Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of technetium

Technetium (43Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission (there are an estimated 2.5×10−13 grams of 99Tc per gram of pitchblende) or neutron capture by molybdenum. The first isotopes to be synthesized were 97Tc and 99Tc[disputed – discuss] in 1936, the first artificial element to be produced. The most stable radioisotopes are 97Tc (half-life of 4.21 million years), 98Tc (half-life: 4.2 million years), and 99Tc (half-life: 211,100 years).

Thirty-three other radioisotopes have been characterized with atomic masses ranging from 85Tc to 120Tc. Most of these have half-lives that are less than an hour; the exceptions are 93Tc (half-life: 2.75 hours), 94Tc (half-life: 4.883 hours), 95Tc (half-life: 20 hours), and 96Tc (half-life: 4.28 days).

Technetium also has numerous meta states. 97mTc is the most stable, with a half-life of 91.0 days (0.097 MeV). This is followed by 95mTc (half-life: 61 days, 0.038 MeV) and 99mTc (half-life: 6.04 hours, 0.143 MeV). 99mTc only emits gamma rays, subsequently decaying to 99Tc.

For isotopes lighter than 98Tc, the primary decay mode is electron capture to isotopes of molybdenum. For the heavier isotopes, the primary mode is beta emission to isotopes of ruthenium, with the exception that 100Tc can decay both by beta emission and electron capture.

Technetium-99m is the hallmark technetium isotope employed in the nuclear medicine industry. Its low-energy isomeric transition, which yields a gamma-ray at ~140.5 keV, is ideal for imaging using Single Photon Emission Computed Tomography (SPECT). Several technetium isotopes, such as 94mTc, 95Tc, and 96Tc, which are produced via (p,n) reactions using a cyclotron on molybdenum targets, have also been identified as potential Positron Emission Tomography (PET) or gamma-emitting agents for medical imaging. Technetium-101 has been produced using a D-D fusion-based neutron generator from the 100Mo(n,γ)101Mo reaction on natural molybdenum and subsequent beta-minus decay of 101Mo to 101Tc. Despite its shorter half-life (i.e., 14.22 min), 101Tc exhibits unique decay characteristics suitable for radioisotope diagnostic or therapeutic procedures, where it has been proposed that its implementation, as a supplement for dual-isotopic imaging or replacement for 99mTc, could be performed by on-site production and dispensing at the point of patient care.

Technetium-99 is the most common and most readily available isotope, as it is a major fission product from fission of actinides like uranium and plutonium with a fission product yield of 6% or more, and in fact the most significant long-lived fission product. Lighter isotopes of technetium are almost never produced in fission because the initial fission products normally have a higher neutron/proton ratio than is stable for their mass range, and therefore undergo beta decay until reaching the ultimate product. Beta decay of fission products of mass 95–98 stops at the stable isotopes of molybdenum of those masses and does not reach technetium. For mass 100 and greater, the technetium isotopes of those masses are very short-lived and quickly beta decay to isotopes of ruthenium. Therefore, the technetium in spent nuclear fuel is practically all 99Tc. In the presence of fast neutrons a small amount of 98Tc will be produced by (n,2n) "knockout" reactions. If nuclear transmutation of fission-derived Technetium or Technetium waste from medical applications is desired, fast neutrons are therefore not desirable as the long lived 98Tc increases rather than reducing the longevity of the radioactivity in the material.

One gram of 99Tc produces 6.2×108 disintegrations a second (that is, 0.62 GBq/g).

Technetium has no primordial isotopes and does not occur in nature in significant quantities, and thus a standard atomic weight cannot be given.

We don't have any images related to Isotopes of technetium yet.
We don't have any YouTube videos related to Isotopes of technetium yet.
We don't have any PDF documents related to Isotopes of technetium yet.
We don't have any Books related to Isotopes of technetium yet.
We don't have any archived web articles related to Isotopes of technetium yet.

List of isotopes

Nuclide16ZNIsotopic mass (Da)171819Half-life20Decaymode2122Daughterisotope2324Spin andparity252627Isotopicabundance
Excitation energy28
86Tc434385.94464(32)#55(7) msβ+86Mo(0+)
86mTc1524(10) keV1.10(12) μsIT86Tc(6+)
87Tc434486.9380672(45)2.14(17) sβ+87Mo9/2+#
β+, p (<0.7%)86Nb
87mTc71(1) keV647(24) nsIT87Tc7/2+#
88Tc434587.9337942(44)6.4(8) sβ+88Mo(2+)
88m1Tc70(3) keV5.8(2) sβ+88Mo(6+)
88m2Tc95(1) keV146(12) nsIT88Tc(4+)
89Tc434688.9276486(41)12.8(9) sβ+89Mo(9/2+)
89mTc62.6(5) keV12.9(8) sβ+89Mo(1/2−)
90Tc434789.9240739(11)49.2(4) sβ+90Mo(8+)
90mTc144.0(17) keV8.7(2) sβ+90Mo1+
91Tc434890.9184250(25)3.14(2) minβ+91Mo(9/2)+
91mTc139.3(3) keV3.3(1) minβ+ (99%)91Mo(1/2)−
92Tc434991.9152698(33)4.25(15) minβ+92Mo(8)+
92m1Tc270.09(8) keV1.03(6) μsIT92Tc(4+)
92m2Tc529.42(13) keV<0.1 μsIT92Tc(3+)
92m3Tc711.33(15) keV<0.1 μsIT92Tc1+
93Tc435092.9102451(11)2.75(5) hβ+93Mo9/2+
93m1Tc391.84(8) keV43.5(10) minIT (77.4%)93Tc1/2−
β+ (22.6%)93Mo
93m2Tc2185.16(15) keV10.2(3) μsIT93Tc(17/2)−
94Tc435193.9096523(44)293(1) minβ+94Mo7+
94mTc76(3) keV52(1) minβ+ (>99.82%)94Mo(2)+
IT (<0.18%)94Tc
95Tc435294.9076523(55)19.258(26) hβ+95Mo9/2+
95mTc38.91(4) keV61.96(24) dβ+ (96.1%)95Mo1/2−
IT (3.9%)95Tc
96Tc435395.9078667(55)4.28(7) dβ+96Mo7+
96mTc34.23(4) keV51.5(10) minIT (98.0%)96Tc4+
β+ (2.0%)96Mo
97Tc435496.9063607(44)4.21(16)×106 yEC97Mo9/2+
97mTc96.57(6) keV91.1(6) dIT (96.06%)97Tc1/2−
EC (3.94%)97Mo
98Tc435597.9072112(36)4.2(3)×106 yβ−98Ru6+
98mTc90.77(16) keV14.7(5) μsIT98Tc(2,3)−
99Tc29435698.90624968(97)2.111(12)×105 yβ−99Ru9/2+trace
99mTc30142.6836(11) keV6.0066(2) hIT99Tc1/2−
β− (0.0037%)99Ru
100Tc435799.9076527(15)15.46(19) sβ−100Ru1+
EC (0.0018%)100Mo
100m1Tc200.67(4) keV8.32(14) μsIT100Tc(4)+
100m2Tc243.95(4) keV3.2(2) μsIT100Tc(6)+
101Tc4358100.907305(26)14.22(1) minβ−101Ru9/2+
101mTc207.526(20) keV636(8) μsIT101Tc1/2−
102Tc4359101.9092072(98)5.28(15) sβ−102Ru1+
102mTc3150(50)# keV4.35(7) minβ−102Ru(4+)
103Tc4360102.909174(11)54.2(8) sβ−103Ru5/2+
104Tc4361103.911434(27)18.3(3) minβ−104Ru(3−)
104m1Tc69.7(2) keV3.5(3) μsIT104Tc(5−)
104m2Tc106.1(3) keV400(20) nsIT104Tc4#
105Tc4362104.911662(38)7.64(6) minβ−105Ru(3/2−)
106Tc4363105.914357(13)35.6(6) sβ−106Ru(1,2)(+#)
107Tc4364106.9154584(93)21.2(2) sβ−107Ru(3/2−)
107m1Tc30.1(1) keV3.85(5) μsIT107Tc(1/2+)
107m2Tc65.72(14) keV184(3) nsIT107Tc(5/2+)
108Tc4365107.9184935(94)5.17(7) sβ−108Ru(2)+
109Tc4366108.920254(10)905(21) msβ− (99.92%)109Ru(5/2+)
β−, n (0.08%)108Ru
110Tc4367109.923741(10)900(13) msβ− (99.96%)110Ru(2+,3+)
β−, n (0.04%)109Ru
111Tc4368110.925899(11)350(11) msβ− (99.15%)111Ru5/2+#
β−, n (0.85%)110Ru
112Tc4369111.9299417(59)323(6) msβ− (98.5%)112Ru(2+)
β−, n (1.5%)111Ru
112mTc352.3(7) keV150(17) nsIT112Tc
113Tc4370112.9325690(36)152(8) msβ− (97.9%)113Ru5/2+#
β−, n (2.1%)112Ru
113mTc114.4(5) keV527(16) nsIT113Tc5/2−#
114Tc4371113.93709(47)121(9) msβ− (98.7%)114Ru5+#
β−, n (1.3%)113Ru
114mTc32160(430) keV90(20) msβ− (98.7%)114Ru1+#
β−, n (1.3%)113Ru
115Tc4372114.94010(21)#78(2) msβ−115Ru5/2+#
116Tc4373115.94502(32)#57(3) msβ−116Ru2+#
117Tc4374116.94832(43)#44.5(30) msβ−117Ru5/2+#
118Tc4375117.95353(43)#30(4) msβ−118Ru2+#
119Tc4376118.95688(54)#22(3) msβ−119Ru5/2+#
120Tc4377119.96243(54)#21(5) msβ−120Ru3+#
121Tc4378120.96614(54)#22(6) msβ−121Ru5/2+#
122Tc4379121.97176(32)#13# ms[>550 ns]1+#
This table header & footer:
  • view

Stability of technetium isotopes

See also: Beta-decay stable isobars

Technetium and promethium are unusual light elements in that they have no stable isotopes. Using the liquid drop model for atomic nuclei, one can derive a semiempirical formula for the binding energy of a nucleus. This formula predicts a "valley of beta stability" along which nuclides do not undergo beta decay. Nuclides that lie "up the walls" of the valley tend to decay by beta decay towards the center (by emitting an electron, emitting a positron, or capturing an electron). For a fixed number of nucleons A, the binding energies lie on one or more parabolas, with the most stable nuclide at the bottom. One can have more than one parabola because isotopes with an even number of protons and an even number of neutrons are more stable than isotopes with an odd number of neutrons and an odd number of protons. A single beta decay then transforms one into the other. When there is only one parabola, there can be only one stable isotope lying on that parabola. When there are two parabolas, that is, when the number of nucleons is even, it can happen (rarely) that there is a stable nucleus with an odd number of neutrons and an odd number of protons (although this happens only in five instances: 2H, 6Li, 10B, 14N and 180mTa). However, if this happens, there can be no stable isotope with an even number of neutrons and an even number of protons.

For technetium (Z = 43), the valley of beta stability is centered at around 98 nucleons. However, for every number of nucleons from 94 to 102, there is already at least one stable nuclide of either molybdenum (Z = 42) or ruthenium (Z = 44), and the Mattauch isobar rule states that two adjacent isobars cannot both be stable.33 For the isotopes with odd numbers of nucleons, this immediately rules out a stable isotope of technetium, since there can be only one stable nuclide with a fixed odd number of nucleons. For the isotopes with an even number of nucleons, since technetium has an odd number of protons, any isotope must also have an odd number of neutrons. In such a case, the presence of a stable nuclide having the same number of nucleons and an even number of protons rules out the possibility of a stable nucleus.3435

References

  1. "Atomic weights of the elements 2011 (IUPAC Technical Report)" (PDF). IUPAC. p. 1059(13). Retrieved August 11, 2014. – Elements marked with a * have no stable isotope: 43, 61, and 83 and up. http://publications.iupac.org/pac/pdf/2013/pdf/8505x1047.pdf

  2. Icenhower, J.P.; Martin, W.J.; Qafoku, N.P.; Zachara, J.M. (2008). The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment (Report). Pacific Northwest National Laboratory: U.S. Department of Energy. p. 2.1.

  3. "Livechart - Table of Nuclides - Nuclear structure and decay data". www-nds.iaea.org. Retrieved 2017-11-18. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  4. "Nubase 2016". NDS IAEA. 2017. Retrieved 18 November 2017. https://www-nds.iaea.org/amdc/ame2016/nubase2016.txt

  5. National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory. /wiki/National_Nuclear_Data_Center

  6. "Technetium". EnvironmentalChemistry.com. https://environmentalchemistry.com/yogi/periodic/Tc-pg2.html

  7. "Livechart - Table of Nuclides - Nuclear structure and decay data". www-nds.iaea.org. Retrieved 2017-11-18. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  8. "Technetium". EnvironmentalChemistry.com. https://environmentalchemistry.com/yogi/periodic/Tc-pg2.html

  9. "Technetium". EnvironmentalChemistry.com. https://environmentalchemistry.com/yogi/periodic/Tc-pg2.html

  10. Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9. 978-0-8493-0485-9

  11. Bigott, H. M.; Mccarthy, D. W.; Wüst, F. R.; Dahlheimer, J. L.; Piwnica-Worms, D. R.; Welch, M. J. (2001). "Production, processing and uses of 94mTc". Journal of Labelled Compounds and Radiopharmaceuticals. 44 (S1): S119 – S121. doi:10.1002/jlcr.2580440141. ISSN 1099-1344. /wiki/Doi_(identifier)

  12. Morley, Thomas; Benard, Francois; Schaffer, Paul; Buckley, Kenneth; Hoehr, Cornelia; Gagnon, Katherine; McQuarrie, Steve; Kovacs, Michael; Ruth, Thomas (2011-05-01). "Simple, rapid production of Tc-94m". Journal of Nuclear Medicine. 52 (supplement 1): 290. ISSN 0161-5505. https://jnm.snmjournals.org/content/52/supplement_1/290

  13. Hayakawa, Takehito; Hatsukawa, Yuichi; Tanimori, Toru (January 2018). "95g Tc and 96g Tc as alternatives to medical radioisotope 99m Tc". Heliyon. 4 (1): e00497. Bibcode:2018Heliy...400497H. doi:10.1016/j.heliyon.2017.e00497. ISSN 2405-8440. PMC 5766687. PMID 29349358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766687

  14. Mausolf, Edward J.; Johnstone, Erik V.; Mayordomo, Natalia; Williams, David L.; Guan, Eugene Yao Z.; Gary, Charles K. (September 2021). "Fusion-Based Neutron Generator Production of Tc-99m and Tc-101: A Prospective Avenue to Technetium Theranostics". Pharmaceuticals. 14 (9): 875. doi:10.3390/ph14090875. PMC 8467155. PMID 34577575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467155

  15. The Encyclopedia of the Chemical Elements, p. 693, "Toxicology", paragraph 2

  16. mTc – Excited nuclear isomer. /wiki/Nuclear_isomer

  17. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  18. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  19. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  20. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  21. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  22. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  23. Bold italics symbol as daughter – Daughter product is nearly stable.

  24. Bold symbol as daughter – Daughter product is stable.

  25. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  26. ( ) spin value – Indicates spin with weak assignment arguments.

  27. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  28. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  29. Long-lived fission product /wiki/Long-lived_fission_product

  30. Used in medicine

  31. Order of ground state and isomer is uncertain.

  32. Order of ground state and isomer is uncertain.

  33. Johnstone, E.V.; Yates, M.A.; Poineau, F.; Sattelberger, A.P.; Czerwinski, K.R. (2017). "Technetium, the first radioelement on the periodic table". Journal of Chemical Education. 94 (3): 320–326. Bibcode:2017JChEd..94..320J. doi:10.1021/acs.jchemed.6b00343. OSTI 1368098. https://www.osti.gov/biblio/1368098

  34. Johnstone, E.V.; Yates, M.A.; Poineau, F.; Sattelberger, A.P.; Czerwinski, K.R. (2017). "Technetium, the first radioelement on the periodic table". Journal of Chemical Education. 94 (3): 320–326. Bibcode:2017JChEd..94..320J. doi:10.1021/acs.jchemed.6b00343. OSTI 1368098. https://www.osti.gov/biblio/1368098

  35. Radiochemistry and Nuclear Chemistry