Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of germanium

Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years (130 billion times the age of the universe).

Stable 74Ge is the most common isotope, having a natural abundance of approximately 36%. 76Ge is the least common with a natural abundance of approximately 7%.

At least 27 radioisotopes have also been synthesized ranging in atomic mass from 58 to 89. The most stable of these is 68Ge, decaying by electron capture with a half-life of 270.95 d. It decays to the medically useful positron-emitting isotope 68Ga. (See gallium-68 generator for notes on the source of this isotope, and its medical use.) The least stable known germanium isotope is 59Ge with a half-life of 13.3 ms.

While most of germanium's radioisotopes decay by beta decay, 61Ge and 65Ge can also decay by β+-delayed proton emission. 84Ge through 87Ge also have minor β−-delayed neutron emission decay paths.

76Ge is used in experiments on the nature of neutrinos, by searching for neutrinoless double beta decay.

We don't have any images related to Isotopes of germanium yet.
We don't have any YouTube videos related to Isotopes of germanium yet.
We don't have any PDF documents related to Isotopes of germanium yet.
We don't have any Books related to Isotopes of germanium yet.
We don't have any archived web articles related to Isotopes of germanium yet.

List of isotopes

Nuclide5ZNIsotopic mass (Da)678Half-life91011Decaymode1213Daughterisotope14Spin andparity151617Natural abundance (mole fraction)
Excitation energyNormal proportion18Range of variation
59Ge322758.98243(43)#13.3(17) msβ+, p (93%)58Zn7/2−#
β+ (7%)59Ga
2p (<0.2%)57Zn
60Ge322859.97045(32)#21(6) msβ+, p59Zn0+
β+, 2p (<14%)58Cu
61Ge322960.96373(32)#40.7(4) msβ+, p (87%)60Zn3/2−#
β+ (18%)61Ga
62Ge323061.95476(15)#82.5(14) msβ+62Ga0+
63Ge323162.949628(40)153.6(11) msβ+63Ga3/2−#
64Ge323263.9416899(40)63.7(25) sβ+64Ga0+
65Ge323364.9393681(23)30.9(5) sβ+ (99.99%)65Ga3/2−
β+, p (0.011%)64Zn
66Ge323465.9338621(26)2.26(5) hβ+66Ga0+
67Ge323566.9327170(46)18.9(3) minβ+67Ga1/2−
67m1Ge18.20(5) keV13.7(9) μsIT67Ge5/2−
67m2Ge751.70(6) keV109.1(38) nsIT67Ge9/2+
68Ge19323667.9280953(20)271.05(8) dEC68Ga0+
69Ge323768.9279645(14)39.05(10) hβ+69Ga5/2−
69m1Ge86.76(2) keV5.1(2) μsIT69Ge1/2−
69m2Ge397.94(2) keV2.81(5) μsIT69Ge9/2+
70Ge323869.92424854(88)Stable0+0.2052(19)
71Ge323970.92495212(87)11.468(8) d20EC71Ga1/2−
71mGe198.354(14) keV20.41(18) msIT71Ge9/2+
72Ge324071.922075824(81)Stable0+0.2745(15)
72mGe691.43(4) keV444.2(8) nsIT72Ge0+
73Ge324172.923458954(61)Stable9/2+0.0776(8)
73m1Ge13.2845(15) keV2.91(3) μsIT73Ge5/2+
73m2Ge66.725(9) keV499(11) msIT73Ge1/2−
74Ge324273.921177760(13)Stable0+0.3652(12)
75Ge324374.922858370(55)82.78(4) minβ−75As1/2−
75m1Ge139.69(3) keV47.7(5) sIT (99.97%)75Ge7/2+
β− (0.030%)75As
75m2Ge192.19(6) keV216(5) nsIT75Ge5/2+
76Ge21324475.921402725(19)(2.022±0.018±0.038)×1021 y22β−β−76Se0+0.0775(12)
77Ge324576.923549843(56)11.211(3) hβ−77As7/2+
77mGe159.71(6) keV53.7(6) sβ− (81%)77As1/2−
IT (19%)77Ge
78Ge324677.9228529(38)88.0(10) minβ−78As0+
79Ge324778.925360(40)18.98(3) sβ−79As(1/2)−
79mGe185.95(4) keV39.0(10) sβ− (96%)79As7/2+#
IT (4%)79Ge
80Ge324879.9253508(22)29.5(4) sβ−80As0+
81Ge324980.9288329(22)9(2) sβ−81As9/2+#
81mGe679.14(4) keV6(2) sβ−81As(1/2+)
IT (<1%)81Ge
82Ge325081.9297740(24)4.31(19) sβ−82As0+
83Ge325182.9345391(26)1.85(6) sβ−83As(5/2+)
84Ge325283.9375751(34)951(9) msβ− (89.4%)84As0+
β−, n (10.6%)83As
85Ge325384.9429697(40)495(5) msβ− (82.8%)85As(3/2+,5/2+)#
β−, n (17.2%)84As
86Ge325485.94697(47)221.6(11) msβ− (55%)86As0+
β−, n (45%)85As
87Ge325586.95320(32)#103(4) msβ−87As5/2+#
88Ge325687.95757(43)#61(6) msβ−88As0+
89Ge325788.96453(43)#60# ms [>300 ns]3/2+#
90Ge325889.96944(54)#30# ms [>400 ns]0+
91Ge233259
92Ge243260
This table header & footer:
  • view

References

  1. A. M. Bakalyarov; A. Ya. Balysh; S. T. Belyaev; V. I. Lebedev; S. V. Zhukov (2003). "Results of the experiment on investigation of Germanium-76 double beta decay". Physics of Particles and Nuclei Letters. 2 (2): 77–81. arXiv:hep-ex/0309016. Bibcode:2003hep.ex....9016B. /wiki/ArXiv_(identifier)

  2. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  3. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  4. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001 /wiki/Aaldert_Wapstra

  5. mGe – Excited nuclear isomer. /wiki/Nuclear_isomer

  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  7. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  8. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  11. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  14. Bold symbol as daughter – Daughter product is stable.

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. ( ) spin value – Indicates spin with weak assignment arguments.

  17. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  18. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  19. Used to generate 68Ga /wiki/Gallium-68_generator

  20. Norman, E. B.; Drobizhev, A.; Gharibyan, N.; Gregorich, K. E.; Kolomensky, Yu. G.; Sammis, B. N.; Scielzo, N. D.; Shusterman, J. A.; Thomas, K. J. (30 May 2024). "Half-life of Ge 71 and the gallium anomaly". Physical Review C. 109 (5). doi:10.1103/PhysRevC.109.055501. /wiki/Doi_(identifier)

  21. Primordial radionuclide /wiki/Primordial_nuclide

  22. M. Agostini; et al. (2023-10-03). "Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of 76Ge". Physical Review Letters. 131 (14). American Physical Society (APS): 142501. arXiv:2308.09795. Bibcode:2023PhRvL.131n2501A. doi:10.1103/physrevlett.131.142501. ISSN 0031-9007. PMID 37862664. S2CID 261049638. https://doi.org/10.1103%2Fphysrevlett.131.142501

  23. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  24. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)