Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Knowledge retrieval

Knowledge retrieval seeks to return information in a structured form, consistent with human cognitive processes as opposed to simple lists of data items. It draws on a range of fields including epistemology (theory of knowledge), cognitive psychology, cognitive neuroscience, logic and inference, machine learning and knowledge discovery, linguistics, and information technology.

We don't have any images related to Knowledge retrieval yet.
We don't have any YouTube videos related to Knowledge retrieval yet.
We don't have any PDF documents related to Knowledge retrieval yet.
We don't have any Books related to Knowledge retrieval yet.
We don't have any archived web articles related to Knowledge retrieval yet.

Overview

In the field of retrieval systems, established approaches include:

Both approaches require a user to read and analyze often long lists of data sets or documents in order to extract meaning.

The goal of knowledge retrieval systems is to reduce the burden of those processes by improved search and representation. This improvement is needed to leverage the increasing data volumes available on the Internet.1234567891011

Comparison with data and information retrieval

Data Retrieval and Information Retrieval are earlier and more basic forms of information access.12

Data RetrievalInformation RetrievalKnowledge Retrieval
MatchBoolean matchpartial match, best matchpartial match, best match
Inferencedeductive inferenceinductive inferencedeductive inference, inductive inference, associative reasoning, analogical reasoning
Modeldeterministic modelstatistical and probabilistic modelsemantic model, inference model
Queryartificial languagenatural languageknowledge structure, natural language
Organizationtable, indextable, indexknowledge unit, knowledge structure
Representationnumber, rulenatural language, markup languageconcept graph, predicate logic, production rule, frame, semantic network, ontology
Storagedatabasedocument collectionsknowledge base
Retrieved Resultsdata setsections or documentsa set of knowledge unit

Knowledge retrieval focuses on the knowledge level. We need to examine how to extract, represent, and use the knowledge in data and information.13 Knowledge retrieval systems provide knowledge to users in a structured way. Compared to data retrieval and information retrieval, they use different inference models, retrieval methods, result organization, etc. Table 1, extending van Rijsbergen's comparison of the difference between data retrieval and information retrieval,14 summarizes the main characteristics of data retrieval, information retrieval, and knowledge retrieval.15 The core of data retrieval and information retrieval is retrieval subsystems. Data retrieval gets results through Boolean match.16 Information retrieval uses partial match and best match. Knowledge retrieval is also based on partial match and best match.

From an inference perspective, data retrieval uses deductive inference, and information retrieval uses inductive inference.17 Considering the limitations from the assumptions of different logics, traditional logic systems (e.g., Horn subset of first order logic) cannot reason efficiently.18 Associative reasoning, analogical reasoning and the idea of unifying reasoning and search may be effective methods of reasoning at the web scale.1920

From the retrieval perspective, knowledge retrieval systems focus on semantics and better organization of information. Data retrieval and information retrieval organize the data and documents by indexing, while knowledge retrieval organize information by indicating connections between elements in those documents.

Frameworks for knowledge retrieval systems

From computer science perspective, a logic framework concentrating on fuzziness of knowledge queries has been proposed and investigated in detail.21 Markup languages for knowledge reasoning and relevant strategies have been investigated, which may serve as possible logic reasoning foundations for text based knowledge retrieval.22

From cognitive science perspective, especially from cognitive psychology and cognitive neuroscience perspective, the neurobiological basis for knowledge retrieval in the human brain has been investigated, and may serve as a cognitive model for knowledge retrieval.2324

Knowledge retrieval can draw results from the following related theories and technologies:25

Topics listed under each entry serve as examples and do not form a complete list. And many related disciplines should be added as the field grows mature.

References

  1. Frisch, A.M. Knowledge Retrieval as Specialized Inference, Ph.D. thesis, University of Rochester, 1986. /wiki/University_of_Rochester

  2. Kame, M. and Quintana, Y. A graph based knowledge retrieval system, Proceedings of the 1990 IEEE International Conference on Systems, Man and Cybernetics, 1990: 269-275. https://ieeexplore.ieee.org/abstract/document/142109/

  3. Martin, P. and Eklund, P.W. Knowledge retrieval and the World Wide Web, IEEE Intelligent Systems, 2000, 15(3): 18-25. /wiki/Intelligent_Systems

  4. Oertel, P. and Amir, E. A framework for commonsense knowledge retrieval, Proceedings of the 7th International Symposium on Logic Formalizations of Commonsense Reasoning, 2005. http://www.commonsensereasoning.org/2005/oertel.pdf

  5. Travers, M. A visual representation for knowledge structures, Proceedings of the 2nd annual ACM conference on Hypertext and Hypermedia, 1989: 147-158. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.2240&rep=rep1&type=pdf

  6. Yao, Y.Y. Information retrieval support systems, Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, 2002, 1092-1097.

  7. Zhou, N., Zhang, Y.F. and Zhang, L.Y. Information Visualization and Knowledge Retrieval [In Chinese], Science Press, 2005. /wiki/Scientific_visualization

  8. Robert Loew, Katrin Kuemmel, Judith Ruprecht, Udo Bleimann, Paul Walsh. Approaches for personalised knowledge retrieval, Internet Research, 17(1), 2007 https://web.archive.org/web/20181206102349/https://pdfs.semanticscholar.org/d00a/d4a10898582b3c63063d60ddd312e31a2404.pdf

  9. Stefania Mariano, Andrea Casey. The process of knowledge retrieval: A case study of an American high-technology research, engineering and consulting company. VINE: The journal of information and knowledge management systems, 37(3), 2007. /wiki/Case_study

  10. Jens Gammelgaard, Thomas Ritter. The knowledge retrieval matrix: codification and personification as separate strategies, Journal of Knowledge Management, 9(4), 133-143, 2005. https://www.emeraldinsight.com/doi/abs/10.1108/13673270510610387

  11. J.E.L. Farradane. Analysis and organization of knowledge for retrieval, ASLIB Proceedings, 22(12), 607-616,1970. https://www.emeraldinsight.com/doi/abs/10.1108/eb050270

  12. Yiyu Yao, Yi Zeng, Ning Zhong, Xiangji Huang. Knowledge Retrieval (KR). In: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society, Silicon Valley, USA, November 2–5, 2007, 729-735. /wiki/IEEE_Computer_Society

  13. Bellinger, G., Castro, D. and Mills, A. Data, Information, Knowledge, and Wisdom, http://www.systemsthinking.org/dikw/dikw.htm Archived 2016-10-17 at the Wayback Machine http://www.systemsthinking.org/dikw/dikw.htm

  14. van Rijsbergen, C.J. Information Retrieval, Butterworths, 1979.

  15. Zeng, Y., Yao, Y.Y. and Zhong, N. Granular structurebased knowledge retrieval [In Chinese], Proceedings of the Joint Conference of the Seventh Conference of Rough Set and Soft Computing, the First Forum of Granular Computing, and the First Forum of Web Intelligence, 2007. /wiki/Rough_set

  16. Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval, AddisonWesley, 1999.

  17. van Rijsbergen, C.J. Information Retrieval, Butterworths, 1979.

  18. Fensel, D. and van Harmelen, F. Unifying reasoning and search to web scale, IEEE Internet Computing, 2007, 11(2): 96, 94-95. https://www.computer.org/csdl/mags/ic/2007/02/w2096-abs.html

  19. Fensel, D. and van Harmelen, F. Unifying reasoning and search to web scale, IEEE Internet Computing, 2007, 11(2): 96, 94-95. https://www.computer.org/csdl/mags/ic/2007/02/w2096-abs.html

  20. Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N. and Weitzner, D.J. A Framework for Web science, Foundations and Trends in Web Science, 2006, 1(1): 1-130.

  21. Chen, B.C. and Hsiang, J. A logic framework of knowledge retrieval with fuzziness, Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, 2004: 524-528. https://www.researchgate.net/profile/Jieh_Hsiang/publication/4134041_A_Logical_Framework_of_Knowledge_Retrieval_with_Fuzziness/links/00b7d5193582484641000000.pdf

  22. Martin, P. and Eklund, P.W. Knowledge retrieval and the World Wide Web, IEEE Intelligent Systems, 2000, 15(3): 18-25. /wiki/Intelligent_Systems

  23. Tranel, Daniel, Damasio, Antonio. The neurobiology of knowledge retrieval. Behavioral and Brain Science, 22(2): 303-303, 1999. https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/neurobiology-of-knowledge-retrieval/CE19FB740A45B765FD2725C2A512AB93

  24. Jennifer H. Pfeifer, Matthew D. Lieberman, Mirella Dapretto. “I Know You Are But What Am I?!”: Neural Bases of Self-and Social Knowledge Retrieval in Children and Adults, Journal of Cognitive Neuroscience, 19(8), MIT Press, August 2007. /wiki/Matthew_Lieberman

  25. Yiyu Yao, Yi Zeng, Ning Zhong, Xiangji Huang. Knowledge Retrieval (KR). In: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society, Silicon Valley, USA, November 2–5, 2007, 729-735. /wiki/IEEE_Computer_Society