Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of copper

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.

There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life7Decaymode89Daughterisotope10Spin andparity111213Natural abundance (mole fraction)
Excitation energy14Normal proportion15Range of variation
55Cu292654.96604(17)55.9(15) msβ+55Ni3/2−#
β+, p (?%)54Co
56Cu292755.9585293(69)80.8(6) msβ+ (99.60%)56Ni(4+)
β+, p (0.40%)55Co
57Cu292856.94921169(54)196.4(7) msβ+57Ni3/2−
58Cu292957.94453228(60)3.204(7) sβ+58Ni1+
59Cu293058.93949671(57)81.5(5) sβ+59Ni3/2−
60Cu293159.9373638(17)23.7(4) minβ+60Ni2+
61Cu293260.9334574(10)3.343(16) hβ+61Ni3/2−
62Cu293361.9325948(07)9.672(8) minβ+62Ni1+
63Cu293462.92959712(46)Stable3/2−0.6915(15)
64Cu293563.92976400(46)12.7004(13) hβ+ (61.52%)64Ni1+
β− (38.48%)64Zn
65Cu293664.92778948(69)Stable3/2−0.3085(15)
66Cu293765.92886880(70)5.120(14) minβ−66Zn1+
66mCu1154.2(14) keV600(17) nsIT66Cu(6)−
67Cu293866.92772949(96)61.83(12) hβ−67Zn3/2−
68Cu293967.9296109(17)30.9(6) sβ−68Zn1+
68mCu721.26(8) keV3.75(5) minIT (86%)68Cu6−
β− (14%)68Zn
69Cu294068.929429267(15)2.85(15) minβ−69Zn3/2−
69mCu2742.0(7) keV357(2) nsIT69Cu(13/2+)
70Cu294169.9323921(12)44.5(2) sβ−70Zn6−
70m1Cu101.1(3) keV33(2) sβ− (52%)70Zn3−
IT (48%)70Cu
70m2Cu242.6(5) keV6.6(2) sβ− (93.2%)70Zn1+
IT (6.8%)70Cu
71Cu294270.9326768(16)19.4(14) sβ−71Zn3/2−
71mCu2755.7(6) keV271(13) nsIT71Cu(19/2−)
72Cu294371.9358203(15)6.63(3) sβ−72Zn2−
72mCu270(3) keV1.76(3) μsIT72Cu(6−)
73Cu294472.9366744(21)4.20(12) sβ− (99.71%)73Zn3/2−
β−, n (0.29%)72Zn
74Cu294573.9398749(66)1.606(9) sβ− (99.93%)74Zn2−
β−, n (0.075%)73Zn
75Cu294674.94152382(77)1.224(3) sβ− (97.3%)75Zn5/2−
β−, n (2.7%)74Zn
75m1Cu61.7(4) keV0.310(8) μsIT75Cu1/2−
75m2Cu66.2(4) keV0.149(5) μsIT75Cu3/2−
76Cu16294775.9452370(21)1.27(30) sβ− (?%)76Zn(1,2)
β−, n (?%)75Zn
76mCu1764.8(25) keV637.7(55) msβ− (?%)76Zn3−
β−, n (?%)75Zn
IT (10–17%)76Cu
77Cu294876.9475436(13)470.3(17) msβ− (69.9%)77Zn5/2−
β−, n (30.1%)76Zn
78Cu294977.9519206(81)18330.7(20) msβ−, n (50.6%)77Zn(6−)
β− (49.4%)78Zn
79Cu295078.95447(11)241.3(21) msβ−, n (66%)78Zn(5/2−)
β− (34%)79Zn
80Cu295179.96062(32)#113.3(64) msβ−, n (59%)79Zn
β− (41%)80Zn
81Cu295280.96574(32)#73.2(68) msβ−, n (81%)80Zn5/2−#
β− (19%)81Zn
82Cu295381.97238(43)#34(7) msβ−82Zn
83Cu295482.97811(54)#21# ms [>410 ns]5/2−#
84Cu19295583.98527(54)#
This table header & footer:
  • view

Copper nuclear magnetic resonance

Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.20

Medical applications

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.21

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  2. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  3. mCu – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: IT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Isomeric_transition

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853: 138663. arXiv:2401.14018. doi:10.1016/j.physletb.2024.138663. /wiki/ArXiv_(identifier)

  17. Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853: 138663. arXiv:2401.14018. doi:10.1016/j.physletb.2024.138663. /wiki/ArXiv_(identifier)

  18. Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309. /wiki/Doi_(identifier)

  19. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  20. "(Cu) Copper NMR". https://chem.ch.huji.ac.il/nmr/techniques/1d/row4/cu.html

  21. Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34