Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of molybdenum

Molybdenum (42Mo) has 39 known isotopes, ranging in atomic mass from 81 to 119, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.

Molybdenum-100, with a half-life of 7.07×1018 years, is the only naturally occurring radioisotope. It undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth.

We don't have any images related to Isotopes of molybdenum yet.
We don't have any YouTube videos related to Isotopes of molybdenum yet.
We don't have any PDF documents related to Isotopes of molybdenum yet.
We don't have any Books related to Isotopes of molybdenum yet.
We don't have any archived web articles related to Isotopes of molybdenum yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope10Spin andparity111213Natural abundance (mole fraction)
Excitation energyNormal proportion14Range of variation
81Mo423980.96623(54)#1# ms[>400 ns]β+?81Nb5/2+#
β+, p?80Zr
82Mo424081.95666(43)#30# ms[>400 ns]β+?82Nb0+
β+, p?81Zr
83Mo424182.95025(43)#23(19) msβ+83Nb3/2−#
β+, p?82Zr
84Mo424283.94185(32)#2.3(3) sβ+84Nb0+
β+, p?83Zr
85Mo424384.938261(17)3.2(2) sβ+ (99.86%)85Nb(1/2+)
β+, p (0.14%)84Zr
86Mo424485.931174(3)19.1(3) sβ+86Nb0+
87Mo424586.928196(3)14.1(3) sβ+ (85%)87Nb7/2+#
β+, p (15%)86Zr
88Mo424687.921968(4)8.0(2) minβ+88Nb0+
89Mo424788.919468(4)2.11(10) minβ+89Nb(9/2+)
89mMo387.5(2) keV190(15) msIT89Mo(1/2−)
90Mo424889.913931(4)5.56(9) hβ+90Nb0+
90mMo2874.73(15) keV1.14(5) μsIT90Mo8+
91Mo424990.911745(7)15.49(1) minβ+91Nb9/2+
91mMo653.01(9) keV64.6(6) sIT (50.0%)91Mo1/2−
β+ (50.0%)91Nb
92Mo425091.90680715(17)Observationally Stable150+0.14649(106)
92mMo2760.52(14) keV190(3) nsIT92Mo8+
93Mo425192.90680877(19)4839(63) y16EC (95.7%)93mNb5/2+
EC (4.3%)93Nb
93m1Mo2424.95(4) keV6.85(7) hIT (99.88%)93Mo21/2+
β+ (0.12%)93Nb
93m2Mo9695(17) keV1.8(10) μsIT93Mo(39/2−)
94Mo425293.90508359(15)Stable0+0.09187(33)
95Mo17425394.90583744(13)Stable5/2+0.15873(30)
96Mo425495.90467477(13)Stable0+0.16673(8)
97Mo18425596.90601690(18)Stable5/2+0.09582(15)
98Mo19425697.90540361(19)Observationally Stable200+0.24292(80)
99Mo2122425798.90770730(25)65.932(5) hβ−99mTc1/2+
99m1Mo97.785(3) keV15.5(2) μsIT99Mo5/2+
99m2Mo684.10(19) keV760(60) nsIT99Mo11/2−
100Mo2324425899.9074680(3)7.07(14)×1018 yβ−β−100Ru0+0.09744(65)
101Mo4259100.9103376(3)14.61(3) minβ−101Tc1/2+
101m1Mo13.497(9) keV226(7) nsIT101Mo3/2+
101m2Mo57.015(11) keV133(70) nsIT101Mo5/2+
102Mo4260101.910294(9)11.3(2) minβ−102Tc0+
103Mo4261102.913092(10)67.5(15) sβ−103Tc3/2+
104Mo4262103.913747(10)60(2) sβ−104Tc0+
105Mo4263104.9169798(23)2536.3(8) sβ−105Tc(5/2−)
106Mo4264105.9182732(98)8.73(12) sβ−106Tc0+
107Mo4265106.9221198(99)3.5(5) sβ−107Tc(1/2+)
107mMo65.4(2) keV445(21) nsIT107Mo(5/2+)
108Mo4266107.9240475(99)1.105(10) sβ− (>99.5%)108Tc0+
β−, n (<0.5%)107Tc
109Mo4267108.928438(12)700(14) msβ− (98.7%)109Tc(1/2+)
β−, n (1.3%)108Tc
109mMo69.7(5) keV210(60) nsIT109Mo5/2+#
110Mo4268109.930718(26)292(7) msβ− (98.0%)110Tc0+
β−, n (2.0%)109Tc
111Mo4269110.935652(14)193.6(44) msβ− (>88%)111Tc1/2+#
β−, n (<12%)110Tc
111mMo100(50)# keV~200 msβ−111Tc7/2−#
β−, n?110Tc
112Mo4270111.93829(22)#125(5) msβ−112Tc0+
β−, n?111Tc
113Mo4271112.94348(32)#80(2) msβ−113Tc5/2+#
β−, n?112Tc
114Mo4272113.94667(32)#58(2) msβ−114Tc0+
β−, n?113Tc
115Mo4273114.95217(43)#45.5(20) msβ−115Tc3/2+#
β−, n?114Tc
β−, 2n?113Tc
116Mo4274115.95576(54)#32(4) msβ−116Tc0+
β−, n?115Tc
β−, 2n?114Tc
117Mo4275116.96169(54)#22(5) msβ−117Tc3/2+#
β−, n?116Tc
β−, 2n?115Tc
118Mo4276117.96525(54)#21(6) msβ−118Tc0+
β−, n?117Tc
β−, 2n?116Tc
119Mo4277118.97147(32)#12# ms[>550 ns]β−?119Tc3/2+#
β−, n?118Tc
β−, 2n?117Tc
This table header & footer:
  • view

Molybdenum-99

Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction.26 It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that 99Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact, 99Mo co-eluted with the 99mTc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriate USP (or equivalent) regulations and standards. The IAEA recommends that 99Mo concentrations exceeding more than 0.15 μCi/mCi 99mTc or 0.015% should not be administered for usage in humans.27 Typically, quantification of 99Mo breakthrough is performed for every elution when using a 99Mo/99mTc generator during QA-QC testing of the final product.

There are alternative routes for generating 99Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment or photoneutron reactions on enriched 100Mo targets. Historically, 99Mo generated by neutron capture on natural isotopic molybdenum or enriched 98Mo targets was used for the development of commercial 99Mo/99mTc generators.2829 The neutron-capture process was eventually superseded by fission-based 99Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity 99Mo solutions thus allowed for higher quality production and better separations of 99mTc from 99Mo on small alumina column using chromatography. Employing low-specific activity 99Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of 99Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from 99Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity 99Mo usually requires much larger column sizes and longer separation times, and usually yields 99mTc accompanied by unsatisfactory amounts of the parent radioisotope when using γ-alumina as the column substrate. Ultimately, the inferior end-product 99mTc generated under these conditions makes it essentially incompatible with the commercial supply-chain.

In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed 99Mo/99mTc in the United States of America.30 The return to neutron-capture-based 99Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity 99Mo to be utilized.

See also

Daughter products other than molybdenum

References

  1. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. Section 11. ISBN 978-0-8493-0487-3. 978-0-8493-0487-3

  2. mMb – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. Bold half-life – nearly stable, half-life longer than age of universe. /wiki/Age_of_universe

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. Believed to decay by β+β+ to 92Zr with a half-life over 1.9×1020 y

  16. Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492754

  17. Fission product /wiki/Fission_product

  18. Fission product /wiki/Fission_product

  19. Fission product /wiki/Fission_product

  20. Believed to decay by β−β− to 98Ru with a half-life of over 1×1014 years

  21. Fission product /wiki/Fission_product

  22. Used to produce the medically useful radioisotope technetium-99m /wiki/Technetium-99m_generator

  23. Primordial radionuclide /wiki/Primordial_nuclide

  24. Fission product /wiki/Fission_product

  25. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  26. Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security. 14 (2 & 3): 151–162. Bibcode:2006S&GS...14..151V. doi:10.1080/08929880600993071. S2CID 122507063. /wiki/Bibcode_(identifier)

  27. Ibrahim I, Zulkifli H, Bohari Y, Zakaria I, Wan Hamirul BWK. Minimizing Molybdenum-99 Contamination In Technetium-99m Pertechnetate From The Elution Of 99Mo/99mTc Generator (PDF) (Report). https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/122/44122606.pdf

  28. Richards, P. (1989). Technetium-99m: The early days. 3rd International Symposium on Technetium in Chemistry and Nuclear Medicine, Padova, Italy, 5-8 Sep 1989. OSTI 5612212. /wiki/OSTI_(identifier)

  29. Richards, P. (1965-10-14). The Technetium-99m Generator (Report). doi:10.2172/4589063. OSTI 4589063. /wiki/Doi_(identifier)

  30. "Emerging leader with new solutions in the field of nuclear medicine technology". NorthStar Medical Radioisotopes, LLC. Retrieved 2020-01-23. https://www.northstarnm.com/