} equals 2 cos ⁡ B . {\displaystyle 2\cos B.} 41: p. 186–187 

The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are42 sin ⁡ 2 A ,   sin ⁡ 2 B ,   sin ⁡ 2 C . {\displaystyle \sin 2A,\ \sin 2B,\ \sin 2C.}

The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are − sin ⁡ A ,   sin ⁡ B ,   sin ⁡ C . {\displaystyle -\sin A,\ \sin B,\ \sin C.}

The roots of the cubic equation x 3 + 1 2 x 2 − 1 2 x − 1 8 = 0 {\displaystyle x^{3}+{\tfrac {1}{2}}x^{2}-{\tfrac {1}{2}}x-{\tfrac {1}{8}}=0} are − cos ⁡ A ,   cos ⁡ B ,   cos ⁡ C . {\displaystyle -\cos A,\ \cos B,\ \cos C.}

The roots of the cubic equation x 3 + 7 x 2 − 7 x + 7 = 0 {\displaystyle x^{3}+{\sqrt {7}}x^{2}-7x+{\sqrt {7}}=0} are tan ⁡ A ,   tan ⁡ B ,   tan ⁡ C . {\displaystyle \tan A,\ \tan B,\ \tan C.}

The roots of the cubic equation x 3 − 21 x 2 + 35 x − 7 = 0 {\displaystyle x^{3}-21x^{2}+35x-7=0} are tan 2 A ,   tan 2 B ,   tan 2 C . {\displaystyle \tan ^{2}\!A,\ \tan ^{2}\!B,\ \tan ^{2}\!C.}

Sequences

For an integer n, let S ( n ) = ( − sin ⁡ A ) n + sin n B + sin n C C ( n ) = ( − cos ⁡ A ) n + cos n B + cos n C T ( n ) = tan n A + tan n B + tan n C {\displaystyle {\begin{aligned}S(n)&=(-\sin A)^{n}+\sin ^{n}\!B+\sin ^{n}\!C\\[4pt]C(n)&=(-\cos A)^{n}+\cos ^{n}\!B+\cos ^{n}\!C\\[4pt]T(n)&=\tan ^{n}\!A+\tan ^{n}\!B+\tan ^{n}\!C\end{aligned}}}

Value of n:01234567891011121314151617181920
S ( n ) {\displaystyle S(n)}   3   {\displaystyle \ 3\ } 7 2 {\displaystyle {\tfrac {\sqrt {7}}{2}}} 7 2 2 {\displaystyle {\tfrac {7}{2^{2}}}} 7 2 {\displaystyle {\tfrac {\sqrt {7}}{2}}} 7 ⋅ 3 2 4 {\displaystyle {\tfrac {7\cdot 3}{2^{4}}}} 7 7 2 4 {\displaystyle {\tfrac {7{\sqrt {7}}}{2^{4}}}} 7 ⋅ 5 2 5 {\displaystyle {\tfrac {7\cdot 5}{2^{5}}}} 7 2 7 2 7 {\displaystyle {\tfrac {7^{2}{\sqrt {7}}}{2^{7}}}} 7 2 ⋅ 5 2 8 {\displaystyle {\tfrac {7^{2}\cdot 5}{2^{8}}}} 7 ⋅ 25 7 2 9 {\displaystyle {\tfrac {7\cdot 25{\sqrt {7}}}{2^{9}}}} 7 2 ⋅ 9 2 9 {\displaystyle {\tfrac {7^{2}\cdot 9}{2^{9}}}} 7 2 ⋅ 13 7 2 11 {\displaystyle {\tfrac {7^{2}\cdot 13{\sqrt {7}}}{2^{11}}}} 7 2 ⋅ 33 2 11 {\displaystyle {\tfrac {7^{2}\cdot 33}{2^{11}}}} 7 2 ⋅ 3 7 2 9 {\displaystyle {\tfrac {7^{2}\cdot 3{\sqrt {7}}}{2^{9}}}} 7 4 ⋅ 5 2 14 {\displaystyle {\tfrac {7^{4}\cdot 5}{2^{14}}}} 7 2 ⋅ 179 7 2 15 {\displaystyle {\tfrac {7^{2}\cdot 179{\sqrt {7}}}{2^{15}}}} 7 3 ⋅ 131 2 16 {\displaystyle {\tfrac {7^{3}\cdot 131}{2^{16}}}} 7 3 ⋅ 3 7 2 12 {\displaystyle {\tfrac {7^{3}\cdot 3{\sqrt {7}}}{2^{12}}}} 7 3 ⋅ 493 2 18 {\displaystyle {\tfrac {7^{3}\cdot 493}{2^{18}}}} 7 3 ⋅ 181 7 2 18 {\displaystyle {\tfrac {7^{3}\cdot 181{\sqrt {7}}}{2^{18}}}} 7 5 ⋅ 19 2 19 {\displaystyle {\tfrac {7^{5}\cdot 19}{2^{19}}}}
S ( − n ) {\displaystyle S(-n)} 3 {\displaystyle 3} 0 {\displaystyle 0} 2 3 {\displaystyle 2^{3}} − 2 3 ⋅ 3 7 7 {\displaystyle -{\tfrac {2^{3}\cdot 3{\sqrt {7}}}{7}}} 2 5 {\displaystyle 2^{5}} − 2 5 ⋅ 5 7 7 {\displaystyle -{\tfrac {2^{5}\cdot 5{\sqrt {7}}}{7}}} 2 6 ⋅ 17 7 {\displaystyle {\tfrac {2^{6}\cdot 17}{7}}} − 2 7 7 {\displaystyle -2^{7}{\sqrt {7}}} 2 9 ⋅ 11 7 {\displaystyle {\tfrac {2^{9}\cdot 11}{7}}} − 2 10 ⋅ 33 7 7 2 {\displaystyle -{\tfrac {2^{10}\cdot 33{\sqrt {7}}}{7^{2}}}} 2 10 ⋅ 29 7 {\displaystyle {\tfrac {2^{10}\cdot 29}{7}}} − 2 14 ⋅ 11 7 7 2 {\displaystyle -{\tfrac {2^{14}\cdot 11{\sqrt {7}}}{7^{2}}}} 2 12 ⋅ 269 7 2 {\displaystyle {\tfrac {2^{12}\cdot 269}{7^{2}}}} − 2 13 ⋅ 117 7 7 2 {\displaystyle -{\tfrac {2^{13}\cdot 117{\sqrt {7}}}{7^{2}}}} 2 14 ⋅ 51 7 {\displaystyle {\tfrac {2^{14}\cdot 51}{7}}} − 2 21 ⋅ 17 7 7 3 {\displaystyle -{\tfrac {2^{21}\cdot 17{\sqrt {7}}}{7^{3}}}} 2 17 ⋅ 237 7 2 {\displaystyle {\tfrac {2^{17}\cdot 237}{7^{2}}}} − 2 17 ⋅ 1445 7 7 3 {\displaystyle -{\tfrac {2^{17}\cdot 1445{\sqrt {7}}}{7^{3}}}} 2 19 ⋅ 2203 7 3 {\displaystyle {\tfrac {2^{19}\cdot 2203}{7^{3}}}} − 2 19 ⋅ 1919 7 7 3 {\displaystyle -{\tfrac {2^{19}\cdot 1919{\sqrt {7}}}{7^{3}}}} 2 20 ⋅ 5851 7 3 {\displaystyle {\tfrac {2^{20}\cdot 5851}{7^{3}}}}
C ( n ) {\displaystyle C(n)} 3 {\displaystyle 3} − 1 2 {\displaystyle -{\tfrac {1}{2}}} 5 4 {\displaystyle {\tfrac {5}{4}}} − 1 2 {\displaystyle -{\tfrac {1}{2}}} 13 16 {\displaystyle {\tfrac {13}{16}}} − 1 2 {\displaystyle -{\tfrac {1}{2}}} 19 32 {\displaystyle {\tfrac {19}{32}}} − 57 128 {\displaystyle -{\tfrac {57}{128}}} 117 256 {\displaystyle {\tfrac {117}{256}}} − 193 512 {\displaystyle -{\tfrac {193}{512}}} 185 512 {\displaystyle {\tfrac {185}{512}}}
C ( − n ) {\displaystyle C(-n)} 3 {\displaystyle 3} − 4 {\displaystyle -4} 24 {\displaystyle 24} − 88 {\displaystyle -88} 416 {\displaystyle 416} − 1824 {\displaystyle -1824} 8256 {\displaystyle 8256} − 36992 {\displaystyle -36992} 166400 {\displaystyle 166400} − 747520 {\displaystyle -747520} 3359744 {\displaystyle 3359744}
T ( n ) {\displaystyle T(n)} 3 {\displaystyle 3} − 7 {\displaystyle -{\sqrt {7}}} 7 ⋅ 3 {\displaystyle 7\cdot 3} − 31 7 {\displaystyle -31{\sqrt {7}}} 7 ⋅ 53 {\displaystyle 7\cdot 53} − 7 ⋅ 87 7 {\displaystyle -7\cdot 87{\sqrt {7}}} 7 ⋅ 1011 {\displaystyle 7\cdot 1011} − 7 2 ⋅ 239 7 {\displaystyle -7^{2}\cdot 239{\sqrt {7}}} 7 2 ⋅ 2771 {\displaystyle 7^{2}\cdot 2771} − 7 ⋅ 32119 7 {\displaystyle -7\cdot 32119{\sqrt {7}}} 7 2 ⋅ 53189 {\displaystyle 7^{2}\cdot 53189}
T ( − n ) {\displaystyle T(-n)} 3 {\displaystyle 3} 7 {\displaystyle {\sqrt {7}}} 5 {\displaystyle 5} 25 7 7 {\displaystyle {\tfrac {25{\sqrt {7}}}{7}}} 19 {\displaystyle 19} 103 7 7 {\displaystyle {\tfrac {103{\sqrt {7}}}{7}}} 563 7 {\displaystyle {\tfrac {563}{7}}} 7 ⋅ 9 7 {\displaystyle 7\cdot 9{\sqrt {7}}} 2421 7 {\displaystyle {\tfrac {2421}{7}}} 13297 7 7 2 {\displaystyle {\tfrac {13297{\sqrt {7}}}{7^{2}}}} 10435 7 {\displaystyle {\tfrac {10435}{7}}}

Ramanujan identities

We also have Ramanujan type identities,4344

2 sin ⁡ 2 A 3 + 2 sin ⁡ 2 B 3 + 2 sin ⁡ 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 2 sin ⁡ 2 A 3 + 2 sin ⁡ 2 B 3 + 2 sin ⁡ 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 4 sin 2 ⁡ 2 A 3 + 4 sin 2 ⁡ 2 B 3 + 4 sin 2 ⁡ 2 C 3 = 49 18 × 49 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 2 cos ⁡ 2 A 3 + 2 cos ⁡ 2 B 3 + 2 cos ⁡ 2 C 3 = 5 − 3 7 3 3 4 cos 2 ⁡ 2 A 3 + 4 cos 2 ⁡ 2 B 3 + 4 cos 2 ⁡ 2 C 3 = 11 + 3 ( 2 7 3 + 49 3 ) 3 tan ⁡ 2 A 3 + tan ⁡ 2 B 3 + tan ⁡ 2 C 3 = − 7 18 × 7 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 tan 2 ⁡ 2 A 3 + tan 2 ⁡ 2 B 3 + tan 2 ⁡ 2 C 3 = 49 18 × 3 49 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{4\sin ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[6pt]{\sqrt[{3}]{2\cos 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2C}}\!&\!=\!&\!{\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}\\[8pt]{\sqrt[{3}]{4\cos ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2C}}\!&\!=\!&\!{\sqrt[{3}]{11+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[6pt]{\sqrt[{3}]{\tan 2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\sqrt[{3}]{\tan ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{3{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}

1 2 sin ⁡ 2 A 3 + 1 2 sin ⁡ 2 B 3 + 1 2 sin ⁡ 2 C 3 = − 1 7 18 × 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 1 4 sin 2 ⁡ 2 A 3 + 1 4 sin 2 ⁡ 2 B 3 + 1 4 sin 2 ⁡ 2 C 3 = 1 49 18 × 2 7 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 1 2 cos ⁡ 2 A 3 + 1 2 cos ⁡ 2 B 3 + 1 2 cos ⁡ 2 C 3 = 4 − 3 7 3 3 1 4 cos 2 ⁡ 2 A 3 + 1 4 cos 2 ⁡ 2 B 3 + 1 4 cos 2 ⁡ 2 C 3 = 12 + 3 ( 2 7 3 + 49 3 ) 3 1 tan ⁡ 2 A 3 + 1 tan ⁡ 2 B 3 + 1 tan ⁡ 2 C 3 = − 1 7 18 × − 49 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 1 tan 2 ⁡ 2 A 3 + 1 tan 2 ⁡ 2 B 3 + 1 tan 2 ⁡ 2 C 3 = 1 49 18 × 5 7 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\frac {1}{\sqrt[{3}]{2\sin 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{4\sin ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{2{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{2\cos 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2C}}}\!&\!=\!&\!{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\\[6pt]{\frac {1}{\sqrt[{3}]{4\cos ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2C}}}\!&\!=\!&\!{\sqrt[{3}]{12+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{-{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{5{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}

cos ⁡ 2 A cos ⁡ 2 B 3 + cos ⁡ 2 B cos ⁡ 2 C 3 + cos ⁡ 2 C cos ⁡ 2 A 3 = − 7 3 cos ⁡ 2 B cos ⁡ 2 A 3 + cos ⁡ 2 C cos ⁡ 2 B 3 + cos ⁡ 2 A cos ⁡ 2 C 3 = 0 cos 4 ⁡ 2 B cos ⁡ 2 A 3 + cos 4 ⁡ 2 C cos ⁡ 2 B 3 + cos 4 ⁡ 2 A cos ⁡ 2 C 3 = − 49 3 2 cos 5 ⁡ 2 A cos 2 ⁡ 2 B 3 + cos 5 ⁡ 2 B cos 2 ⁡ 2 C 3 + cos 5 ⁡ 2 C cos 2 ⁡ 2 A 3 = 0 cos 5 ⁡ 2 B cos 2 ⁡ 2 A 3 + cos 5 ⁡ 2 C cos 2 ⁡ 2 B 3 + cos 5 ⁡ 2 A cos 2 ⁡ 2 C 3 = − 3 × 7 3 2 cos 14 ⁡ 2 A cos 5 ⁡ 2 B 3 + cos 14 ⁡ 2 B cos 5 ⁡ 2 C 3 + cos 14 ⁡ 2 C cos 5 ⁡ 2 A 3 = 0 cos 14 ⁡ 2 B cos 5 ⁡ 2 A 3 + cos 14 ⁡ 2 C cos 5 ⁡ 2 B 3 + cos 14 ⁡ 2 A cos 5 ⁡ 2 C 3 = − 61 × 7 3 8 . {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{\frac {\cos 2A}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2B}{\cos 2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2A}}}\!&\!=\!&\!-{\sqrt[{3}]{7}}\\[2pt]{\sqrt[{3}]{\frac {\cos 2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2A}{\cos 2C}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{4}2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2A}{\cos 2C}}}\!&\!=\!&\!-{\frac {\sqrt[{3}]{49}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2C}}}\!&\!=\!&\!-3\times {\frac {\sqrt[{3}]{7}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2C}}}\!&\!=\!&\!-61\times {\frac {\sqrt[{3}]{7}}{8}}.\end{array}}} 45

{\displaystyle }

References

  1. Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf

  2. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  3. Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf

  4. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  5. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  6. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  7. Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256. http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf

  8. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  9. Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256. http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf

  10. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  11. Wang, Kai (August 2019). "On cubic equations with zero sums of cubic roots of roots" – via ResearchGate. https://www.researchgate.net/publication/335392159

  12. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  13. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  14. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  15. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  16. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  17. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  18. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  19. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  20. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  21. Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/

  22. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  23. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  24. Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/

  25. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  26. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  27. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  28. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  29. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  30. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  31. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  32. Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/

  33. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  34. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  35. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  36. Moll, Victor H. (2007-09-24). "An elementary trigonometric equation". arXiv:0709.3755 [math.NT]. /wiki/ArXiv_(identifier)

  37. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  38. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  39. Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate. https://www.researchgate.net/publication/336813631

  40. Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine

  41. Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. JSTOR 2323624. Archived from the original (PDF) on 2015-12-19. https://web.archive.org/web/20151219180208/http://apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/7.pdf#3

  42. Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum

  43. Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153

  44. Witula, Roman; Slota, Damian (2007). "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7" (PDF). Journal of Integer Sequences. 10 (5) 07.5.6. Bibcode:2007JIntS..10...56W. https://www.emis.de/journals/JIS/VOL10/Slota/witula13.pdf

  45. Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate. https://www.researchgate.net/publication/336813631