Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of iridium
Isotopes of iridium

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

We don't have any images related to Isotopes of iridium yet.
We don't have any YouTube videos related to Isotopes of iridium yet.
We don't have any PDF documents related to Isotopes of iridium yet.
We don't have any Books related to Isotopes of iridium yet.
We don't have any archived web articles related to Isotopes of iridium yet.

List of isotopes

Nuclide23ZNIsotopic mass (Da)456Half-life7Decaymode8Daughterisotope910Spin andparity1112Natural abundance (mole fraction)
Excitation energy13Normal proportionRange of variation
164Ir147787163.99220(44)#<0.5 μsp?163Os2−#
164mIr270(110)# keV70(10) μsp (96%)163Os9+#
α (4%)160mRe
165Ir7788164.98752(23)#1.20+0.82−0.74 μs15p164Os(1/2+)
165mIr16~255 keV340(40) μsp (88%)164Os(11/2−)
α (12%)161mRe
166Ir7789165.98582(22)#10.5(22) msα (93%)162Re(2−)
p (7%)165Os
166mIr172(6) keV15.1(9) msα (98.2%)162Re(9+)
p (1.8%)165Os
167Ir7790166.981665(20)35.2(20) msα (48%)163Re1/2+
p (32%)166Os
β+ (20%)167Os
167mIr175.3(22) keV30.0(6) msα (80%)163Re11/2−
β+ (20%)167Os
p (.4%)166Os
168Ir7791167.97988(16)#161(21) msα164Re(2-)
β+ (rare)168Os
168mIr50(100)# keV125(40) msα164Re(9+)
169Ir7792168.976295(28)780(360) ms[640+460−240 ms]α165Re(1/2+)
β+ (rare)169Os
169mIr154(24) keV308(22) msα (72%)165Re(11/2−)
β+ (28%)169Os
170Ir7793169.97497(11)#910(150) ms[870+180−120 ms]β+ (64%)170Oslow#
α (36%)166Re
170mIr160(50)# keV440(60) msα (36%)166Re(8+)
β+170Os
IT170Ir
171Ir7794170.97163(4)3.6(10) s[3.2+13−7 s]α (58%)167Re1/2+
β+ (42%)171Os
171mIr180(30)# keV1.40(10) s(11/2−)
172Ir7795171.970610(30)4.4(3) sβ+ (98%)172Os(3+)
α (2%)168Re
172mIr280(100)# keV2.0(1) sβ+ (77%)172Os(7+)
α (23%)168Re
173Ir7796172.967502(15)9.0(8) sβ+ (93%)173Os(3/2+,5/2+)
α (7%)169Re
173mIr253(27) keV2.20(5) sβ+ (88%)173Os(11/2−)
α (12%)169Re
174Ir7797173.966861(30)7.9(6) sβ+ (99.5%)174Os(3+)
α (.5%)170Re
174mIr193(11) keV4.9(3) sβ+ (99.53%)174Os(7+)
α (.47%)170Re
175Ir7798174.964113(21)9(2) sβ+ (99.15%)175Os(5/2−)
α (.85%)171Re
176Ir7799175.963649(22)8.3(6) sβ+ (97.9%)176Os
α (2.1%)172Re
177Ir77100176.961302(21)30(2) sβ+ (99.94%)177Os5/2−
α (.06%)173Re
178Ir77101177.961082(21)12(2) sβ+178Os
179Ir77102178.959122(12)79(1) sβ+179Os(5/2)−
180Ir77103179.959229(23)1.5(1) minβ+180Os(4,5)(+#)
181Ir77104180.957625(28)4.90(15) minβ+181Os(5/2)−
182Ir77105181.958076(23)15(1) minβ+182Os(3+)
183Ir77106182.956846(27)57(4) minβ+ ( 99.95%)183Os5/2−
α (.05%)179Re
184Ir77107183.95748(3)3.09(3) hβ+184Os5−
184m1Ir225.65(11) keV470(30) μs3+
184m2Ir328.40(24) keV350(90) ns(7)+
185Ir77108184.95670(3)14.4(1) hβ+185Os5/2−
186Ir77109185.957946(18)16.64(3) hβ+186Os5+
186mIr0.8(4) keV1.92(5) hβ+186Os2−
IT (rare)186Ir
187Ir77110186.957363(7)10.5(3) hβ+187Os3/2+
187m1Ir186.15(4) keV30.3(6) msIT187Ir9/2−
187m2Ir433.81(9) keV152(12) ns11/2−
188Ir77111187.958853(8)41.5(5) hβ+188Os1−
188mIr970(30) keV4.2(2) msIT188Ir7+#
β+ (rare)188Os
189Ir77112188.958719(14)13.2(1) dEC189Os3/2+
189m1Ir372.18(4) keV13.3(3) msIT189Ir11/2−
189m2Ir2333.3(4) keV3.7(2) ms(25/2)+
190Ir77113189.9605460(18)11.7511(20) d17EC190Os4−
β+ (<0.002%)18
190m1Ir26.1(1) keV1.120(3) hIT190Ir(1)−
190m2Ir36.154(25) keV>2 μs(4)+
190m3Ir376.4(1) keV3.087(12) hEC (91.4%)19190Os(11)−
IT (8.6%)20190Ir
191Ir77114190.9605940(18)Observationally Stable213/2+0.373(2)
191m1Ir171.24(5) keV4.94(3) sIT191Ir11/2−
191m2Ir2120(40) keV5.5(7) s
192Ir77115191.9626050(18)73.827(13) dβ− (95.24%)192Pt4+
EC (4.76%)192Os
192m1Ir56.720(5) keV1.45(5) minIT (98.25%)192Ir1−
β− (1.75%)192Pt
192m2Ir168.14(12) keV241(9) yIT192Ir(11−)
193Ir77116192.9629264(18)Observationally Stable223/2+0.627(2)
193mIr80.240(6) keV10.53(4) dIT193Ir11/2−
194Ir77117193.9650784(18)19.28(13) hβ−194Pt1−
194m1Ir147.078(5) keV31.85(24) msIT194Ir(4+)
194m2Ir370(70) keV171(11) d(10,11)(−#)
195Ir77118194.9659796(18)2.5(2) hβ−195Pt3/2+
195mIr100(5) keV3.8(2) hβ− (95%)195Pt11/2−
IT (5%)195Ir
196Ir77119195.96840(4)52(1) sβ−196Pt(0−)
196mIr210(40) keV1.40(2) hβ− (99.7%)196Pt(10,11−)
IT196Ir
197Ir77120196.969653(22)5.8(5) minβ−197Pt3/2+
197mIr115(5) keV8.9(3) minβ− (99.75%)197Pt11/2−
IT (.25%)197Ir
198Ir77121197.97228(21)#8(1) sβ−198Pt
199Ir77122198.97380(4)7(5) sβ−199Pt3/2+#
199mIr130(40)# keV235(90) nsIT199Ir11/2−#
200Ir77123199.976800(210)#43(6) sβ−200Pt(2-, 3-)
201Ir77124200.978640(210)#21(5) sβ−201Pt(3/2+)
202Ir77125201.981990(320)#11(3) sβ−202Pt(2-)
202mIr2000(1000)# keV3.4(0.6) μsIT202Ir
This table header & footer:
  • view

Iridium-192

Main article: Iridium-192

Iridium-192 (symbol 192Ir) is a radioactive isotope of iridium, with a half-life of 73.83 days.23 It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of 192Ir decays occur via emission of β and γ radiation, leading to 192Pt. Some of the β particles are captured by other 192Ir nuclei, which are then converted to 192Os. Electron capture is responsible for the remaining 4% of 192Ir decays.24 Iridium-192 is normally produced by neutron activation of natural-abundance iridium metal.25

Iridium-192 is a very strong gamma ray emitter, with a gamma dose-constant of approximately 1.54 μSv·h−1·MBq−1 at 30 cm, and a specific activity of 341 TBq·g−1 (9.22 kCi·g−1).2627 There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6 MeV.

The 192m2Ir isomer is unusual, both for its long half-life for an isomer, and that said half-life greatly exceeds that of the ground state of the same isotope.

References

  1. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098. /wiki/ArXiv_(identifier)

  2. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf

  3. mIr – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1 – 030003-442. doi:10.1088/1674-1137/41/3/030003. http://nuclearmasses.org/resources_folder/Wang_2017_Chinese_Phys_C_41_030003.pdf

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture

  9. Bold italics symbol as daughter – Daughter product is nearly stable.

  10. Bold symbol as daughter – Daughter product is stable.

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014). "α decay of the π h 11 / 2 isomer in Ir 164". Physical Review C. 89 (6): 064309. Bibcode:2014PhRvC..89f4309D. doi:10.1103/PhysRevC.89.064309. ISSN 0556-2813. Retrieved 21 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.89.064309

  15. Hilton, Joshua Ben. "Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA". University of Liverpool. ProQuest 2448649087. Retrieved 21 June 2023. https://www.proquest.com/docview/2448649087

  16. Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014). "α decay of the π h 11 / 2 isomer in Ir 164". Physical Review C. 89 (6): 064309. Bibcode:2014PhRvC..89f4309D. doi:10.1103/PhysRevC.89.064309. ISSN 0556-2813. Retrieved 21 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.89.064309

  17. Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306. /wiki/Doi_(identifier)

  18. Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306. /wiki/Doi_(identifier)

  19. Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306. /wiki/Doi_(identifier)

  20. Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306. /wiki/Doi_(identifier)

  21. Believed to undergo α decay to 187Re

  22. Believed to undergo α decay to 189Re

  23. "Radioisotope Brief: Iridium-192 (Ir-192)". Retrieved 20 March 2012. https://emergency.cdc.gov/radiation/isotopes/iridium.asp

  24. Baggerly, Leo L. (1956). The radioactive decay of Iridium-192 (PDF) (Ph.D. thesis). Pasadena, Calif.: California Institute of Technology. pp. 1, 2, 7. doi:10.7907/26VA-RB25. https://thesis.library.caltech.edu/750/1/Baggerly_ll_1956.pdf

  25. "Isotope Supplier: Stable Isotopes and Radioisotopes from ISOFLEX - Iridium-192". www.isoflex.com. Retrieved 2017-10-11. https://www.isoflex.com/products/radioisotopes/iridium-isotopes

  26. Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C (2002). Radionuclide and Radiation Protection Data Handbook (PDF). Radiation Protection Dosimetry. Vol. 98, no. 1 (2nd ed.). Ashford, Kent: Nuclear Technology Publishing. pp. 9–168. doi:10.1093/OXFORDJOURNALS.RPD.A006705. ISBN 1870965876. PMID 11916063. S2CID 123447679. Archived from the original (PDF) on 2019-08-22. 1870965876

  27. Unger, L M; Trubey, D K (May 1982). Specific Gamma-Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assessment (PDF) (Report). Oak Ridge National Laboratory. Archived from the original (PDF) on 22 March 2018. https://web.archive.org/web/20180322020815/https://www.orau.org/documents/ivhp/health-physics/ornl-rsic-45.pdf