In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex). Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar (have the same shape), and so they are collectively known as the heptagonal triangle. Its angles have measures π / 7 , 2 π / 7 , {\displaystyle \pi /7,2\pi /7,} and 4 π / 7 , {\displaystyle 4\pi /7,} and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.
Key points
The heptagonal triangle's nine-point center is also its first Brocard point.1: Propos. 12
The second Brocard point lies on the nine-point circle.2: p. 19
The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.3: Thm. 22
The distance between the circumcenter O and the orthocenter H is given by4: p. 19
O H = R 2 , {\displaystyle OH=R{\sqrt {2}},}where R is the circumradius. The squared distance from the incenter I to the orthocenter is5: p. 19
I H 2 = R 2 + 4 r 2 2 , {\displaystyle IH^{2}={\frac {R^{2}+4r^{2}}{2}},}where r is the inradius.
The two tangents from the orthocenter to the circumcircle are mutually perpendicular.6: p. 19
Relations of distances
Sides
The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy7: Lemma 1
a 2 = c ( c − b ) , b 2 = a ( c + a ) , c 2 = b ( a + b ) , 1 a = 1 b + 1 c {\displaystyle {\begin{aligned}a^{2}&=c(c-b),\\[5pt]b^{2}&=a(c+a),\\[5pt]c^{2}&=b(a+b),\\[5pt]{\frac {1}{a}}&={\frac {1}{b}}+{\frac {1}{c}}\end{aligned}}}(the latter8: p. 13 being the optic equation) and hence
a b + a c = b c , {\displaystyle ab+ac=bc,}and9: Coro. 2
b 3 + 2 b 2 c − b c 2 − c 3 = 0 , {\displaystyle b^{3}+2b^{2}c-bc^{2}-c^{3}=0,} c 3 − 2 c 2 a − c a 2 + a 3 = 0 , {\displaystyle c^{3}-2c^{2}a-ca^{2}+a^{3}=0,} a 3 − 2 a 2 b − a b 2 + b 3 = 0. {\displaystyle a^{3}-2a^{2}b-ab^{2}+b^{3}=0.}Thus –b/c, c/a, and a/b all satisfy the cubic equation
t 3 − 2 t 2 − t + 1 = 0. {\displaystyle t^{3}-2t^{2}-t+1=0.}However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.
The approximate relation of the sides is
b ≈ 1.80193 ⋅ a , c ≈ 2.24698 ⋅ a . {\displaystyle b\approx 1.80193\cdot a,\qquad c\approx 2.24698\cdot a.} a 2 b c , − b 2 c a , − c 2 a b {\displaystyle {\frac {a^{2}}{bc}},\quad -{\frac {b^{2}}{ca}},\quad -{\frac {c^{2}}{ab}}}satisfy the cubic equation
t 3 + 4 t 2 + 3 t − 1 = 0. {\displaystyle t^{3}+4t^{2}+3t-1=0.}We also have12
a 3 b c 2 , − b 3 c a 2 , c 3 a b 2 {\displaystyle {\frac {a^{3}}{bc^{2}}},\quad -{\frac {b^{3}}{ca^{2}}},\quad {\frac {c^{3}}{ab^{2}}}}satisfy the cubic equation
t 3 − t 2 − 9 t + 1 = 0. {\displaystyle t^{3}-t^{2}-9t+1=0.}We also have13
a 3 b 2 c , b 3 c 2 a , − c 3 a 2 b {\displaystyle {\frac {a^{3}}{b^{2}c}},\quad {\frac {b^{3}}{c^{2}a}},\quad -{\frac {c^{3}}{a^{2}b}}}satisfy the cubic equation
t 3 + 5 t 2 − 8 t + 1 = 0. {\displaystyle t^{3}+5t^{2}-8t+1=0.}We also have14: p. 14
b 2 − a 2 = a c , {\displaystyle b^{2}-a^{2}=ac,} c 2 − b 2 = a b , {\displaystyle c^{2}-b^{2}=ab,} a 2 − c 2 = − b c , {\displaystyle a^{2}-c^{2}=-bc,}and15: p. 15
b 2 a 2 + c 2 b 2 + a 2 c 2 = 5. {\displaystyle {\frac {b^{2}}{a^{2}}}+{\frac {c^{2}}{b^{2}}}+{\frac {a^{2}}{c^{2}}}=5.}We also have16
a b − b c + c a = 0 , {\displaystyle ab-bc+ca=0,} a 3 b − b 3 c + c 3 a = 0 , {\displaystyle a^{3}b-b^{3}c+c^{3}a=0,} a 4 b + b 4 c − c 4 a = 0 , {\displaystyle a^{4}b+b^{4}c-c^{4}a=0,} a 11 b 3 − b 11 c 3 + c 11 a 3 = 0. {\displaystyle a^{11}b^{3}-b^{11}c^{3}+c^{11}a^{3}=0.}Altitudes
The altitudes ha, hb, and hc satisfy
h a = h b + h c {\displaystyle h_{a}=h_{b}+h_{c}} 17: p. 13and
h a 2 + h b 2 + h c 2 = a 2 + b 2 + c 2 2 . {\displaystyle h_{a}^{2}+h_{b}^{2}+h_{c}^{2}={\frac {a^{2}+b^{2}+c^{2}}{2}}.} 18: p. 14The altitude from side b (opposite angle B) is half the internal angle bisector w A {\displaystyle w_{A}} of A:19: p. 19
2 h b = w A . {\displaystyle 2h_{b}=w_{A}.}Here angle A is the smallest angle, and B is the second smallest.
Internal angle bisectors
We have these properties of the internal angle bisectors w A , w B , {\displaystyle w_{A},w_{B},} and w C {\displaystyle w_{C}} of angles A, B, and C respectively:20: p. 16
w A = b + c , {\displaystyle w_{A}=b+c,} w B = c − a , {\displaystyle w_{B}=c-a,} w C = b − a . {\displaystyle w_{C}=b-a.}Circumradius, inradius, and exradius
The triangle's area is21
A = 7 4 R 2 , {\displaystyle A={\frac {\sqrt {7}}{4}}R^{2},}where R is the triangle's circumradius.
We have22: p. 12
a 2 + b 2 + c 2 = 7 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}=7R^{2}.}We also have23
a 4 + b 4 + c 4 = 21 R 4 . {\displaystyle a^{4}+b^{4}+c^{4}=21R^{4}.} a 6 + b 6 + c 6 = 70 R 6 . {\displaystyle a^{6}+b^{6}+c^{6}=70R^{6}.}The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation24
8 x 3 + 28 x 2 + 14 x − 7 = 0. {\displaystyle 8x^{3}+28x^{2}+14x-7=0.}In addition,25: p. 15
1 a 2 + 1 b 2 + 1 c 2 = 2 R 2 . {\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}+{\frac {1}{c^{2}}}={\frac {2}{R^{2}}}.}We also have26
1 a 4 + 1 b 4 + 1 c 4 = 2 R 4 . {\displaystyle {\frac {1}{a^{4}}}+{\frac {1}{b^{4}}}+{\frac {1}{c^{4}}}={\frac {2}{R^{4}}}.} 1 a 6 + 1 b 6 + 1 c 6 = 17 7 R 6 . {\displaystyle {\frac {1}{a^{6}}}+{\frac {1}{b^{6}}}+{\frac {1}{c^{6}}}={\frac {17}{7R^{6}}}.}In general for all integer n,
a 2 n + b 2 n + c 2 n = g ( n ) ( 2 R ) 2 n {\displaystyle a^{2n}+b^{2n}+c^{2n}=g(n)(2R)^{2n}}where
g ( − 1 ) = 8 , g ( 0 ) = 3 , g ( 1 ) = 7 {\displaystyle g(-1)=8,\quad g(0)=3,\quad g(1)=7}and
g ( n ) = 7 g ( n − 1 ) − 14 g ( n − 2 ) + 7 g ( n − 3 ) . {\displaystyle g(n)=7g(n-1)-14g(n-2)+7g(n-3).}We also have27
2 b 2 − a 2 = 7 b R , 2 c 2 − b 2 = 7 c R , 2 a 2 − c 2 = − 7 a R . {\displaystyle 2b^{2}-a^{2}={\sqrt {7}}bR,\quad 2c^{2}-b^{2}={\sqrt {7}}cR,\quad 2a^{2}-c^{2}=-{\sqrt {7}}aR.}We also have28
a 3 c + b 3 a − c 3 b = − 7 R 4 , {\displaystyle a^{3}c+b^{3}a-c^{3}b=-7R^{4},} a 4 c − b 4 a + c 4 b = 7 7 R 5 , {\displaystyle a^{4}c-b^{4}a+c^{4}b=7{\sqrt {7}}R^{5},} a 11 c 3 + b 11 a 3 − c 11 b 3 = − 7 3 17 R 14 . {\displaystyle a^{11}c^{3}+b^{11}a^{3}-c^{11}b^{3}=-7^{3}17R^{14}.}The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.29: p. 15
Orthic triangle
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).30: pp. 12–13
Hyperbola
The rectangular hyperbola through A , B , C , G = X ( 2 ) , H = X ( 4 ) {\displaystyle A,B,C,G=X(2),H=X(4)} has the following properties:
- first focus F 1 = X ( 5 ) {\displaystyle F_{1}=X(5)}
- center U {\displaystyle U} is on Euler circle (general property) and on circle ( O , F 1 ) {\displaystyle (O,F_{1})}
- second focus F 2 {\displaystyle F_{2}} is on the circumcircle
Trigonometric properties
Trigonometric identities
The various trigonometric identities associated with the heptagonal triangle include these:31: pp. 13–14 3233
A = π 7 cos A = b 2 a B = 2 π 7 cos B = c 2 b C = 4 π 7 cos C = − a 2 c {\displaystyle {\begin{aligned}A&={\frac {\pi }{7}}\\[6pt]\cos A&={\frac {b}{2a}}\end{aligned}}\quad {\begin{aligned}B&={\frac {2\pi }{7}}\\[6pt]\cos B&={\frac {c}{2b}}\end{aligned}}\quad {\begin{aligned}C&={\frac {4\pi }{7}}\\[6pt]\cos C&=-{\frac {a}{2c}}\end{aligned}}} 34: Proposition 10
sin A × sin B × sin C = 7 8 sin A − sin B − sin C = − 7 2 cos A × cos B × cos C = − 1 8 tan A × tan B × tan C = − 7 tan A + tan B + tan C = − 7 cot A + cot B + cot C = 7 sin 2 A × sin 2 B × sin 2 C = 7 64 sin 2 A + sin 2 B + sin 2 C = 7 4 cos 2 A + cos 2 B + cos 2 C = 5 4 tan 2 A + tan 2 B + tan 2 C = 21 sec 2 A + sec 2 B + sec 2 C = 24 csc 2 A + csc 2 B + csc 2 C = 8 cot 2 A + cot 2 B + cot 2 C = 5 sin 4 A + sin 4 B + sin 4 C = 21 16 cos 4 A + cos 4 B + cos 4 C = 13 16 sec 4 A + sec 4 B + sec 4 C = 416 csc 4 A + csc 4 B + csc 4 C = 32 {\displaystyle {\begin{array}{rcccccl}\sin A\!&\!\times \!&\!\sin B\!&\!\times \!&\!\sin C\!&\!=\!&\!{\frac {\sqrt {7}}{8}}\\[2pt]\sin A\!&\!-\!&\!\sin B\!&\!-\!&\!\sin C\!&\!=\!&\!-{\frac {\sqrt {7}}{2}}\\[2pt]\cos A\!&\!\times \!&\!\cos B\!&\!\times \!&\!\cos C\!&\!=\!&\!-{\frac {1}{8}}\\[2pt]\tan A\!&\!\times \!&\!\tan B\!&\!\times \!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan A\!&\!+\!&\!\tan B\!&\!+\!&\!\tan C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\cot A\!&\!+\!&\!\cot B\!&\!+\!&\!\cot C\!&\!=\!&\!{\sqrt {7}}\\[8pt]\sin ^{2}\!A\!&\!\times \!&\!\sin ^{2}\!B\!&\!\times \!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{64}}\\[2pt]\sin ^{2}\!A\!&\!+\!&\!\sin ^{2}\!B\!&\!+\!&\!\sin ^{2}\!C\!&\!=\!&\!{\frac {7}{4}}\\[2pt]\cos ^{2}\!A\!&\!+\!&\!\cos ^{2}\!B\!&\!+\!&\!\cos ^{2}\!C\!&\!=\!&\!{\frac {5}{4}}\\[2pt]\tan ^{2}\!A\!&\!+\!&\!\tan ^{2}\!B\!&\!+\!&\!\tan ^{2}\!C\!&\!=\!&\!21\\[2pt]\sec ^{2}\!A\!&\!+\!&\!\sec ^{2}\!B\!&\!+\!&\!\sec ^{2}\!C\!&\!=\!&\!24\\[2pt]\csc ^{2}\!A\!&\!+\!&\!\csc ^{2}\!B\!&\!+\!&\!\csc ^{2}\!C\!&\!=\!&\!8\\[2pt]\cot ^{2}\!A\!&\!+\!&\!\cot ^{2}\!B\!&\!+\!&\!\cot ^{2}\!C\!&\!=\!&\!5\\[8pt]\sin ^{4}\!A\!&\!+\!&\!\sin ^{4}\!B\!&\!+\!&\!\sin ^{4}\!C\!&\!=\!&\!{\frac {21}{16}}\\[2pt]\cos ^{4}\!A\!&\!+\!&\!\cos ^{4}\!B\!&\!+\!&\!\cos ^{4}\!C\!&\!=\!&\!{\frac {13}{16}}\\[2pt]\sec ^{4}\!A\!&\!+\!&\!\sec ^{4}\!B\!&\!+\!&\!\sec ^{4}\!C\!&\!=\!&\!416\\[2pt]\csc ^{4}\!A\!&\!+\!&\!\csc ^{4}\!B\!&\!+\!&\!\csc ^{4}\!C\!&\!=\!&\!32\\[8pt]\end{array}}}
tan A − 4 sin B = − 7 tan B − 4 sin C = − 7 tan C + 4 sin A = − 7 {\displaystyle {\begin{array}{ccccl}\tan A\!&\!-\!&\!4\sin B\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan B\!&\!-\!&\!4\sin C\!&\!=\!&\!-{\sqrt {7}}\\[2pt]\tan C\!&\!+\!&\!4\sin A\!&\!=\!&\!-{\sqrt {7}}\end{array}}} 3536
cot 2 A = 1 − 2 tan C 7 cot 2 B = 1 − 2 tan A 7 cot 2 C = 1 − 2 tan B 7 {\displaystyle {\begin{aligned}\cot ^{2}\!A&=1-{\frac {2\tan C}{\sqrt {7}}}\\[2pt]\cot ^{2}\!B&=1-{\frac {2\tan A}{\sqrt {7}}}\\[2pt]\cot ^{2}\!C&=1-{\frac {2\tan B}{\sqrt {7}}}\end{aligned}}} 37
cos A = − 1 2 + 4 7 × sin 3 C sec A = 2 + 4 × cos C sec A = 6 − 8 × sin 2 B sec A = 4 − 16 7 × sin 3 B cot A = 7 + 8 7 × sin 2 B cot A = 3 7 + 4 7 × cos B sin 2 A = 1 2 + 1 2 × cos B cos 2 A = 3 4 + 2 7 × sin 3 A cot 2 A = 3 + 8 7 × sin A sin 3 A = − 7 8 + 7 4 × cos B csc 3 A = − 6 7 + 2 7 × tan 2 C {\displaystyle {\begin{array}{rcccccl}\cos A\!&\!=\!&\!{\frac {-1}{2}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!C\\[2pt]\sec A\!&\!=\!&\!2\!&\!+\!&\!4\!&\!\times \!&\!\cos C\\[4pt]\sec A\!&\!=\!&\!6\!&\!-\!&\!8\!&\!\times \!&\!\sin ^{2}\!B\\[4pt]\sec A\!&\!=\!&\!4\!&\!-\!&\!{\frac {16}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!B\\[2pt]\cot A\!&\!=\!&\!{\sqrt {7}}\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{2}\!B\\[2pt]\cot A\!&\!=\!&\!{\frac {3}{\sqrt {7}}}\!&\!+\!&\!{\frac {4}{\sqrt {7}}}\!&\!\times \!&\!\cos B\\[2pt]\sin ^{2}\!A\!&\!=\!&\!{\frac {1}{2}}\!&\!+\!&\!{\frac {1}{2}}\!&\!\times \!&\!\cos B\\[2pt]\cos ^{2}\!A\!&\!=\!&\!{\frac {3}{4}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\sin ^{3}\!A\\[2pt]\cot ^{2}\!A\!&\!=\!&\!3\!&\!+\!&\!{\frac {8}{\sqrt {7}}}\!&\!\times \!&\!\sin A\\[2pt]\sin ^{3}\!A\!&\!=\!&\!{\frac {-{\sqrt {7}}}{8}}\!&\!+\!&\!{\frac {\sqrt {7}}{4}}\!&\!\times \!&\!\cos B\\[2pt]\csc ^{3}\!A\!&\!=\!&\!{\frac {-6}{\sqrt {7}}}\!&\!+\!&\!{\frac {2}{\sqrt {7}}}\!&\!\times \!&\!\tan ^{2}\!C\end{array}}} 38
sin A sin B − sin B sin C + sin C sin A = 0 {\displaystyle \sin A\sin B-\sin B\sin C+\sin C\sin A=0} sin 3 B sin C − sin 3 C sin A − sin 3 A sin B = 0 sin B sin 3 C − sin C sin 3 A − sin A sin 3 B = 7 2 4 sin 4 B sin C − sin 4 C sin A + sin 4 A sin B = 0 sin B sin 4 C + sin C sin 4 A − sin A sin 4 B = 7 7 2 5 {\displaystyle {\begin{aligned}\sin ^{3}\!B\sin C-\sin ^{3}\!C\sin A-\sin ^{3}\!A\sin B&=0\\[3pt]\sin B\sin ^{3}\!C-\sin C\sin ^{3}\!A-\sin A\sin ^{3}\!B&={\frac {7}{2^{4}\!}}\\[2pt]\sin ^{4}\!B\sin C-\sin ^{4}\!C\sin A+\sin ^{4}\!A\sin B&=0\\[2pt]\sin B\sin ^{4}\!C+\sin C\sin ^{4}\!A-\sin A\sin ^{4}\!B&={\frac {7{\sqrt {7}}}{2^{5}}}\end{aligned}}} sin 11 B sin 3 C − sin 11 C sin 3 A − sin 11 A sin 3 B = 0 sin 3 B sin 11 C − sin 3 C sin 11 A − sin 3 A sin 11 B = 7 3 ⋅ 17 2 14 {\displaystyle {\begin{aligned}\sin ^{11}\!B\sin ^{3}\!C-\sin ^{11}\!C\sin ^{3}\!A-\sin ^{11}\!A\sin ^{3}\!B&=0\\[2pt]\sin ^{3}\!B\sin ^{11}\!C-\sin ^{3}\!C\sin ^{11}\!A-\sin ^{3}\!A\sin ^{11}\!B&={\frac {7^{3}\cdot 17}{2^{14}}}\end{aligned}}} 39
Cubic polynomials
The cubic equation 64 y 3 − 112 y 2 + 56 y − 7 = 0 {\displaystyle 64y^{3}-112y^{2}+56y-7=0} has solutions40: p. 14 sin 2 A , sin 2 B , sin 2 C . {\displaystyle \sin ^{2}\!A,\ \sin ^{2}\!B,\ \sin ^{2}\!C.}
The positive solution of the cubic equation x 3 + x 2 − 2 x − 1 = 0 {\displaystyle x^{3}+x^{2}-2x-1=0} equals 2 cos B . {\displaystyle 2\cos B.} 41: p. 186–187
The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are42 sin 2 A , sin 2 B , sin 2 C . {\displaystyle \sin 2A,\ \sin 2B,\ \sin 2C.}
The roots of the cubic equation x 3 − 7 2 x 2 + 7 8 = 0 {\displaystyle x^{3}-{\tfrac {\sqrt {7}}{2}}x^{2}+{\tfrac {\sqrt {7}}{8}}=0} are − sin A , sin B , sin C . {\displaystyle -\sin A,\ \sin B,\ \sin C.}
The roots of the cubic equation x 3 + 1 2 x 2 − 1 2 x − 1 8 = 0 {\displaystyle x^{3}+{\tfrac {1}{2}}x^{2}-{\tfrac {1}{2}}x-{\tfrac {1}{8}}=0} are − cos A , cos B , cos C . {\displaystyle -\cos A,\ \cos B,\ \cos C.}
The roots of the cubic equation x 3 + 7 x 2 − 7 x + 7 = 0 {\displaystyle x^{3}+{\sqrt {7}}x^{2}-7x+{\sqrt {7}}=0} are tan A , tan B , tan C . {\displaystyle \tan A,\ \tan B,\ \tan C.}
The roots of the cubic equation x 3 − 21 x 2 + 35 x − 7 = 0 {\displaystyle x^{3}-21x^{2}+35x-7=0} are tan 2 A , tan 2 B , tan 2 C . {\displaystyle \tan ^{2}\!A,\ \tan ^{2}\!B,\ \tan ^{2}\!C.}
Sequences
For an integer n, let S ( n ) = ( − sin A ) n + sin n B + sin n C C ( n ) = ( − cos A ) n + cos n B + cos n C T ( n ) = tan n A + tan n B + tan n C {\displaystyle {\begin{aligned}S(n)&=(-\sin A)^{n}+\sin ^{n}\!B+\sin ^{n}\!C\\[4pt]C(n)&=(-\cos A)^{n}+\cos ^{n}\!B+\cos ^{n}\!C\\[4pt]T(n)&=\tan ^{n}\!A+\tan ^{n}\!B+\tan ^{n}\!C\end{aligned}}}
Value of n: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S ( n ) {\displaystyle S(n)} | 3 {\displaystyle \ 3\ } | 7 2 {\displaystyle {\tfrac {\sqrt {7}}{2}}} | 7 2 2 {\displaystyle {\tfrac {7}{2^{2}}}} | 7 2 {\displaystyle {\tfrac {\sqrt {7}}{2}}} | 7 ⋅ 3 2 4 {\displaystyle {\tfrac {7\cdot 3}{2^{4}}}} | 7 7 2 4 {\displaystyle {\tfrac {7{\sqrt {7}}}{2^{4}}}} | 7 ⋅ 5 2 5 {\displaystyle {\tfrac {7\cdot 5}{2^{5}}}} | 7 2 7 2 7 {\displaystyle {\tfrac {7^{2}{\sqrt {7}}}{2^{7}}}} | 7 2 ⋅ 5 2 8 {\displaystyle {\tfrac {7^{2}\cdot 5}{2^{8}}}} | 7 ⋅ 25 7 2 9 {\displaystyle {\tfrac {7\cdot 25{\sqrt {7}}}{2^{9}}}} | 7 2 ⋅ 9 2 9 {\displaystyle {\tfrac {7^{2}\cdot 9}{2^{9}}}} | 7 2 ⋅ 13 7 2 11 {\displaystyle {\tfrac {7^{2}\cdot 13{\sqrt {7}}}{2^{11}}}} | 7 2 ⋅ 33 2 11 {\displaystyle {\tfrac {7^{2}\cdot 33}{2^{11}}}} | 7 2 ⋅ 3 7 2 9 {\displaystyle {\tfrac {7^{2}\cdot 3{\sqrt {7}}}{2^{9}}}} | 7 4 ⋅ 5 2 14 {\displaystyle {\tfrac {7^{4}\cdot 5}{2^{14}}}} | 7 2 ⋅ 179 7 2 15 {\displaystyle {\tfrac {7^{2}\cdot 179{\sqrt {7}}}{2^{15}}}} | 7 3 ⋅ 131 2 16 {\displaystyle {\tfrac {7^{3}\cdot 131}{2^{16}}}} | 7 3 ⋅ 3 7 2 12 {\displaystyle {\tfrac {7^{3}\cdot 3{\sqrt {7}}}{2^{12}}}} | 7 3 ⋅ 493 2 18 {\displaystyle {\tfrac {7^{3}\cdot 493}{2^{18}}}} | 7 3 ⋅ 181 7 2 18 {\displaystyle {\tfrac {7^{3}\cdot 181{\sqrt {7}}}{2^{18}}}} | 7 5 ⋅ 19 2 19 {\displaystyle {\tfrac {7^{5}\cdot 19}{2^{19}}}} |
S ( − n ) {\displaystyle S(-n)} | 3 {\displaystyle 3} | 0 {\displaystyle 0} | 2 3 {\displaystyle 2^{3}} | − 2 3 ⋅ 3 7 7 {\displaystyle -{\tfrac {2^{3}\cdot 3{\sqrt {7}}}{7}}} | 2 5 {\displaystyle 2^{5}} | − 2 5 ⋅ 5 7 7 {\displaystyle -{\tfrac {2^{5}\cdot 5{\sqrt {7}}}{7}}} | 2 6 ⋅ 17 7 {\displaystyle {\tfrac {2^{6}\cdot 17}{7}}} | − 2 7 7 {\displaystyle -2^{7}{\sqrt {7}}} | 2 9 ⋅ 11 7 {\displaystyle {\tfrac {2^{9}\cdot 11}{7}}} | − 2 10 ⋅ 33 7 7 2 {\displaystyle -{\tfrac {2^{10}\cdot 33{\sqrt {7}}}{7^{2}}}} | 2 10 ⋅ 29 7 {\displaystyle {\tfrac {2^{10}\cdot 29}{7}}} | − 2 14 ⋅ 11 7 7 2 {\displaystyle -{\tfrac {2^{14}\cdot 11{\sqrt {7}}}{7^{2}}}} | 2 12 ⋅ 269 7 2 {\displaystyle {\tfrac {2^{12}\cdot 269}{7^{2}}}} | − 2 13 ⋅ 117 7 7 2 {\displaystyle -{\tfrac {2^{13}\cdot 117{\sqrt {7}}}{7^{2}}}} | 2 14 ⋅ 51 7 {\displaystyle {\tfrac {2^{14}\cdot 51}{7}}} | − 2 21 ⋅ 17 7 7 3 {\displaystyle -{\tfrac {2^{21}\cdot 17{\sqrt {7}}}{7^{3}}}} | 2 17 ⋅ 237 7 2 {\displaystyle {\tfrac {2^{17}\cdot 237}{7^{2}}}} | − 2 17 ⋅ 1445 7 7 3 {\displaystyle -{\tfrac {2^{17}\cdot 1445{\sqrt {7}}}{7^{3}}}} | 2 19 ⋅ 2203 7 3 {\displaystyle {\tfrac {2^{19}\cdot 2203}{7^{3}}}} | − 2 19 ⋅ 1919 7 7 3 {\displaystyle -{\tfrac {2^{19}\cdot 1919{\sqrt {7}}}{7^{3}}}} | 2 20 ⋅ 5851 7 3 {\displaystyle {\tfrac {2^{20}\cdot 5851}{7^{3}}}} |
C ( n ) {\displaystyle C(n)} | 3 {\displaystyle 3} | − 1 2 {\displaystyle -{\tfrac {1}{2}}} | 5 4 {\displaystyle {\tfrac {5}{4}}} | − 1 2 {\displaystyle -{\tfrac {1}{2}}} | 13 16 {\displaystyle {\tfrac {13}{16}}} | − 1 2 {\displaystyle -{\tfrac {1}{2}}} | 19 32 {\displaystyle {\tfrac {19}{32}}} | − 57 128 {\displaystyle -{\tfrac {57}{128}}} | 117 256 {\displaystyle {\tfrac {117}{256}}} | − 193 512 {\displaystyle -{\tfrac {193}{512}}} | 185 512 {\displaystyle {\tfrac {185}{512}}} | ||||||||||
C ( − n ) {\displaystyle C(-n)} | 3 {\displaystyle 3} | − 4 {\displaystyle -4} | 24 {\displaystyle 24} | − 88 {\displaystyle -88} | 416 {\displaystyle 416} | − 1824 {\displaystyle -1824} | 8256 {\displaystyle 8256} | − 36992 {\displaystyle -36992} | 166400 {\displaystyle 166400} | − 747520 {\displaystyle -747520} | 3359744 {\displaystyle 3359744} | ||||||||||
T ( n ) {\displaystyle T(n)} | 3 {\displaystyle 3} | − 7 {\displaystyle -{\sqrt {7}}} | 7 ⋅ 3 {\displaystyle 7\cdot 3} | − 31 7 {\displaystyle -31{\sqrt {7}}} | 7 ⋅ 53 {\displaystyle 7\cdot 53} | − 7 ⋅ 87 7 {\displaystyle -7\cdot 87{\sqrt {7}}} | 7 ⋅ 1011 {\displaystyle 7\cdot 1011} | − 7 2 ⋅ 239 7 {\displaystyle -7^{2}\cdot 239{\sqrt {7}}} | 7 2 ⋅ 2771 {\displaystyle 7^{2}\cdot 2771} | − 7 ⋅ 32119 7 {\displaystyle -7\cdot 32119{\sqrt {7}}} | 7 2 ⋅ 53189 {\displaystyle 7^{2}\cdot 53189} | ||||||||||
T ( − n ) {\displaystyle T(-n)} | 3 {\displaystyle 3} | 7 {\displaystyle {\sqrt {7}}} | 5 {\displaystyle 5} | 25 7 7 {\displaystyle {\tfrac {25{\sqrt {7}}}{7}}} | 19 {\displaystyle 19} | 103 7 7 {\displaystyle {\tfrac {103{\sqrt {7}}}{7}}} | 563 7 {\displaystyle {\tfrac {563}{7}}} | 7 ⋅ 9 7 {\displaystyle 7\cdot 9{\sqrt {7}}} | 2421 7 {\displaystyle {\tfrac {2421}{7}}} | 13297 7 7 2 {\displaystyle {\tfrac {13297{\sqrt {7}}}{7^{2}}}} | 10435 7 {\displaystyle {\tfrac {10435}{7}}} |
Ramanujan identities
We also have Ramanujan type identities,4344
2 sin 2 A 3 + 2 sin 2 B 3 + 2 sin 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 2 sin 2 A 3 + 2 sin 2 B 3 + 2 sin 2 C 3 = − 7 18 × − 7 3 + 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 4 sin 2 2 A 3 + 4 sin 2 2 B 3 + 4 sin 2 2 C 3 = 49 18 × 49 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 2 cos 2 A 3 + 2 cos 2 B 3 + 2 cos 2 C 3 = 5 − 3 7 3 3 4 cos 2 2 A 3 + 4 cos 2 2 B 3 + 4 cos 2 2 C 3 = 11 + 3 ( 2 7 3 + 49 3 ) 3 tan 2 A 3 + tan 2 B 3 + tan 2 C 3 = − 7 18 × 7 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 tan 2 2 A 3 + tan 2 2 B 3 + tan 2 2 C 3 = 49 18 × 3 49 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{2\sin 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\sin 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{-{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\sqrt[{3}]{4\sin ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\sin ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[6pt]{\sqrt[{3}]{2\cos 2A}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2B}}\!&\!+\!&\!{\sqrt[{3}]{2\cos 2C}}\!&\!=\!&\!{\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}\\[8pt]{\sqrt[{3}]{4\cos ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{4\cos ^{2}2C}}\!&\!=\!&\!{\sqrt[{3}]{11+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[6pt]{\sqrt[{3}]{\tan 2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan 2C}}\!&\!=\!&\!-{\sqrt[{18}]{7}}\times {\sqrt[{3}]{{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\sqrt[{3}]{\tan ^{2}2A}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2B}}\!&\!+\!&\!{\sqrt[{3}]{\tan ^{2}2C}}\!&\!=\!&\!{\sqrt[{18}]{49}}\times {\sqrt[{3}]{3{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}
1 2 sin 2 A 3 + 1 2 sin 2 B 3 + 1 2 sin 2 C 3 = − 1 7 18 × 6 + 3 ( 5 − 3 7 3 3 + 4 − 3 7 3 3 ) 3 1 4 sin 2 2 A 3 + 1 4 sin 2 2 B 3 + 1 4 sin 2 2 C 3 = 1 49 18 × 2 7 3 + 6 + 3 ( 12 + 3 ( 49 3 + 2 7 3 ) 3 + 11 + 3 ( 49 3 + 2 7 3 ) 3 ) 3 1 2 cos 2 A 3 + 1 2 cos 2 B 3 + 1 2 cos 2 C 3 = 4 − 3 7 3 3 1 4 cos 2 2 A 3 + 1 4 cos 2 2 B 3 + 1 4 cos 2 2 C 3 = 12 + 3 ( 2 7 3 + 49 3 ) 3 1 tan 2 A 3 + 1 tan 2 B 3 + 1 tan 2 C 3 = − 1 7 18 × − 49 3 + 6 + 3 ( 5 + 3 ( 7 3 − 49 3 ) 3 + − 3 + 3 ( 7 3 − 49 3 ) 3 ) 3 1 tan 2 2 A 3 + 1 tan 2 2 B 3 + 1 tan 2 2 C 3 = 1 49 18 × 5 7 3 + 6 + 3 ( 89 + 3 ( 3 49 3 + 5 7 3 ) 3 + 25 + 3 ( 3 49 3 + 5 7 3 ) 3 ) 3 {\displaystyle {\begin{array}{ccccccl}{\frac {1}{\sqrt[{3}]{2\sin 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\sin 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{6+3\left({\sqrt[{3}]{5-3{\sqrt[{3}]{7}}}}+{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{4\sin ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\sin ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{2{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{12+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{11+3({\sqrt[{3}]{49}}+2{\sqrt[{3}]{7}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{2\cos 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{2\cos 2C}}}\!&\!=\!&\!{\sqrt[{3}]{4-3{\sqrt[{3}]{7}}}}\\[6pt]{\frac {1}{\sqrt[{3}]{4\cos ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{4\cos ^{2}2C}}}\!&\!=\!&\!{\sqrt[{3}]{12+3(2{\sqrt[{3}]{7}}+{\sqrt[{3}]{49}})}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan 2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan 2C}}}\!&\!=\!&\!-{\frac {1}{\sqrt[{18}]{7}}}\times {\sqrt[{3}]{-{\sqrt[{3}]{49}}+6+3\left({\sqrt[{3}]{5+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}+{\sqrt[{3}]{-3+3({\sqrt[{3}]{7}}-{\sqrt[{3}]{49}})}}\right)}}\\[2pt]{\frac {1}{\sqrt[{3}]{\tan ^{2}2A}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2B}}}\!&\!+\!&\!{\frac {1}{\sqrt[{3}]{\tan ^{2}2C}}}\!&\!=\!&\!{\frac {1}{\sqrt[{18}]{49}}}\times {\sqrt[{3}]{5{\sqrt[{3}]{7}}+6+3\left({\sqrt[{3}]{89+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}+{\sqrt[{3}]{25+3(3{\sqrt[{3}]{49}}+5{\sqrt[{3}]{7}})}}\right)}}\end{array}}}
cos 2 A cos 2 B 3 + cos 2 B cos 2 C 3 + cos 2 C cos 2 A 3 = − 7 3 cos 2 B cos 2 A 3 + cos 2 C cos 2 B 3 + cos 2 A cos 2 C 3 = 0 cos 4 2 B cos 2 A 3 + cos 4 2 C cos 2 B 3 + cos 4 2 A cos 2 C 3 = − 49 3 2 cos 5 2 A cos 2 2 B 3 + cos 5 2 B cos 2 2 C 3 + cos 5 2 C cos 2 2 A 3 = 0 cos 5 2 B cos 2 2 A 3 + cos 5 2 C cos 2 2 B 3 + cos 5 2 A cos 2 2 C 3 = − 3 × 7 3 2 cos 14 2 A cos 5 2 B 3 + cos 14 2 B cos 5 2 C 3 + cos 14 2 C cos 5 2 A 3 = 0 cos 14 2 B cos 5 2 A 3 + cos 14 2 C cos 5 2 B 3 + cos 14 2 A cos 5 2 C 3 = − 61 × 7 3 8 . {\displaystyle {\begin{array}{ccccccl}{\sqrt[{3}]{\frac {\cos 2A}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2B}{\cos 2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2A}}}\!&\!=\!&\!-{\sqrt[{3}]{7}}\\[2pt]{\sqrt[{3}]{\frac {\cos 2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos 2A}{\cos 2C}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{4}2B}{\cos 2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2C}{\cos 2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{4}2A}{\cos 2C}}}\!&\!=\!&\!-{\frac {\sqrt[{3}]{49}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{5}2B}{\cos ^{2}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2C}{\cos ^{2}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{5}2A}{\cos ^{2}2C}}}\!&\!=\!&\!-3\times {\frac {\sqrt[{3}]{7}}{2}}\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2C}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2A}}}\!&\!=\!&\!0\\[2pt]{\sqrt[{3}]{\frac {\cos ^{14}2B}{\cos ^{5}2A}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2C}{\cos ^{5}2B}}}\!&\!+\!&\!{\sqrt[{3}]{\frac {\cos ^{14}2A}{\cos ^{5}2C}}}\!&\!=\!&\!-61\times {\frac {\sqrt[{3}]{7}}{8}}.\end{array}}} 45
{\displaystyle }
References
Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Yiu, Paul (2009). "Heptagonal Triangles and Their Companions" (PDF). Forum Geometricorum. 9: 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256. http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Altintas, Abdilkadir (2016). "Some Collinearities in the Heptagonal Triangle" (PDF). Forum Geometricorum. 16: 249–256. http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (August 2019). "On cubic equations with zero sums of cubic roots of roots" – via ResearchGate. https://www.researchgate.net/publication/335392159 ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/ ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/ ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Weisstein, Eric W. "Heptagonal Triangle". mathworld.wolfram.com. Retrieved 2024-08-02. https://mathworld.wolfram.com/ ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Moll, Victor H. (2007-09-24). "An elementary trigonometric equation". arXiv:0709.3755 [math.NT]. /wiki/ArXiv_(identifier) ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate. https://www.researchgate.net/publication/336813631 ↩
Bankoff, Leon; Garfunkel, Jack (1973). "The Heptagonal Triangle". Mathematics Magazine. 46 (1): 7–19. doi:10.2307/2688574. JSTOR 2688574. /wiki/Mathematics_Magazine ↩
Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon" (PDF). The American Mathematical Monthly. 95 (3): 185–194. doi:10.2307/2323624. JSTOR 2323624. Archived from the original (PDF) on 2015-12-19. https://web.archive.org/web/20151219180208/http://apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/7.pdf#3 ↩
Wang, Kai (2019). "Heptagonal Triangle and Trigonometric Identities". Forum Geometricorum. 19: 29–38. /wiki/Forum_Geometricorum ↩
Wang, Kai (September 2018). "Trigonometric Properties For Heptagonal Triangle" – via ResearchGate. https://www.researchgate.net/publication/327825153 ↩
Witula, Roman; Slota, Damian (2007). "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7" (PDF). Journal of Integer Sequences. 10 (5) 07.5.6. Bibcode:2007JIntS..10...56W. https://www.emis.de/journals/JIS/VOL10/Slota/witula13.pdf ↩
Wang, Kai (October 2019). "On Ramanujan Type Identities For PI/7" – via ResearchGate. https://www.researchgate.net/publication/336813631 ↩