Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of bismuth

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occur in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

List of isotopes

Nuclide1HistoricnameZNIsotopic mass (Da)234Half-life56Decaymode78Daughterisotope9Spin andparity101112Isotopicabundance
Excitation energy13
184Bi1483101184.00135(13)#6.6(15) msα180Tl3+#
184mBi15150(100)# keV13(2) msα180Tl10−#
185Bi1683102184.99760(9)#2.8+2.3−1.0 μsp (92%)184Pb(1/2+)
α (8%)181Tl
185mBi70(50)# keV58(2) μsIT185Bi(7/2−, 9/2−)
186Bi83103185.996623(18)14.8(7) msα (99.99%)182Tl(3+)
β+ (?%)186Pb
β+, SF (0.011%)(various)
186mBi17170(100)# keV9.8(4) msα (99.99%)182Tl(10−)
β+ (?%)186Pb
β+, SF (0.011%)(various)
187Bi83104186.993147(11)37(2) msα183Tl(9/2−)
187m1Bi108(8) keV370(20) μsα183Tl1/2+
187m2Bi252(3) keV7(5) μsIT187Bi(13/2+)
188Bi83105187.992276(12)60(3) msα184Tl(3+)
β+, SF (0.0014%)(various)
188m1Bi66(30) keV>5 μs7+#
188m2Bi153(30) keV265(15) msα184Tl(10−)
β+, SF (0.0046%)(various)
189Bi83106188.989195(22)688(5) msα185Tl9/2−
189m1Bi184(5) keV5.0(1) msα (83%)185Tl1/2+
IT (17%)189Bi
189m2Bi357.6(5) keV880(50) nsIT189Bi13/2+
190Bi83107189.988625(23)6.3(1) sα (77%)186Tl(3+)
β+ (23%)190Pb
β+, SF (6×10−6%)(various)
190m1Bi120(40) keV6.2(1) sα (70%)186Tl10−
β+ (30%)190Pb
β+, SF (4×10−6%)(various)
190m2Bi121(15) keV175(8) nsIT190Bi(5−)
190m3Bi394(40) keV1.3(8) μsIT190Bi(8−)
191Bi83108190.985787(8)12.4(3) sα (51%)187Tl9/2−
β+ (49%)191Pb
191m1Bi242(4) keV125(8) msα (68%)187Tl1/2+
IT (?%)191Bi
β+ (?%)191Pb
191m2Bi429.7(5) keV562(10) nsIT191Bi13/2+
191m3Bi1875(25)# keV400(40) nsIT191Bi25/2-#
192Bi83109191.98547(3)34.6(9) sβ+ (88%)192Pb(3+)
α (12%)188Tl
192mBi140(30) keV39.6(4) sβ+ (90%)192Pb10−
α (10%)188Tl
193Bi83110192.982947(8)63.6(30) sβ+ (96.5%)193Pb9/2−
α (3.5%)189Tl
193m1Bi305(6) keV3.20(14) sα (84%)189Tl1/2+
β+ (16%)193Pb
193m2Bi605.53(18) keV153(10) nsIT193Bi13/2+
193m3Bi2349.6(6) keV85(3) μsIT193Bi29/2+
193m4Bi2405.1(7) keV3.02(8) μsIT193Bi(29/2−)
194Bi83111193.982799(6)95(3) sβ+ (99.54%)194Pb3+
α (0.46%)190Tl
194m1Bi150(50) keV125(2) sβ+194Pb(6+, 7+)
194m2Bi163(4) keV115(4) sβ+ (99.80%)194Pb(10−)
α (0.20%)190Tl
195Bi83112194.980649(6)183(4) sβ+ (99.97%)195Pb9/2−
α (0.030%)191Tl
195m1Bi399(6) keV87(1) sβ+ (67%)195Pb1/2+
α (33%)191Tl
195m2Bi2381.0(5) keV614(5) nsIT195Bi(29/2−)
195m3Bi2615.9(5) keV1.49(1) μsIT195Bi29/2+
196Bi83113195.980667(26)5.13(20) minβ+196Pb(3+)
α (0.00115%)192Tl
196m1Bi166.4(29) keV0.6(5) sIT196Bi(7+)
196m2Bi272(3) keV4.00(5) minβ+ (74.2%)196Pb(10−)
IT (25.8%)196Bi
α (3.8×10−4%)196Bi
197Bi83114196.978865(9)9.33(50) minβ+197Pb9/2−
197m1Bi533(12) keV5.04(16) minα (55%)193Tl1/2+
β+ (45%)197Pb
197m2Bi2403(12) keV263(13) nsIT197Bi(29/2−)
197m3Bi2929.5(5) keV209(30) nsIT197Bi(31/2−)
198Bi83115197.979201(30)10.3(3) minβ+198Pb3+
198m1Bi290(40) keV11.6(3) minβ+198Pb7+
198m2Bi540(40) keV7.7(5) sIT198Bi10−
199Bi83116198.977673(11)27(1) minβ+199Pb9/2−
199m1Bi667(3) keV24.70(15) minβ+ (>98%)199Pb(1/2+)
IT (<2%)199Bi
α (0.01%)195Tl
199m2Bi1962(23) keV0.10(3) μsIT199Bi25/2+#
199m3Bi2548(23) keV168(13) nsIT199Bi29/2−#
200Bi83117199.978131(24)36.4(5) minβ+200Pb7+
200m1Bi18100(70)# keV31(2) minβ+ (?%)200Pb(2+)
IT (?%)200Bi
200m2Bi428.20(10) keV400(50) msIT200Bi(10−)
201Bi83118200.976995(13)103(3) minβ+201Pb9/2−
201m1Bi846.35(18) keV57.5(21) minβ+201Pb1/2+
α (?%)197Tl
201m2Bi1973(23) keV118(28) nsIT201Bi25/2+#
201m3Bi2012(23) keV105(75) nsIT201Bi27/2+#
201m4Bi2781(23) keV124(4) nsIT201Bi29/2−#
202Bi83119201.977723(15)1.72(5) hβ+202Pb5+
α (<10−5%)198Tl
202m1Bi625(12) keV3.04(6) μsIT202Bi10−#
202m2Bi2617(12) keV310(50) nsIT202Bi(17+)
203Bi83120202.976892(14)11.76(5) hβ+203Pb9/2−
203m1Bi1098.21(9) keV305(5) msIT203Bi1/2+
203m2Bi2041.5(6) keV194(30) nsIT203Bi25/2+
204Bi83121203.977836(10)11.22(10) hβ+204Pb6+
204m1Bi805.5(3) keV13.0(1) msIT204Bi10−
204m2Bi2833.4(11) keV1.07(3) msIT204Bi17+
205Bi83122204.977385(5)14.91(7) dβ+205Pb9/2−
205m1Bi1497.17(9) keV7.9(7) μsIT205Bi1/2+
205m2Bi2064.7(4) keV100(6) nsIT205Bi21/2+
205m3Bi2139.0(7) keV220(25) nsIT205Bi25/2+
206Bi83123205.978499(8)6.243(3) dβ+206Pb6+
206m1Bi59.897(17) keV7.7(2) μsIT206Bi4+
206m2Bi1044.8(7) keV890(10) μsIT206Bi10−
206m3Bi9233.3(8) keV155(15) nsIT206Bi(28−)
206m4Bi10170.5(8) keV>2 μsIT206Bi(31+)
207Bi83124206.9784706(26)31.22(17) yβ+207Pb9/2−
207mBi2101.61(16) keV182(6) μsIT207Bi21/2+
208Bi83125207.9797421(25)3.68(4)×105 yβ+208Pb5+
208mBi1571.1(4) keV2.58(4) msIT208Bi10−
209Bi192083126208.9803986(15)2.01(8)×1019 y21α205Tl9/2−1.0000
210BiRadium E83127209.9841202(15)5.012(5) dβ−210Po1−Trace22
α (1.32×10−4%)206Tl
210mBi271.31(11) keV3.04(6)×106 yα206Tl9−
211BiActinium C83128210.987269(6)2.14(2) minα (99.72%)207Tl9/2−Trace23
β− (0.276%)211Po
211mBi1257(10) keV1.4(3) μsIT211Bi(25/2−)
212BiThorium C83129211.991285(2)60.55(6) minβ− (64.05%)212Po1−Trace24
α (35.94%)208Tl
β−, α (0.014%)208Pb
212m1Bi250(30) keV25.0(2) minα (67%)208Tl(8−, 9−)
β−, α (30%)208Pb
β− (3%)212Po
212m2Bi1479(30) keV7.0(3) minβ−212Po(18−)
213Bi252683130212.994384(5)45.60(4) minβ− (97.91%)213Po9/2−Trace27
α (2.09%)209Tl
213mBi1353(21) keV>168 s25/2−#
214BiRadium C83131213.998711(12)19.9(4) minβ− (99.98%)214Po1−Trace28
α (0.021%)210Tl
β−, α (0.003%)210Pb
214mBi539(30) keV>93 s8−#
215Bi83132215.001749(6)7.62(13) minβ−215Po(9/2−)Trace29
215mBi1367(20)# keV36.9(6) sIT (76.9%)215Bi(25/2−)
β− (23.1%)215Po
216Bi83133216.006306(12)2.21(4) minβ−216Po(6−, 7−)
216mBi3024(19) keV6.6(21) minβ−216Po3−#
217Bi83134217.009372(19)98.5(13) sβ−217Po9/2−#
217mBi1491(20) keV3.0(2) μsIT217Bi25/2−#
218Bi83135218.014188(29)33(1) sβ−218Po8−#
219Bi83136219.01752(22)#8.7(29) sβ−219Po9/2−#
220Bi83137220.02250(32)#9.5(57) sβ−220Po1−#
221Bi83138221.02598(32)#2# s[>300 ns]9/2−#
222Bi83139222.03108(32)#3# s[>300 ns]1−#
223Bi83140223.03461(43)#1# s[>300 ns]9/2−#
224Bi83141224.03980(43)#1# s[>300 ns]1−#
This table header & footer:
  • view

Bismuth-213

Bismuth-213 (213Bi) has a half-life of 45 minutes and decays via alpha emission. Commercially, bismuth-213 can be produced by bombarding radium with bremsstrahlung photons from a linear particle accelerator, which populates its progenitor actinium-225. In 1997, an antibody conjugate with 213Bi was used to treat patients with leukemia. This isotope has also been tried in targeted alpha therapy (TAT) program to treat a variety of cancers.31 Bismuth-213 is also found in the decay chain of uranium-233, which is the fuel bred by thorium reactors.

References

  1. mBi – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture

  9. Bold symbol as daughter – Daughter product is stable.

  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Andreyev, A. N.; Ackermann, D.; Heßberger, F. P.; Hofmann, S.; Huyse, M.; Kojouharov, I.; Kindler, B.; Lommel, B.; Münzenberg, G.; Page, R. D.; Vel, K. Van de; Duppen, P. Van; Heyde, K. (1 October 2003). "α-decay spectroscopy of light odd-odd Bi isotopes - II: 186Bi and the new nuclide 184Bi" (PDF). The European Physical Journal A. 18 (1): 55–64. Bibcode:2003EPJA...18...55A. doi:10.1140/epja/i2003-10051-1. ISSN 1434-601X. S2CID 122369569. Retrieved 20 June 2023. https://link.springer.com/content/pdf/10.1140/epja/i2003-10051-1.pdf

  15. Order of ground state and isomer is uncertain.

  16. Doherty, D. T.; Andreyev, A. N.; Seweryniak, D.; Woods, P. J.; Carpenter, M. P.; Auranen, K.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Canete, L.; Cubiss, J. G.; Harker, J.; Haylett, T.; Huang, T.; Janssens, R. V. F.; Jenkins, D. G.; Kondev, F. G.; Lauritsen, T.; Lederer-Woods, C.; Li, J.; Müller-Gatermann, C.; Potterveld, D.; Reviol, W.; Savard, G.; Stolze, S.; Zhu, S. (12 November 2021). "Solving the Puzzles of the Decay of the Heaviest Known Proton-Emitting Nucleus 185Bi". Physical Review Letters. 127 (20): 202501. Bibcode:2021PhRvL.127t2501D. doi:10.1103/PhysRevLett.127.202501. hdl:20.500.11820/ac1e5604-7bba-4a25-a538-795ca4bdc875. ISSN 0031-9007. PMID 34860042. S2CID 244089059. Retrieved 20 June 2023. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.127.202501

  17. Order of ground state and isomer is uncertain.

  18. Order of ground state and isomer is uncertain.

  19. Formerly believed to be final decay product of 4n+1 decay chain /wiki/Decay_product

  20. Primordial radioisotope, also some is radiogenic from the extinct nuclide 237Np /wiki/Primordial_nuclide

  21. Formerly believed to be the heaviest stable nuclide

  22. Intermediate decay product of 238U /wiki/Uranium-238

  23. Intermediate decay product of 235U /wiki/Uranium-235

  24. Intermediate decay product of 232Th /wiki/Thorium-232

  25. Used in medicine such as for cancer treatment. /wiki/Nuclear_medicine

  26. A byproduct of thorium reactors via 233U.

  27. Intermediate decay product of 237Np /wiki/Neptunium-237

  28. Intermediate decay product of 238U /wiki/Uranium-238

  29. Intermediate decay product of 235U /wiki/Uranium-235

  30. Order of ground state and isomer is uncertain.

  31. Imam, S (2001). "Advancements in cancer therapy with alpha-emitters: a review". International Journal of Radiation Oncology, Biology, Physics. 51 (1): 271–278. doi:10.1016/S0360-3016(01)01585-1. PMID 11516878. /wiki/Doi_(identifier)