Propositional calculus, also known as propositional logic or sentential logic, studies propositions that are either true or false and their combinations using logical connectives such as conjunction, disjunction, implication, biconditional, and negation. Unlike first-order logic, it does not involve predicates or quantifiers, serving instead as the foundation of higher logics. Propositions are represented by letters called propositional variables, forming formulas in a formal language. The classical form, truth-functional propositional logic, adheres to the principle of bivalence and law of excluded middle, assigning each formula a truth value of true or false.
History
Main article: History of logic
Although propositional logic had been hinted by earlier philosophers, Chrysippus is often credited with development of a deductive system for propositional logic as his main achievement in the 3rd century BC33 which was expanded by his successor Stoics. The logic was focused on propositions. This was different from the traditional syllogistic logic, which focused on terms. However, most of the original writings were lost34 and, at some time between the 3rd and 6th century CE, Stoic logic faded into oblivion, to be resurrected only in the 20th century, in the wake of the (re)-discovery of propositional logic.35
Symbolic logic, which would come to be important to refine propositional logic, was first developed by the 17th/18th-century mathematician Gottfried Leibniz, whose calculus ratiocinator was, however, unknown to the larger logical community. Consequently, many of the advances achieved by Leibniz were recreated by logicians like George Boole and Augustus De Morgan, completely independent of Leibniz.36
Gottlob Frege's predicate logic builds upon propositional logic, and has been described as combining "the distinctive features of syllogistic logic and propositional logic."37 Consequently, predicate logic ushered in a new era in logic's history; however, advances in propositional logic were still made after Frege, including natural deduction, truth trees and truth tables. Natural deduction was invented by Gerhard Gentzen and Stanisław Jaśkowski. Truth trees were invented by Evert Willem Beth.38 The invention of truth tables, however, is of uncertain attribution.
Within works by Frege39 and Bertrand Russell,40 are ideas influential to the invention of truth tables. The actual tabular structure (being formatted as a table), itself, is generally credited to either Ludwig Wittgenstein or Emil Post (or both, independently).41 Besides Frege and Russell, others credited with having ideas preceding truth tables include Philo, Boole, Charles Sanders Peirce,42 and Ernst Schröder. Others credited with the tabular structure include Jan Łukasiewicz, Alfred North Whitehead, William Stanley Jevons, John Venn, and Clarence Irving Lewis.43 Ultimately, some have concluded, like John Shosky, that "It is far from clear that any one person should be given the title of 'inventor' of truth-tables".44
Sentences
Main article: Proposition
Propositional logic, as currently studied in universities, is a specification of a standard of logical consequence in which only the meanings of propositional connectives are considered in evaluating the conditions for the truth of a sentence, or whether a sentence logically follows from some other sentence or group of sentences.45
Declarative sentences
Propositional logic deals with statements, which are defined as declarative sentences having truth value.4647 Examples of statements might include:
- Wikipedia is a free online encyclopedia that anyone can edit.
- London is the capital of England.
- All Wikipedia editors speak at least three languages.
Declarative sentences are contrasted with questions, such as "What is Wikipedia?", and imperative statements, such as "Please add citations to support the claims in this article.".4849 Such non-declarative sentences have no truth value,50 and are only dealt with in nonclassical logics, called erotetic and imperative logics.
Compounding sentences with connectives
See also: Atomic formula and Atomic sentence
In propositional logic, a statement can contain one or more other statements as parts.51 Compound sentences are formed from simpler sentences and express relationships among the constituent sentences.52 This is done by combining them with logical connectives:5354 the main types of compound sentences are negations, conjunctions, disjunctions, implications, and biconditionals,55 which are formed by using the corresponding connectives to connect propositions.5657 In English, these connectives are expressed by the words "and" (conjunction), "or" (disjunction), "not" (negation), "if" (material conditional), and "if and only if" (biconditional).5859 Examples of such compound sentences might include:
- Wikipedia is a free online encyclopedia that anyone can edit, and millions already have. (conjunction)
- It is not true that all Wikipedia editors speak at least three languages. (negation)
- Either London is the capital of England, or London is the capital of the United Kingdom, or both. (disjunction)60
If sentences lack any logical connectives, they are called simple sentences,61 or atomic sentences;62 if they contain one or more logical connectives, they are called compound sentences,63 or molecular sentences.64
Sentential connectives are a broader category that includes logical connectives.6566 Sentential connectives are any linguistic particles that bind sentences to create a new compound sentence,6768 or that inflect a single sentence to create a new sentence.69 A logical connective, or propositional connective, is a kind of sentential connective with the characteristic feature that, when the original sentences it operates on are (or express) propositions, the new sentence that results from its application also is (or expresses) a proposition.70 Philosophers disagree about what exactly a proposition is,7172 as well as about which sentential connectives in natural languages should be counted as logical connectives.7374 Sentential connectives are also called sentence-functors,75 and logical connectives are also called truth-functors.76
Arguments
Main article: Argument
An argument is defined as a pair of things, namely a set of sentences, called the premises,77 and a sentence, called the conclusion.787980 The conclusion is claimed to follow from the premises,81 and the premises are claimed to support the conclusion.82
Example argument
The following is an example of an argument within the scope of propositional logic:
Premise 1: If it's raining, then it's cloudy. Premise 2: It's raining. Conclusion: It's cloudy.The logical form of this argument is known as modus ponens,83 which is a classically valid form.84 So, in classical logic, the argument is valid, although it may or may not be sound, depending on the meteorological facts in a given context. This example argument will be reused when explaining § Formalization.
Validity and soundness
Main articles: Validity (logic) and Soundness
An argument is valid if, and only if, it is necessary that, if all its premises are true, its conclusion is true.858687 Alternatively, an argument is valid if, and only if, it is impossible for all the premises to be true while the conclusion is false.8889
Validity is contrasted with soundness.90 An argument is sound if, and only if, it is valid and all its premises are true.9192 Otherwise, it is unsound.93
Logic, in general, aims to precisely specify valid arguments.94 This is done by defining a valid argument as one in which its conclusion is a logical consequence of its premises,95 which, when this is understood as semantic consequence, means that there is no case in which the premises are true but the conclusion is not true96 – see § Semantics below.
Formalization
Propositional logic is typically studied through a formal system in which formulas of a formal language are interpreted to represent propositions. This formal language is the basis for proof systems, which allow a conclusion to be derived from premises if, and only if, it is a logical consequence of them. This section will show how this works by formalizing the § Example argument. The formal language for a propositional calculus will be fully specified in § Language, and an overview of proof systems will be given in § Proof systems.
Propositional variables
Main article: Propositional variable
Since propositional logic is not concerned with the structure of propositions beyond the point where they cannot be decomposed any more by logical connectives,9798 it is typically studied by replacing such atomic (indivisible) statements with letters of the alphabet, which are interpreted as variables representing statements (propositional variables).99 With propositional variables, the § Example argument would then be symbolized as follows:
Premise 1: P → Q {\displaystyle P\to Q} Premise 2: P {\displaystyle P} Conclusion: Q {\displaystyle Q}When P is interpreted as "It's raining" and Q as "it's cloudy" these symbolic expressions correspond exactly with the original expression in natural language. Not only that, but they will also correspond with any other inference with the same logical form.
When a formal system is used to represent formal logic, only statement letters (usually capital roman letters such as P {\displaystyle P} , Q {\displaystyle Q} and R {\displaystyle R} ) are represented directly. The natural language propositions that arise when they're interpreted are outside the scope of the system, and the relation between the formal system and its interpretation is likewise outside the formal system itself.
Gentzen notation
If we assume that the validity of modus ponens has been accepted as an axiom, then the same § Example argument can also be depicted like this:
P → Q , P Q {\displaystyle {\frac {P\to Q,P}{Q}}}This method of displaying it is Gentzen's notation for natural deduction and sequent calculus.100 The premises are shown above a line, called the inference line,101 separated by a comma, which indicates combination of premises.102 The conclusion is written below the inference line.103 The inference line represents syntactic consequence,104 sometimes called deductive consequence,105> which is also symbolized with ⊢.106107 So the above can also be written in one line as P → Q , P ⊢ Q {\displaystyle P\to Q,P\vdash Q} .108
Syntactic consequence is contrasted with semantic consequence,109 which is symbolized with ⊧.110111 In this case, the conclusion follows syntactically because the natural deduction inference rule of modus ponens has been assumed. For more on inference rules, see the sections on proof systems below.
Language
The language (commonly called L {\displaystyle {\mathcal {L}}} )112113114 of a propositional calculus is defined in terms of:115116
- a set of primitive symbols, called atomic formulas, atomic sentences,117118 atoms,119 placeholders, prime formulas,120 proposition letters, sentence letters,121 or variables, and
- a set of operator symbols, called connectives,122123124 logical connectives,125 logical operators,126 truth-functional connectives,127 truth-functors,128 or propositional connectives.129
A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to the rules of the grammar. The language L {\displaystyle {\mathcal {L}}} , then, is defined either as being identical to its set of well-formed formulas,130 or as containing that set (together with, for instance, its set of connectives and variables).131132
Usually the syntax of L {\displaystyle {\mathcal {L}}} is defined recursively by just a few definitions, as seen next; some authors explicitly include parentheses as punctuation marks when defining their language's syntax,133134 while others use them without comment.135136
Syntax
Given a set of atomic propositional variables p 1 {\displaystyle p_{1}} , p 2 {\displaystyle p_{2}} , p 3 {\displaystyle p_{3}} , ..., and a set of propositional connectives c 1 1 {\displaystyle c_{1}^{1}} , c 2 1 {\displaystyle c_{2}^{1}} , c 3 1 {\displaystyle c_{3}^{1}} , ..., c 1 2 {\displaystyle c_{1}^{2}} , c 2 2 {\displaystyle c_{2}^{2}} , c 3 2 {\displaystyle c_{3}^{2}} , ..., c 1 3 {\displaystyle c_{1}^{3}} , c 2 3 {\displaystyle c_{2}^{3}} , c 3 3 {\displaystyle c_{3}^{3}} , ..., a formula of propositional logic is defined recursively by these definitions:137138139140
Definition 1: Atomic propositional variables are formulas. Definition 2: If c n m {\displaystyle c_{n}^{m}} is a propositional connective, and ⟨ {\displaystyle \langle } A, B, C, … ⟩ {\displaystyle \rangle } is a sequence of m, possibly but not necessarily atomic, possibly but not necessarily distinct, formulas, then the result of applying c n m {\displaystyle c_{n}^{m}} to ⟨ {\displaystyle \langle } A, B, C, … ⟩ {\displaystyle \rangle } is a formula. Definition 3: Nothing else is a formula.Writing the result of applying c n m {\displaystyle c_{n}^{m}} to ⟨ {\displaystyle \langle } A, B, C, … ⟩ {\displaystyle \rangle } in functional notation, as c n m {\displaystyle c_{n}^{m}} (A, B, C, …), we have the following as examples of well-formed formulas:
- p 5 {\displaystyle p_{5}}
- c 3 2 ( p 2 , p 9 ) {\displaystyle c_{3}^{2}(p_{2},p_{9})}
- c 3 2 ( p 1 , c 2 1 ( p 3 ) ) {\displaystyle c_{3}^{2}(p_{1},c_{2}^{1}(p_{3}))}
- c 1 3 ( p 4 , p 6 , c 2 2 ( p 1 , p 2 ) ) {\displaystyle c_{1}^{3}(p_{4},p_{6},c_{2}^{2}(p_{1},p_{2}))}
- c 4 2 ( c 1 1 ( p 7 ) , c 3 1 ( p 8 ) ) {\displaystyle c_{4}^{2}(c_{1}^{1}(p_{7}),c_{3}^{1}(p_{8}))}
- c 2 3 ( c 1 2 ( p 3 , p 4 ) , c 2 1 ( p 5 ) , c 3 2 ( p 6 , p 7 ) ) {\displaystyle c_{2}^{3}(c_{1}^{2}(p_{3},p_{4}),c_{2}^{1}(p_{5}),c_{3}^{2}(p_{6},p_{7}))}
- c 3 1 ( c 1 3 ( p 2 , p 3 , c 2 2 ( p 4 , p 5 ) ) ) {\displaystyle c_{3}^{1}(c_{1}^{3}(p_{2},p_{3},c_{2}^{2}(p_{4},p_{5})))}
What was given as Definition 2 above, which is responsible for the composition of formulas, is referred to by Colin Howson as the principle of composition.141142 It is this recursion in the definition of a language's syntax which justifies the use of the word "atomic" to refer to propositional variables, since all formulas in the language L {\displaystyle {\mathcal {L}}} are built up from the atoms as ultimate building blocks.143 Composite formulas (all formulas besides atoms) are called molecules,144 or molecular sentences.145 (This is an imperfect analogy with chemistry, since a chemical molecule may sometimes have only one atom, as in monatomic gases.)146
The definition that "nothing else is a formula", given above as Definition 3, excludes any formula from the language which is not specifically required by the other definitions in the syntax.147 In particular, it excludes infinitely long formulas from being well-formed.148 It is sometimes called the Closure Clause.149
CF grammar in BNF
An alternative to the syntax definitions given above is to write a context-free (CF) grammar for the language L {\displaystyle {\mathcal {L}}} in Backus-Naur form (BNF).150151 This is more common in computer science than in philosophy.152 It can be done in many ways,153 of which a particularly brief one, for the common set of five connectives, is this single clause:154155
ϕ ::= a 1 , a 2 , … | ¬ ϕ | ϕ & ψ | ϕ ∨ ψ | ϕ → ψ | ϕ ↔ ψ {\displaystyle \phi ::=a_{1},a_{2},\ldots ~|~\neg \phi ~|~\phi ~\&~\psi ~|~\phi \vee \psi ~|~\phi \rightarrow \psi ~|~\phi \leftrightarrow \psi }This clause, due to its self-referential nature (since ϕ {\displaystyle \phi } is in some branches of the definition of ϕ {\displaystyle \phi } ), also acts as a recursive definition, and therefore specifies the entire language. To expand it to add modal operators, one need only add … | ◻ ϕ | ◊ ϕ {\displaystyle |~\Box \phi ~|~\Diamond \phi } to the end of the clause.156
Constants and schemata
Mathematicians sometimes distinguish between propositional constants, propositional variables, and schemata. Propositional constants represent some particular proposition,157 while propositional variables range over the set of all atomic propositions.158 Schemata, or schematic letters, however, range over all formulas.159160 (Schematic letters are also called metavariables.)161 It is common to represent propositional constants by A, B, and C, propositional variables by P, Q, and R, and schematic letters are often Greek letters, most often φ, ψ, and χ.162163
However, some authors recognize only two "propositional constants" in their formal system: the special symbol ⊤ {\displaystyle \top } , called "truth", which always evaluates to True, and the special symbol ⊥ {\displaystyle \bot } , called "falsity", which always evaluates to False.164165166 Other authors also include these symbols, with the same meaning, but consider them to be "zero-place truth-functors",167 or equivalently, "nullary connectives".168
Semantics
Main articles: Semantics of logic and Model theory
To serve as a model of the logic of a given natural language, a formal language must be semantically interpreted.169 In classical logic, all propositions evaluate to exactly one of two truth-values: True or False.170171 For example, "Wikipedia is a free online encyclopedia that anyone can edit" evaluates to True,172 while "Wikipedia is a paper encyclopedia" evaluates to False.173
In other respects, the following formal semantics can apply to the language of any propositional logic, but the assumptions that there are only two semantic values (bivalence), that only one of the two is assigned to each formula in the language (noncontradiction), and that every formula gets assigned a value (excluded middle), are distinctive features of classical logic.174175176 To learn about nonclassical logics with more than two truth-values, and their unique semantics, one may consult the articles on "Many-valued logic", "Three-valued logic", "Finite-valued logic", and "Infinite-valued logic".
Interpretation (case) and argument
Main article: Interpretation (logic)
For a given language L {\displaystyle {\mathcal {L}}} , an interpretation,177 valuation,178 Boolean valuation,179 or case,180181 is an assignment of semantic values to each formula of L {\displaystyle {\mathcal {L}}} .182 For a formal language of classical logic, a case is defined as an assignment, to each formula of L {\displaystyle {\mathcal {L}}} , of one or the other, but not both, of the truth values, namely truth (T, or 1) and falsity (F, or 0).183184 An interpretation that follows the rules of classical logic is sometimes called a Boolean valuation.185186 An interpretation of a formal language for classical logic is often expressed in terms of truth tables.187188 Since each formula is only assigned a single truth-value, an interpretation may be viewed as a function, whose domain is L {\displaystyle {\mathcal {L}}} , and whose range is its set of semantic values V = { T , F } {\displaystyle {\mathcal {V}}=\{{\mathsf {T}},{\mathsf {F}}\}} ,189 or V = { 1 , 0 } {\displaystyle {\mathcal {V}}=\{1,0\}} .190
For n {\displaystyle n} distinct propositional symbols there are 2 n {\displaystyle 2^{n}} distinct possible interpretations. For any particular symbol a {\displaystyle a} , for example, there are 2 1 = 2 {\displaystyle 2^{1}=2} possible interpretations: either a {\displaystyle a} is assigned T, or a {\displaystyle a} is assigned F. And for the pair a {\displaystyle a} , b {\displaystyle b} there are 2 2 = 4 {\displaystyle 2^{2}=4} possible interpretations: either both are assigned T, or both are assigned F, or a {\displaystyle a} is assigned T and b {\displaystyle b} is assigned F, or a {\displaystyle a} is assigned F and b {\displaystyle b} is assigned T.191 Since L {\displaystyle {\mathcal {L}}} has ℵ 0 {\displaystyle \aleph _{0}} , that is, denumerably many propositional symbols, there are 2 ℵ 0 = c {\displaystyle 2^{\aleph _{0}}={\mathfrak {c}}} , and therefore uncountably many distinct possible interpretations of L {\displaystyle {\mathcal {L}}} as a whole.192
Where I {\displaystyle {\mathcal {I}}} is an interpretation and φ {\displaystyle \varphi } and ψ {\displaystyle \psi } represent formulas, the definition of an argument, given in § Arguments, may then be stated as a pair ⟨ { φ 1 , φ 2 , φ 3 , . . . , φ n } , ψ ⟩ {\displaystyle \langle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\},\psi \rangle } , where { φ 1 , φ 2 , φ 3 , . . . , φ n } {\displaystyle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\}} is the set of premises and ψ {\displaystyle \psi } is the conclusion. The definition of an argument's validity, i.e. its property that { φ 1 , φ 2 , φ 3 , . . . , φ n } ⊨ ψ {\displaystyle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\}\models \psi } , can then be stated as its absence of a counterexample, where a counterexample is defined as a case I {\displaystyle {\mathcal {I}}} in which the argument's premises { φ 1 , φ 2 , φ 3 , . . . , φ n } {\displaystyle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\}} are all true but the conclusion ψ {\displaystyle \psi } is not true.193194 As will be seen in § Semantic truth, validity, consequence, this is the same as to say that the conclusion is a semantic consequence of the premises.
Propositional connective semantics
Main articles: Logical connective and Truth function
An interpretation assigns semantic values to atomic formulas directly.195196 Molecular formulas are assigned a function of the value of their constituent atoms, according to the connective used;197198 the connectives are defined in such a way that the truth-value of a sentence formed from atoms with connectives depends on the truth-values of the atoms that they're applied to, and only on those.199200 This assumption is referred to by Colin Howson as the assumption of the truth-functionality of the connectives.201
Semantics via. truth tables
Since logical connectives are defined semantically only in terms of the truth values that they take when the propositional variables that they're applied to take either of the two possible truth values,202203 the semantic definition of the connectives is usually represented as a truth table for each of the connectives,204205206 as seen below:
p {\displaystyle p} | q {\displaystyle q} | p ∧ q {\displaystyle p\land q} | p ∨ q {\displaystyle p\lor q} | p → q {\displaystyle p\rightarrow q} | p ⇔ q {\displaystyle p\Leftrightarrow q} | ¬ p {\displaystyle \neg p} | ¬ q {\displaystyle \neg q} |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | F | F |
T | F | F | T | F | F | F | T |
F | T | F | T | T | F | T | F |
F | F | F | F | T | T | T | T |
This table covers each of the main five logical connectives:207208209210 conjunction (here notated p ∧ q {\displaystyle p\land q} ), disjunction (p ∨ q), implication (p → q), biconditional (p ↔ q) and negation, (¬p, or ¬q, as the case may be). It is sufficient for determining the semantics of each of these operators.211212213 For more truth tables for more different kinds of connectives, see the article "Truth table".
Semantics via assignment expressions
Some authors (viz., all the authors cited in this subsection) write out the connective semantics using a list of statements instead of a table. In this format, where I ( φ ) {\displaystyle {\mathcal {I}}(\varphi )} is the interpretation of φ {\displaystyle \varphi } , the five connectives are defined as:214215
- I ( ¬ P ) = T {\displaystyle {\mathcal {I}}(\neg P)={\mathsf {T}}} if, and only if, I ( P ) = F {\displaystyle {\mathcal {I}}(P)={\mathsf {F}}}
- I ( P ∧ Q ) = T {\displaystyle {\mathcal {I}}(P\land Q)={\mathsf {T}}} if, and only if, I ( P ) = T {\displaystyle {\mathcal {I}}(P)={\mathsf {T}}} and I ( Q ) = T {\displaystyle {\mathcal {I}}(Q)={\mathsf {T}}}
- I ( P ∨ Q ) = T {\displaystyle {\mathcal {I}}(P\lor Q)={\mathsf {T}}} if, and only if, I ( P ) = T {\displaystyle {\mathcal {I}}(P)={\mathsf {T}}} or I ( Q ) = T {\displaystyle {\mathcal {I}}(Q)={\mathsf {T}}}
- I ( P → Q ) = T {\displaystyle {\mathcal {I}}(P\to Q)={\mathsf {T}}} if, and only if, it is true that, if I ( P ) = T {\displaystyle {\mathcal {I}}(P)={\mathsf {T}}} , then I ( Q ) = T {\displaystyle {\mathcal {I}}(Q)={\mathsf {T}}}
- I ( P ↔ Q ) = T {\displaystyle {\mathcal {I}}(P\leftrightarrow Q)={\mathsf {T}}} if, and only if, it is true that I ( P ) = T {\displaystyle {\mathcal {I}}(P)={\mathsf {T}}} if, and only if, I ( Q ) = T {\displaystyle {\mathcal {I}}(Q)={\mathsf {T}}}
Instead of I ( φ ) {\displaystyle {\mathcal {I}}(\varphi )} , the interpretation of φ {\displaystyle \varphi } may be written out as | φ | {\displaystyle |\varphi |} ,216217 or, for definitions such as the above, I ( φ ) = T {\displaystyle {\mathcal {I}}(\varphi )={\mathsf {T}}} may be written simply as the English sentence " φ {\displaystyle \varphi } is given the value T {\displaystyle {\mathsf {T}}} ".218 Yet other authors219220 may prefer to speak of a Tarskian model M {\displaystyle {\mathfrak {M}}} for the language, so that instead they'll use the notation M ⊨ φ {\displaystyle {\mathfrak {M}}\models \varphi } , which is equivalent to saying I ( φ ) = T {\displaystyle {\mathcal {I}}(\varphi )={\mathsf {T}}} , where I {\displaystyle {\mathcal {I}}} is the interpretation function for M {\displaystyle {\mathfrak {M}}} .221
Connective definition methods
Some of these connectives may be defined in terms of others: for instance, implication, p → q {\displaystyle p\rightarrow q} , may be defined in terms of disjunction and negation, as ¬ p ∨ q {\displaystyle \neg p\lor q} ;222 and disjunction may be defined in terms of negation and conjunction, as ¬ ( ¬ p ∧ ¬ q {\displaystyle \neg (\neg p\land \neg q} .223 In fact, a truth-functionally complete system,224 in the sense that all and only the classical propositional tautologies are theorems, may be derived using only disjunction and negation (as Russell, Whitehead, and Hilbert did), or using only implication and negation (as Frege did), or using only conjunction and negation, or even using only a single connective for "not and" (the Sheffer stroke),225 as Jean Nicod did.226 A joint denial connective (logical NOR) will also suffice, by itself, to define all other connectives. Besides NOR and NAND, no other connectives have this property.227228
Some authors, namely Howson229 and Cunningham,230 distinguish equivalence from the biconditional. (As to equivalence, Howson calls it "truth-functional equivalence", while Cunningham calls it "logical equivalence".) Equivalence is symbolized with ⇔ and is a metalanguage symbol, while a biconditional is symbolized with ↔ and is a logical connective in the object language L {\displaystyle {\mathcal {L}}} . Regardless, an equivalence or biconditional is true if, and only if, the formulas connected by it are assigned the same semantic value under every interpretation. Other authors often do not make this distinction, and may use the word "equivalence",231 and/or the symbol ⇔,232 to denote their object language's biconditional connective.
Semantic truth, validity, consequence
Given φ {\displaystyle \varphi } and ψ {\displaystyle \psi } as formulas (or sentences) of a language L {\displaystyle {\mathcal {L}}} , and I {\displaystyle {\mathcal {I}}} as an interpretation (or case)233 of L {\displaystyle {\mathcal {L}}} , then the following definitions apply:234235
- Truth-in-a-case:236 A sentence φ {\displaystyle \varphi } of L {\displaystyle {\mathcal {L}}} is true under an interpretation I {\displaystyle {\mathcal {I}}} if I {\displaystyle {\mathcal {I}}} assigns the truth value T to φ {\displaystyle \varphi } .237238 If φ {\displaystyle \varphi } is true under I {\displaystyle {\mathcal {I}}} , then I {\displaystyle {\mathcal {I}}} is called a model of φ {\displaystyle \varphi } .239
- Falsity-in-a-case:240 φ {\displaystyle \varphi } is false under an interpretation I {\displaystyle {\mathcal {I}}} if, and only if, ¬ φ {\displaystyle \neg \varphi } is true under I {\displaystyle {\mathcal {I}}} .241242243 This is the "truth of negation" definition of falsity-in-a-case.244 Falsity-in-a-case may also be defined by the "complement" definition: φ {\displaystyle \varphi } is false under an interpretation I {\displaystyle {\mathcal {I}}} if, and only if, φ {\displaystyle \varphi } is not true under I {\displaystyle {\mathcal {I}}} .245246 In classical logic, these definitions are equivalent, but in nonclassical logics, they are not.247
- Semantic consequence: A sentence ψ {\displaystyle \psi } of L {\displaystyle {\mathcal {L}}} is a semantic consequence ( φ ⊨ ψ {\displaystyle \varphi \models \psi } ) of a sentence φ {\displaystyle \varphi } if there is no interpretation under which φ {\displaystyle \varphi } is true and ψ {\displaystyle \psi } is not true.248249250
- Valid formula (tautology): A sentence φ {\displaystyle \varphi } of L {\displaystyle {\mathcal {L}}} is logically valid ( ⊨ φ {\displaystyle \models \varphi } ),251 or a tautology,252253ref name="ms32254 if it is true under every interpretation,255256 or true in every case.257
- Consistent sentence: A sentence of L {\displaystyle {\mathcal {L}}} is consistent if it is true under at least one interpretation. It is inconsistent if it is not consistent.258259 An inconsistent formula is also called self-contradictory,260 and said to be a self-contradiction,261 or simply a contradiction,262263264 although this latter name is sometimes reserved specifically for statements of the form ( p ∧ ¬ p ) {\displaystyle (p\land \neg p)} .265
For interpretations (cases) I {\displaystyle {\mathcal {I}}} of L {\displaystyle {\mathcal {L}}} , these definitions are sometimes given:
- Complete case: A case I {\displaystyle {\mathcal {I}}} is complete if, and only if, either φ {\displaystyle \varphi } is true-in- I {\displaystyle {\mathcal {I}}} or ¬ φ {\displaystyle \neg \varphi } is true-in- I {\displaystyle {\mathcal {I}}} , for any φ {\displaystyle \varphi } in L {\displaystyle {\mathcal {L}}} .266267
- Consistent case: A case I {\displaystyle {\mathcal {I}}} is consistent if, and only if, there is no φ {\displaystyle \varphi } in L {\displaystyle {\mathcal {L}}} such that both φ {\displaystyle \varphi } and ¬ φ {\displaystyle \neg \varphi } are true-in- I {\displaystyle {\mathcal {I}}} .268269
For classical logic, which assumes that all cases are complete and consistent,270 the following theorems apply:
- For any given interpretation, a given formula is either true or false under it.271272
- No formula is both true and false under the same interpretation.273274
- φ {\displaystyle \varphi } is true under I {\displaystyle {\mathcal {I}}} if, and only if, ¬ φ {\displaystyle \neg \varphi } is false under I {\displaystyle {\mathcal {I}}} ;275276 ¬ φ {\displaystyle \neg \varphi } is true under I {\displaystyle {\mathcal {I}}} if, and only if, φ {\displaystyle \varphi } is not true under I {\displaystyle {\mathcal {I}}} .277
- If φ {\displaystyle \varphi } and ( φ → ψ ) {\displaystyle (\varphi \to \psi )} are both true under I {\displaystyle {\mathcal {I}}} , then ψ {\displaystyle \psi } is true under I {\displaystyle {\mathcal {I}}} .278279
- If ⊨ φ {\displaystyle \models \varphi } and ⊨ ( φ → ψ ) {\displaystyle \models (\varphi \to \psi )} , then ⊨ ψ {\displaystyle \models \psi } .280
- ( φ → ψ ) {\displaystyle (\varphi \to \psi )} is true under I {\displaystyle {\mathcal {I}}} if, and only if, either φ {\displaystyle \varphi } is not true under I {\displaystyle {\mathcal {I}}} , or ψ {\displaystyle \psi } is true under I {\displaystyle {\mathcal {I}}} .281
- φ ⊨ ψ {\displaystyle \varphi \models \psi } if, and only if, ( φ → ψ ) {\displaystyle (\varphi \to \psi )} is logically valid, that is, φ ⊨ ψ {\displaystyle \varphi \models \psi } if, and only if, ⊨ ( φ → ψ ) {\displaystyle \models (\varphi \to \psi )} .282283
Proof systems
See also: Proof theory and Proof calculus
Proof systems in propositional logic can be broadly classified into semantic proof systems and syntactic proof systems,284285286 according to the kind of logical consequence that they rely on: semantic proof systems rely on semantic consequence ( φ ⊨ ψ {\displaystyle \varphi \models \psi } ),287 whereas syntactic proof systems rely on syntactic consequence ( φ ⊢ ψ {\displaystyle \varphi \vdash \psi } ).288 Semantic consequence deals with the truth values of propositions in all possible interpretations, whereas syntactic consequence concerns the derivation of conclusions from premises based on rules and axioms within a formal system.289 This section gives a very brief overview of the kinds of proof systems, with anchors to the relevant sections of this article on each one, as well as to the separate Wikipedia articles on each one.
Semantic proof systems
Semantic proof systems rely on the concept of semantic consequence, symbolized as φ ⊨ ψ {\displaystyle \varphi \models \psi } , which indicates that if φ {\displaystyle \varphi } is true, then ψ {\displaystyle \psi } must also be true in every possible interpretation.290
Truth tables
Main article: Truth table
A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario.291 By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory.292 See § Semantic proof via truth tables.
Semantic tableaux
Main article: Method of analytic tableaux
A semantic tableau is another semantic proof technique that systematically explores the truth of a proposition.293 It constructs a tree where each branch represents a possible interpretation of the propositions involved.294 If every branch leads to a contradiction, the original proposition is considered to be a contradiction, and its negation is considered a tautology.295 See § Semantic proof via tableaux.
Syntactic proof systems
Syntactic proof systems, in contrast, focus on the formal manipulation of symbols according to specific rules. The notion of syntactic consequence, φ ⊢ ψ {\displaystyle \varphi \vdash \psi } , signifies that ψ {\displaystyle \psi } can be derived from φ {\displaystyle \varphi } using the rules of the formal system.296
Axiomatic systems
Main article: Axiomatic system (logic)
An axiomatic system is a set of axioms or assumptions from which other statements (theorems) are logically derived.297 In propositional logic, axiomatic systems define a base set of propositions considered to be self-evidently true, and theorems are proved by applying deduction rules to these axioms.298 See § Syntactic proof via axioms.
Natural deduction
Main article: Natural deduction
Natural deduction is a syntactic method of proof that emphasizes the derivation of conclusions from premises through the use of intuitive rules reflecting ordinary reasoning.299 Each rule reflects a particular logical connective and shows how it can be introduced or eliminated.300 See § Syntactic proof via natural deduction.
Sequent calculus
Main article: Sequent calculus
The sequent calculus is a formal system that represents logical deductions as sequences or "sequents" of formulas.301 Developed by Gerhard Gentzen, this approach focuses on the structural properties of logical deductions and provides a powerful framework for proving statements within propositional logic.302303
Semantic proof via truth tables
See also: Truth table
Taking advantage of the semantic concept of validity (truth in every interpretation), it is possible to prove a formula's validity by using a truth table, which gives every possible interpretation (assignment of truth values to variables) of a formula.304305306 If, and only if, all the lines of a truth table come out true, the formula is semantically valid (true in every interpretation).307308 Further, if (and only if) ¬ φ {\displaystyle \neg \varphi } is valid, then φ {\displaystyle \varphi } is inconsistent.309310311
For instance, this table shows that "p → (q ∨ r → (r → ¬p))" is not valid:312
p | q | r | q ∨ r | r → ¬p | q ∨ r → (r → ¬p) | p → (q ∨ r → (r → ¬p)) |
---|---|---|---|---|---|---|
T | T | T | T | F | F | F |
T | T | F | T | T | T | T |
T | F | T | T | F | F | F |
T | F | F | F | T | T | T |
F | T | T | T | T | T | T |
F | T | F | T | T | T | T |
F | F | T | T | T | T | T |
F | F | F | F | T | T | T |
The computation of the last column of the third line may be displayed as follows:313
p | → | (q | ∨ | r | → | (r | → | ¬ | p)) |
---|---|---|---|---|---|---|---|---|---|
T | → | (F | ∨ | T | → | (T | → | ¬ | T)) |
T | → | ( | T | → | (T | → | F | )) | |
T | → | ( | T | → | F | ) | |||
T | → | F | |||||||
F | |||||||||
T | F | F | T | T | F | T | F | F | T |
Further, using the theorem that φ ⊨ ψ {\displaystyle \varphi \models \psi } if, and only if, ( φ → ψ ) {\displaystyle (\varphi \to \psi )} is valid,314315 we can use a truth table to prove that a formula is a semantic consequence of a set of formulas: { φ 1 , φ 2 , φ 3 , . . . , φ n } ⊨ ψ {\displaystyle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\}\models \psi } if, and only if, we can produce a truth table that comes out all true for the formula ( ( ⋀ i = 1 n φ i ) → ψ ) {\displaystyle \left(\left(\bigwedge _{i=1}^{n}\varphi _{i}\right)\rightarrow \psi \right)} (that is, if ⊨ ( ( ⋀ i = 1 n φ i ) → ψ ) {\displaystyle \models \left(\left(\bigwedge _{i=1}^{n}\varphi _{i}\right)\rightarrow \psi \right)} ).316317
Semantic proof via tableaux
Main article: Method of analytic tableaux
Since truth tables have 2n lines for n variables, they can be tiresomely long for large values of n.318 Analytic tableaux are a more efficient, but nevertheless mechanical,319 semantic proof method; they take advantage of the fact that "we learn nothing about the validity of the inference from examining the truth-value distributions which make either the premises false or the conclusion true: the only relevant distributions when considering deductive validity are clearly just those which make the premises true or the conclusion false."320
Analytic tableaux for propositional logic are fully specified by the rules that are stated in schematic form below.321 These rules use "signed formulas", where a signed formula is an expression T X {\displaystyle TX} or F X {\displaystyle FX} , where X {\displaystyle X} is a (unsigned) formula of the language L {\displaystyle {\mathcal {L}}} .322 (Informally, T X {\displaystyle TX} is read " X {\displaystyle X} is true", and F X {\displaystyle FX} is read " X {\displaystyle X} is false".)323 Their formal semantic definition is that "under any interpretation, a signed formula T X {\displaystyle TX} is called true if X {\displaystyle X} is true, and false if X {\displaystyle X} is false, whereas a signed formula F X {\displaystyle FX} is called false if X {\displaystyle X} is true, and true if X {\displaystyle X} is false."324
1 ) T ∼ X F X F ∼ X T X s p a c e r 2 ) T ( X ∧ Y ) T X T Y F ( X ∧ Y ) F X | F Y s p a c e r 3 ) T ( X ∨ Y ) T X | T Y F ( X ∨ Y ) F X F Y s p a c e r 4 ) T ( X ⊃ Y ) F X | T Y F ( X ⊃ Y ) T X F Y {\displaystyle {\begin{aligned}&1)\quad {\frac {T\sim X}{FX}}\quad &&{\frac {F\sim X}{TX}}\\{\phantom {spacer}}\\&2)\quad {\frac {T(X\land Y)}{\begin{matrix}TX\\TY\end{matrix}}}\quad &&{\frac {F(X\land Y)}{FX|FY}}\\{\phantom {spacer}}\\&3)\quad {\frac {T(X\lor Y)}{TX|TY}}\quad &&{\frac {F(X\lor Y)}{\begin{matrix}FX\\FY\end{matrix}}}\\{\phantom {spacer}}\\&4)\quad {\frac {T(X\supset Y)}{FX|TY}}\quad &&{\frac {F(X\supset Y)}{\begin{matrix}TX\\FY\end{matrix}}}\end{aligned}}}
In this notation, rule 2 means that T ( X ∧ Y ) {\displaystyle T(X\land Y)} yields both T X , T Y {\displaystyle TX,TY} , whereas F ( X ∧ Y ) {\displaystyle F(X\land Y)} branches into F X , F Y {\displaystyle FX,FY} . The notation is to be understood analogously for rules 3 and 4.325 Often, in tableaux for classical logic, the signed formula notation is simplified so that T φ {\displaystyle T\varphi } is written simply as φ {\displaystyle \varphi } , and F φ {\displaystyle F\varphi } as ¬ φ {\displaystyle \neg \varphi } , which accounts for naming rule 1 the "Rule of Double Negation".326327
One constructs a tableau for a set of formulas by applying the rules to produce more lines and tree branches until every line has been used, producing a complete tableau. In some cases, a branch can come to contain both T X {\displaystyle TX} and F X {\displaystyle FX} for some X {\displaystyle X} , which is to say, a contradiction. In that case, the branch is said to close.328 If every branch in a tree closes, the tree itself is said to close.329 In virtue of the rules for construction of tableaux, a closed tree is a proof that the original formula, or set of formulas, used to construct it was itself self-contradictory, and therefore false.330 Conversely, a tableau can also prove that a logical formula is tautologous: if a formula is tautologous, its negation is a contradiction, so a tableau built from its negation will close.331
To construct a tableau for an argument ⟨ { φ 1 , φ 2 , φ 3 , . . . , φ n } , ψ ⟩ {\displaystyle \langle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\},\psi \rangle } , one first writes out the set of premise formulas, { φ 1 , φ 2 , φ 3 , . . . , φ n } {\displaystyle \{\varphi _{1},\varphi _{2},\varphi _{3},...,\varphi _{n}\}} , with one formula on each line, signed with T {\displaystyle T} (that is, T φ {\displaystyle T\varphi } for each T φ {\displaystyle T\varphi } in the set);332 and together with those formulas (the order is unimportant), one also writes out the conclusion, ψ {\displaystyle \psi } , signed with F {\displaystyle F} (that is, F ψ {\displaystyle F\psi } ).333 One then produces a truth tree (analytic tableau) by using all those lines according to the rules.334 A closed tree will be proof that the argument was valid, in virtue of the fact that φ ⊨ ψ {\displaystyle \varphi \models \psi } if, and only if, { φ , ∼ ψ } {\displaystyle \{\varphi ,\sim \psi \}} is inconsistent (also written as φ , ∼ ψ ⊨ {\displaystyle \varphi ,\sim \psi \models } ).335
List of classically valid argument forms
Using semantic checking methods, such as truth tables or semantic tableaux, to check for tautologies and semantic consequences, it can be shown that, in classical logic, the following classical argument forms are semantically valid, i.e., these tautologies and semantic consequences hold.336 We use φ {\displaystyle \varphi } ⟚ ψ {\displaystyle \psi } to denote equivalence of φ {\displaystyle \varphi } and ψ {\displaystyle \psi } , that is, as an abbreviation for both φ ⊨ ψ {\displaystyle \varphi \models \psi } and ψ ⊨ φ {\displaystyle \psi \models \varphi } ;337 as an aid to reading the symbols, a description of each formula is given. The description reads the symbol ⊧ (called the "double turnstile") as "therefore", which is a common reading of it,338339 although many authors prefer to read it as "entails",340341 or as "models".342
Name | Sequent | Description |
---|---|---|
Modus Ponens | ( ( p → q ) ∧ p ) ⊨ q {\displaystyle ((p\to q)\land p)\models q} 343 | If p then q; p; therefore q |
Modus Tollens | ( ( p → q ) ∧ ¬ q ) ⊨ ¬ p {\displaystyle ((p\to q)\land \neg q)\models \neg p} 344 | If p then q; not q; therefore not p |
Hypothetical Syllogism | ( ( p → q ) ∧ ( q → r ) ) ⊨ ( p → r ) {\displaystyle ((p\to q)\land (q\to r))\models (p\to r)} 345 | If p then q; if q then r; therefore, if p then r |
Disjunctive Syllogism | ( ( p ∨ q ) ∧ ¬ p ) ⊨ q {\displaystyle ((p\lor q)\land \neg p)\models q} 346 | Either p or q, or both; not p; therefore, q |
Constructive Dilemma | ( ( p → q ) ∧ ( r → s ) ∧ ( p ∨ r ) ) ⊨ ( q ∨ s ) {\displaystyle ((p\to q)\land (r\to s)\land (p\lor r))\models (q\lor s)} 347 | If p then q; and if r then s; but p or r; therefore q or s |
Destructive Dilemma | ( ( p → q ) ∧ ( r → s ) ∧ ( ¬ q ∨ ¬ s ) ) ⊨ ( ¬ p ∨ ¬ r ) {\displaystyle ((p\to q)\land (r\to s)\land (\neg q\lor \neg s))\models (\neg p\lor \neg r)} | If p then q; and if r then s; but not q or not s; therefore not p or not r |
Bidirectional Dilemma | ( ( p → q ) ∧ ( r → s ) ∧ ( p ∨ ¬ s ) ) ⊨ ( q ∨ ¬ r ) {\displaystyle ((p\to q)\land (r\to s)\land (p\lor \neg s))\models (q\lor \neg r)} | If p then q; and if r then s; but p or not s; therefore q or not r |
Simplification | ( p ∧ q ) ⊨ p {\displaystyle (p\land q)\models p} 348 | p and q are true; therefore p is true |
Conjunction | p , q ⊨ ( p ∧ q ) {\displaystyle p,q\models (p\land q)} 349 | p and q are true separately; therefore they are true conjointly |
Addition | p ⊨ ( p ∨ q ) {\displaystyle p\models (p\lor q)} 350351 | p is true; therefore the disjunction (p or q) is true |
Composition of conjunction | ( ( p → q ) ∧ ( p → r ) ) {\displaystyle ((p\to q)\land (p\to r))} ⟚ ( p → ( q ∧ r ) ) {\displaystyle (p\to (q\land r))} | If p then q; and if p then r; therefore if p is true then q and r are true |
Composition of disjunction | ( ( p → q ) ∨ ( p → r ) ) {\displaystyle ((p\to q)\lor (p\to r))} ⟚ ( p → ( q ∨ r ) ) {\displaystyle (p\to (q\lor r))} | If p then q; or if p then r; therefore if p is true then q or r is true |
De Morgan's Theorem (1) | ¬ ( p ∧ q ) {\displaystyle \neg (p\land q)} ⟚ ( ¬ p ∨ ¬ q ) {\displaystyle (\neg p\lor \neg q)} 352 | The negation of (p and q) is equiv. to (not p or not q) |
De Morgan's Theorem (2) | ¬ ( p ∨ q ) {\displaystyle \neg (p\lor q)} ⟚ ( ¬ p ∧ ¬ q ) {\displaystyle (\neg p\land \neg q)} 353 | The negation of (p or q) is equiv. to (not p and not q) |
Commutation (1) | ( p ∨ q ) {\displaystyle (p\lor q)} ⟚ ( q ∨ p ) {\displaystyle (q\lor p)} 354 | (p or q) is equiv. to (q or p) |
Commutation (2) | ( p ∧ q ) {\displaystyle (p\land q)} ⟚ ( q ∧ p ) {\displaystyle (q\land p)} 355 | (p and q) is equiv. to (q and p) |
Commutation (3) | ( p ↔ q ) {\displaystyle (p\leftrightarrow q)} ⟚ ( q ↔ p ) {\displaystyle (q\leftrightarrow p)} 356 | (p iff q) is equiv. to (q iff p) |
Association (1) | ( p ∨ ( q ∨ r ) ) {\displaystyle (p\lor (q\lor r))} ⟚ ( ( p ∨ q ) ∨ r ) {\displaystyle ((p\lor q)\lor r)} 357 | p or (q or r) is equiv. to (p or q) or r |
Association (2) | ( p ∧ ( q ∧ r ) ) {\displaystyle (p\land (q\land r))} ⟚ ( ( p ∧ q ) ∧ r ) {\displaystyle ((p\land q)\land r)} 358 | p and (q and r) is equiv. to (p and q) and r |
Distribution (1) | ( p ∧ ( q ∨ r ) ) {\displaystyle (p\land (q\lor r))} ⟚ ( ( p ∧ q ) ∨ ( p ∧ r ) ) {\displaystyle ((p\land q)\lor (p\land r))} 359 | p and (q or r) is equiv. to (p and q) or (p and r) |
Distribution (2) | ( p ∨ ( q ∧ r ) ) {\displaystyle (p\lor (q\land r))} ⟚ ( ( p ∨ q ) ∧ ( p ∨ r ) ) {\displaystyle ((p\lor q)\land (p\lor r))} 360 | p or (q and r) is equiv. to (p or q) and (p or r) |
Double Negation | p {\displaystyle p} ⟚ ¬ ¬ p {\displaystyle \neg \neg p} 361362 | p is equivalent to the negation of not p |
Transposition | ( p → q ) {\displaystyle (p\to q)} ⟚ ( ¬ q → ¬ p ) {\displaystyle (\neg q\to \neg p)} 363 | If p then q is equiv. to if not q then not p |
Material Implication | ( p → q ) {\displaystyle (p\to q)} ⟚ ( ¬ p ∨ q ) {\displaystyle (\neg p\lor q)} 364 | If p then q is equiv. to not p or q |
Material Equivalence (1) | ( p ↔ q ) {\displaystyle (p\leftrightarrow q)} ⟚ ( ( p → q ) ∧ ( q → p ) ) {\displaystyle ((p\to q)\land (q\to p))} 365 | (p iff q) is equiv. to (if p is true then q is true) and (if q is true then p is true) |
Material Equivalence (2) | ( p ↔ q ) {\displaystyle (p\leftrightarrow q)} ⟚ ( ( p ∧ q ) ∨ ( ¬ p ∧ ¬ q ) ) {\displaystyle ((p\land q)\lor (\neg p\land \neg q))} 366 | (p iff q) is equiv. to either (p and q are true) or (both p and q are false) |
Material Equivalence (3) | ( p ↔ q ) {\displaystyle (p\leftrightarrow q)} ⟚ ( ( p ∨ ¬ q ) ∧ ( ¬ p ∨ q ) ) {\displaystyle ((p\lor \neg q)\land (\neg p\lor q))} | (p iff q) is equiv to., both (p or not q is true) and (not p or q is true) |
Exportation | ( ( p ∧ q ) → r ) ⊨ ( p → ( q → r ) ) {\displaystyle ((p\land q)\to r)\models (p\to (q\to r))} 367 | from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) |
Importation | ( p → ( q → r ) ) ⊨ ( ( p ∧ q ) → r ) {\displaystyle (p\to (q\to r))\models ((p\land q)\to r)} 368 | If p then (if q then r) is equivalent to if p and q then r |
Idempotence of disjunction | p {\displaystyle p} ⟚ ( p ∨ p ) {\displaystyle (p\lor p)} 369 | p is true is equiv. to p is true or p is true |
Idempotence of conjunction | p {\displaystyle p} ⟚ ( p ∧ p ) {\displaystyle (p\land p)} 370 | p is true is equiv. to p is true and p is true |
Tertium non datur (Law of Excluded Middle) | ⊨ ( p ∨ ¬ p ) {\displaystyle \models (p\lor \neg p)} 371372 | p or not p is true |
Law of Non-Contradiction | ⊨ ¬ ( p ∧ ¬ p ) {\displaystyle \models \neg (p\land \neg p)} 373374 | p and not p is false, is a true statement |
Explosion | ( p ∧ ¬ p ) ⊨ q {\displaystyle (p\land \neg p)\models q} 375 | p and not p; therefore q |
Syntactic proof via natural deduction
Main article: Natural deduction
Natural deduction, since it is a method of syntactical proof, is specified by providing inference rules (also called rules of proof)376 for a language with the typical set of connectives { − , & , ∨ , → , ↔ } {\displaystyle \{-,\&,\lor ,\to ,\leftrightarrow \}} ; no axioms are used other than these rules.377 The rules are covered below, and a proof example is given afterwards.
Notation styles
Different authors vary to some extent regarding which inference rules they give, which will be noted. More striking to the look and feel of a proof, however, is the variation in notation styles. The § Gentzen notation, which was covered earlier for a short argument, can actually be stacked to produce large tree-shaped natural deduction proofs378379—not to be confused with "truth trees", which is another name for analytic tableaux.380 There is also a style due to Stanisław Jaśkowski, where the formulas in the proof are written inside various nested boxes,381 and there is a simplification of Jaśkowski's style due to Fredric Fitch (Fitch notation), where the boxes are simplified to simple horizontal lines beneath the introductions of suppositions, and vertical lines to the left of the lines that are under the supposition.382 Lastly, there is the only notation style which will actually be used in this article, which is due to Patrick Suppes,383 but was much popularized by E.J. Lemmon and Benson Mates.384 This method has the advantage that, graphically, it is the least intensive to produce and display, which made it a natural choice for the editor who wrote this part of the article, who did not understand the complex LaTeX commands that would be required to produce proofs in the other methods.
A proof, then, laid out in accordance with the Suppes–Lemmon notation style,385 is a sequence of lines containing sentences,386 where each sentence is either an assumption, or the result of applying a rule of proof to earlier sentences in the sequence.387 Each line of proof is made up of a sentence of proof, together with its annotation, its assumption set, and the current line number.388 The assumption set lists the assumptions on which the given sentence of proof depends, which are referenced by the line numbers.389 The annotation specifies which rule of proof was applied, and to which earlier lines, to yield the current sentence.390 See the § Natural deduction proof example.
Inference rules
Natural deduction inference rules, due ultimately to Gentzen, are given below.391 There are ten primitive rules of proof, which are the rule assumption, plus four pairs of introduction and elimination rules for the binary connectives, and the rule reductio ad adbsurdum.392 Disjunctive Syllogism can be used as an easier alternative to the proper ∨-elimination,393 and MTT and DN are commonly given rules,394 although they are not primitive.395
List of Inference RulesRule Name | Alternative names | Annotation | Assumption set | Statement |
---|---|---|---|---|
Rule of Assumptions396 | Assumption397 | A398399 | The current line number.400 | At any stage of the argument, introduce a proposition as an assumption of the argument.401402 |
Conjunction introduction | Ampersand introduction,403404 conjunction (CONJ)405406 | m, n &I407408 | The union of the assumption sets at lines m and n.409 | From φ {\displaystyle \varphi } and ψ {\displaystyle \psi } at lines m and n, infer φ & ψ {\displaystyle \varphi ~\&~\psi } .410411 |
Conjunction elimination | Simplification (S),412 ampersand elimination413414 | m &E415416 | The same as at line m.417 | From φ & ψ {\displaystyle \varphi ~\&~\psi } at line m, infer φ {\displaystyle \varphi } and ψ {\displaystyle \psi } .418419 |
Disjunction introduction420 | Addition (ADD)421 | m ∨I422423 | The same as at line m.424 | From φ {\displaystyle \varphi } at line m, infer φ ∨ ψ {\displaystyle \varphi \lor \psi } , whatever ψ {\displaystyle \psi } may be.425426 |
Disjunction elimination | Wedge elimination,427 dilemma (DL)428 | j,k,l,m,n ∨E429 | The lines j,k,l,m,n.430 | From φ ∨ ψ {\displaystyle \varphi \lor \psi } at line j, and an assumption of φ {\displaystyle \varphi } at line k, and a derivation of χ {\displaystyle \chi } from φ {\displaystyle \varphi } at line l, and an assumption of ψ {\displaystyle \psi } at line m, and a derivation of χ {\displaystyle \chi } from ψ {\displaystyle \psi } at line n, infer χ {\displaystyle \chi } .431 |
Disjunctive Syllogism | Wedge elimination (∨E),432 modus tollendo ponens (MTP)433 | m,n DS434 | The union of the assumption sets at lines m and n.435 | From φ ∨ ψ {\displaystyle \varphi \lor \psi } at line m and − φ {\displaystyle -\varphi } at line n, infer ψ {\displaystyle \psi } ; from φ ∨ ψ {\displaystyle \varphi \lor \psi } at line m and − ψ {\displaystyle -\psi } at line n, infer φ {\displaystyle \varphi } .436 |
Arrow elimination437 | Modus ponendo ponens (MPP),438439 modus ponens (MP),440441 conditional elimination | m, n →E442443 | The union of the assumption sets at lines m and n.444 | From φ → ψ {\displaystyle \varphi \to \psi } at line m, and φ {\displaystyle \varphi } at line n, infer ψ {\displaystyle \psi } .445 |
Arrow introduction446 | Conditional proof (CP),447448449 conditional introduction | n, →I (m)450451 | Everything in the assumption set at line n, excepting m, the line where the antecedent was assumed.452 | From ψ {\displaystyle \psi } at line n, following from the assumption of φ {\displaystyle \varphi } at line m, infer φ → ψ {\displaystyle \varphi \to \psi } .453 |
Reductio ad absurdum454 | Indirect Proof (IP),455 negation introduction (−I),456 negation elimination (−E)457 | m, n RAA (k)458 | The union of the assumption sets at lines m and n, excluding k (the denied assumption).459 | From a sentence and its denial460 at lines m and n, infer the denial of any assumption appearing in the proof (at line k).461 |
Double arrow introduction462 | Biconditional definition (Df ↔),463 biconditional introduction | m, n ↔ I464 | The union of the assumption sets at lines m and n.465 | From φ → ψ {\displaystyle \varphi \to \psi } and ψ → φ {\displaystyle \psi \to \varphi } at lines m and n, infer φ ↔ ψ {\displaystyle \varphi \leftrightarrow \psi } .466 |
Double arrow elimination467 | Biconditional definition (Df ↔),468 biconditional elimination | m ↔ E469 | The same as at line m.470 | From φ ↔ ψ {\displaystyle \varphi \leftrightarrow \psi } at line m, infer either φ → ψ {\displaystyle \varphi \to \psi } or ψ → φ {\displaystyle \psi \to \varphi } .471 |
Double negation472473 | Double negation elimination | m DN474 | The same as at line m.475 | From − − φ {\displaystyle --\varphi } at line m, infer φ {\displaystyle \varphi } .476 |
Modus tollendo tollens477 | Modus tollens (MT)478 | m, n MTT479 | The union of the assumption sets at lines m and n.480 | From φ → ψ {\displaystyle \varphi \to \psi } at line m, and − ψ {\displaystyle -\psi } at line n, infer − φ {\displaystyle -\varphi } .481 |
Natural deduction proof example
The proof below482 derives − P {\displaystyle -P} from P → Q {\displaystyle P\to Q} and − Q {\displaystyle -Q} using only MPP and RAA, which shows that MTT is not a primitive rule, since it can be derived from those two other rules.
Derivation of MTT from MPP and RAAAssumption set | Line number | Sentence of proof | Annotation |
---|---|---|---|
1 | 1 | P → Q {\displaystyle P\to Q} | A |
2 | 2 | − Q {\displaystyle -Q} | A |
3 | 3 | P {\displaystyle P} | A |
1, 3 | 4 | Q {\displaystyle Q} | 1, 3 →E |
1, 2 | 5 | − P {\displaystyle -P} | 2, 4 RAA |
Syntactic proof via axioms
Main article: Hilbert system
It is possible to perform proofs axiomatically, which means that certain tautologies are taken as self-evident and various others are deduced from them using modus ponens as an inference rule, as well as a rule of substitution, which permits replacing any well-formed formula with any substitution-instance of it.483 Alternatively, one uses axiom schemas instead of axioms, and no rule of substitution is used.484
This section gives the axioms of some historically notable axiomatic systems for propositional logic. For more examples, as well as metalogical theorems that are specific to such axiomatic systems (such as their completeness and consistency), see the article Axiomatic system (logic).
Frege's Begriffsschrift
Although axiomatic proof has been used since the famous Ancient Greek textbook, Euclid's Elements of Geometry, in propositional logic it dates back to Gottlob Frege's 1879 Begriffsschrift.485486 Frege's system used only implication and negation as connectives.487 It had six axioms:488489490
- Proposition 1: a → ( b → a ) {\displaystyle a\to (b\to a)}
- Proposition 2: ( c → ( b → a ) ) → ( ( c → b ) → ( c → a ) ) {\displaystyle (c\to (b\to a))\to ((c\to b)\to (c\to a))}
- Proposition 8: ( d → ( b → a ) ) → ( b → ( d → a ) ) {\displaystyle (d\to (b\to a))\to (b\to (d\to a))}
- Proposition 28: ( b → a ) → ( ¬ a → ¬ b ) {\displaystyle (b\to a)\to (\neg a\to \neg b)}
- Proposition 31: ¬ ¬ a → a {\displaystyle \neg \neg a\to a}
- Proposition 41: a → ¬ ¬ a {\displaystyle a\to \neg \neg a}
These were used by Frege together with modus ponens and a rule of substitution (which was used but never precisely stated) to yield a complete and consistent axiomatization of classical truth-functional propositional logic.491
Łukasiewicz's P2
Jan Łukasiewicz showed that, in Frege's system, "the third axiom is superfluous since it can be derived from the preceding two axioms, and that the last three axioms can be replaced by the single sentence C C N p N q C p q {\displaystyle CCNpNqCpq} ".492 Which, taken out of Łukasiewicz's Polish notation into modern notation, means ( ¬ p → ¬ q ) → ( p → q ) {\displaystyle (\neg p\rightarrow \neg q)\rightarrow (p\rightarrow q)} . Hence, Łukasiewicz is credited493 with this system of three axioms:
- p → ( q → p ) {\displaystyle p\to (q\to p)}
- ( p → ( q → r ) ) → ( ( p → q ) → ( p → r ) ) {\displaystyle (p\to (q\to r))\to ((p\to q)\to (p\to r))}
- ( ¬ p → ¬ q ) → ( q → p ) {\displaystyle (\neg p\to \neg q)\to (q\to p)}
Just like Frege's system, this system uses a substitution rule and uses modus ponens as an inference rule.494 The exact same system was given (with an explicit substitution rule) by Alonzo Church,495 who referred to it as the system P2496497 and helped popularize it.498
Schematic form of P2
One may avoid using the rule of substitution by giving the axioms in schematic form, using them to generate an infinite set of axioms. Hence, using Greek letters to represent schemata (metalogical variables that may stand for any well-formed formulas), the axioms are given as:499500
- φ → ( ψ → φ ) {\displaystyle \varphi \to (\psi \to \varphi )}
- ( φ → ( ψ → χ ) ) → ( ( φ → ψ ) → ( φ → χ ) ) {\displaystyle (\varphi \to (\psi \to \chi ))\to ((\varphi \to \psi )\to (\varphi \to \chi ))}
- ( ¬ φ → ¬ ψ ) → ( ψ → φ ) {\displaystyle (\neg \varphi \to \neg \psi )\to (\psi \to \varphi )}
The schematic version of P2 is attributed to John von Neumann,501 and is used in the Metamath "set.mm" formal proof database.502 It has also been attributed to Hilbert,503 and named H {\displaystyle {\mathcal {H}}} in this context.504
Proof example in P2
As an example, a proof of A → A {\displaystyle A\to A} in P2 is given below. First, the axioms are given names:
(A1) ( p → ( q → p ) ) {\displaystyle (p\to (q\to p))} (A2) ( ( p → ( q → r ) ) → ( ( p → q ) → ( p → r ) ) ) {\displaystyle ((p\to (q\to r))\to ((p\to q)\to (p\to r)))} (A3) ( ( ¬ p → ¬ q ) → ( q → p ) ) {\displaystyle ((\neg p\to \neg q)\to (q\to p))}And the proof is as follows:
- A → ( ( B → A ) → A ) {\displaystyle A\to ((B\to A)\to A)} (instance of (A1))
- ( A → ( ( B → A ) → A ) ) → ( ( A → ( B → A ) ) → ( A → A ) ) {\displaystyle (A\to ((B\to A)\to A))\to ((A\to (B\to A))\to (A\to A))} (instance of (A2))
- ( A → ( B → A ) ) → ( A → A ) {\displaystyle (A\to (B\to A))\to (A\to A)} (from (1) and (2) by modus ponens)
- A → ( B → A ) {\displaystyle A\to (B\to A)} (instance of (A1))
- A → A {\displaystyle A\to A} (from (4) and (3) by modus ponens)
Solvers
One notable difference between propositional calculus and predicate calculus is that satisfiability of a propositional formula is decidable.505: 81 Deciding satisfiability of propositional logic formulas is an NP-complete problem. However, practical methods exist (e.g., DPLL algorithm, 1962; Chaff algorithm, 2001) that are very fast for many useful cases. Recent work has extended the SAT solver algorithms to work with propositions containing arithmetic expressions; these are the SMT solvers.
See also
- Philosophy portal
Higher logical levels
Related topics
- Boolean algebra (logic)
- Boolean algebra (structure)
- Boolean algebra topics
- Boolean domain
- Boolean function
- Boolean-valued function
- Categorical logic
- Combinational logic
- Combinatory logic
- Conceptual graph
- Disjunctive syllogism
- Entitative graph
- Equational logic
- Existential graph
- Implicational propositional calculus
- Intuitionistic propositional calculus
- Jean Buridan
- Laws of Form
- List of logic symbols
- Logical graph
- Logical NOR
- Logical value
- Mathematical logic
- Operation (mathematics)
- Paul of Venice
- Peirce's law
- Peter of Spain (author)
- Propositional formula
- Symmetric difference
- Tautology (rule of inference)
- Truth function
- Truth table
- Walter Burley
- William of Sherwood
Notes
Further reading
- Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY.
- Chang, C.C. and Keisler, H.J. (1973), Model Theory, North-Holland, Amsterdam, Netherlands.
- Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
- Korfhage, Robert R. (1974), Discrete Computational Structures, Academic Press, New York, NY.
- Lambek, J. and Scott, P.J. (1986), Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK.
- Mendelson, Elliot (1964), Introduction to Mathematical Logic, D. Van Nostrand Company.
Related works
- Hofstadter, Douglas (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books. ISBN 978-0-465-02656-2.
External links
Wikimedia Commons has media related to Propositional logic.- Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025.
- Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025.
- Formal Predicate Calculus, contains a systematic formal development with axiomatic proof
- forall x: an introduction to formal logic, by P.D. Magnus, covers formal semantics and proof theory for sentential logic.
- Chapter 2 / Propositional Logic from Logic In Action
- Propositional sequent calculus prover on Project Nayuki. (note: implication can be input in the form !X|Y, and a sequent can be a single formula prefixed with > and having no commas)
- Propositional Logic - A Generative Grammar
- A Propositional Calculator that helps to understand simple expressions
References
Many sources write this with a definite article, as the propositional calculus, while others just call it propositional calculus with no article. ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Weisstein, Eric W. "Propositional Calculus". mathworld.wolfram.com. Retrieved 22 March 2024. https://mathworld.wolfram.com/ ↩
Hilbert, D.; Ackermann, W. (1950). Principles of Mathematical Logic. Chelsea Publishing Company. OCLC 372927. /wiki/OCLC_(identifier) ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Zeroth-order logic is sometimes used to denote a quantifier-free predicate logic. That is, propositional logic extended with functions, relations, and constants.[5] /wiki/Quantifier_(logic) ↩
Andrews, Peter B. (2002), An introduction to mathematical logic and type theory: to truth through proof, Applied Logic Series, vol. 27 (Second ed.), Kluwer Academic Publishers, Dordrecht, p. 201, doi:10.1007/978-94-015-9934-4, ISBN 1-4020-0763-9, MR 1932484 1-4020-0763-9 ↩
Bělohlávek, Radim; Dauben, Joseph Warren; Klir, George J. (2017). Fuzzy logic and mathematics: a historical perspective. New York, NY, United States of America: Oxford University Press. p. 463. ISBN 978-0-19-020001-5. 978-0-19-020001-5 ↩
Manzano, María (2005). Extensions of first order logic. Cambridge tracts in theoretical computer science (Digitally printed first paperback version ed.). Cambridge: Cambridge University Press. p. 180. ISBN 978-0-521-35435-6. 978-0-521-35435-6 ↩
Matthes, Ralph (1999). Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive Types. Herbert Utz Verlag. p. 23. ISBN 978-3-89675-578-0. 978-3-89675-578-0 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
McGrath, Matthew; Frank, Devin (2023), "Propositions", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Winter 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/win2023/entries/propositions/ ↩
"Predicate Logic". www3.cs.stonybrook.edu. Retrieved 22 March 2024. https://www3.cs.stonybrook.edu/~skiena/113/lectures/lecture26/lecture26.html ↩
"Philosophy 404: Lecture Five". www.webpages.uidaho.edu. Retrieved 22 March 2024. https://www.webpages.uidaho.edu/~morourke/404-phil/Summer-99/Lecture%20Notes/5.htm ↩
"3.1 Propositional Logic". www.teach.cs.toronto.edu. Retrieved 22 March 2024. https://www.teach.cs.toronto.edu/~csc110y/fall/notes/03-logic/01-propositional-logic.html ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
"Propositional Logic". www.cs.miami.edu. Retrieved 22 March 2024. https://www.cs.miami.edu/home/geoff/Courses/CSC648-12S/Content/Propositional.shtml ↩
For propositional logic, the formal language used is a propositional language. ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Not to be confused with the formal language's alphabet. /wiki/Formal_language#Words_over_an_alphabet ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
See all possible connectives on truth-functional propositional logic with some of their properties. /wiki/Truth_table#Sentential_operator_truth_tables ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. p. 9. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
Weisstein, Eric W. "Connective". mathworld.wolfram.com. Retrieved 22 March 2024. https://mathworld.wolfram.com/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
"Propositional Logic | Brilliant Math & Science Wiki". brilliant.org. Retrieved 20 August 2020. https://brilliant.org/wiki/propositional-logic/ ↩
Bělohlávek, Radim; Dauben, Joseph Warren; Klir, George J. (2017). Fuzzy logic and mathematics: a historical perspective. New York, NY, United States of America: Oxford University Press. p. 463. ISBN 978-0-19-020001-5. 978-0-19-020001-5 ↩
Manzano, María (2005). Extensions of first order logic. Cambridge tracts in theoretical computer science (Digitally printed first paperback version ed.). Cambridge: Cambridge University Press. p. 180. ISBN 978-0-521-35435-6. 978-0-521-35435-6 ↩
Bobzien, Susanne (1 January 2016). "Ancient Logic". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/spr2016/entries/logic-ancient/ ↩
"Propositional Logic | Internet Encyclopedia of Philosophy". Retrieved 20 August 2020. https://iep.utm.edu/prop-log/ ↩
Bobzien, Susanne (2020), "Ancient Logic", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2020 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/sum2020/entries/logic-ancient/ ↩
Peckhaus, Volker (1 January 2014). "Leibniz's Influence on 19th Century Logic". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/spr2014/entries/leibniz-logic-influence/ ↩
Hurley, Patrick (2007). A Concise Introduction to Logic 10th edition. Wadsworth Publishing. p. 392. ↩
Beth, Evert W.; "Semantic entailment and formal derivability", series: Mededlingen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, Nieuwe Reeks, vol. 18, no. 13, Noord-Hollandsche Uitg. Mij., Amsterdam, 1955, pp. 309–42. Reprinted in Jaakko Intikka (ed.) The Philosophy of Mathematics, Oxford University Press, 1969 ↩
Truth in Frege https://web.archive.org/web/20120807235445/http://frege.brown.edu/heck/pdf/unpublished/TruthInFrege.pdf ↩
"Russell: the Journal of Bertrand Russell Studies".{{cite web}}: CS1 maint: url-status (link) http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=1219&context=russelljournal ↩
Truth in Frege https://web.archive.org/web/20120807235445/http://frege.brown.edu/heck/pdf/unpublished/TruthInFrege.pdf ↩
Anellis, Irving H. (2012). "Peirce's Truth-functional Analysis and the Origin of the Truth Table". History and Philosophy of Logic. 33: 87–97. doi:10.1080/01445340.2011.621702. S2CID 170654885. /wiki/Irving_Anellis ↩
"Russell: the Journal of Bertrand Russell Studies".{{cite web}}: CS1 maint: url-status (link) http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=1219&context=russelljournal ↩
"Russell: the Journal of Bertrand Russell Studies".{{cite web}}: CS1 maint: url-status (link) http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=1219&context=russelljournal ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
"Part2Mod1: LOGIC: Statements, Negations, Quantifiers, Truth Tables". www.math.fsu.edu. Retrieved 22 March 2024. https://www.math.fsu.edu/~wooland/hm2ed/Part2Module1/Part2Module1.html ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
"Lecture Notes on Logical Organization and Critical Thinking". www2.hawaii.edu. Retrieved 22 March 2024. https://www2.hawaii.edu/~sugihara/courses/HCU2016s_TC/notes/CriticalThinking.html ↩
"Logical Connectives". sites.millersville.edu. Retrieved 22 March 2024. https://sites.millersville.edu/bikenaga/math-proof/logical-connectives/logical-connectives.html ↩
"Lecture1". www.cs.columbia.edu. Retrieved 22 March 2024. https://www.cs.columbia.edu/~rgu/courses/e6998/fall2018/Lecture1.html ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
"Introduction to Logic - Chapter 2". intrologic.stanford.edu. Retrieved 22 March 2024. http://intrologic.stanford.edu/chapters/chapter_02.html ↩
"Introduction to Logic - Chapter 2". intrologic.stanford.edu. Retrieved 22 March 2024. http://intrologic.stanford.edu/chapters/chapter_02.html ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
"Introduction to Logic - Chapter 2". intrologic.stanford.edu. Retrieved 22 March 2024. http://intrologic.stanford.edu/chapters/chapter_02.html ↩
"Watson". watson.latech.edu. Retrieved 22 March 2024. http://watson.latech.edu/book/intelligence/intelligenceApproaches2b1.html ↩
"Introduction to Theoretical Computer Science, Chapter 1". www.cs.odu.edu. Retrieved 22 March 2024. https://www.cs.odu.edu/~toida/nerzic/390teched/math/logic.html ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
"3.1 Propositional Logic". www.teach.cs.toronto.edu. Retrieved 22 March 2024. https://www.teach.cs.toronto.edu/~csc110y/fall/notes/03-logic/01-propositional-logic.html ↩
The "or both" makes it clear[34] that it's a logical disjunction, not an exclusive or, which is more common in English. ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
"Introduction to Logic - Chapter 2". intrologic.stanford.edu. Retrieved 22 March 2024. http://intrologic.stanford.edu/chapters/chapter_02.html ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
McGrath, Matthew; Frank, Devin (2023), "Propositions", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Winter 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/win2023/entries/propositions/ ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
The set of premises may be the empty set;[37][38] an argument from an empty set of premises is valid if, and only if, the conclusion is a tautology.[37][38] /wiki/Empty_set ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Stojnić, Una (2017). "One's Modus Ponens: Modality, Coherence and Logic". Philosophy and Phenomenological Research. 95 (1): 167–214. doi:10.1111/phpr.12307. ISSN 0031-8205. JSTOR 48578954. https://www.jstor.org/stable/48578954 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Dutilh Novaes, Catarina (2022), "Argument and Argumentation", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Fall 2022 ed.), Metaphysics Research Lab, Stanford University, retrieved 5 April 2024 https://plato.stanford.edu/archives/fall2022/entries/argument/ ↩
"Validity and Soundness | Internet Encyclopedia of Philosophy". Retrieved 5 April 2024. https://iep.utm.edu/val-snd/ ↩
"Validity and Soundness | Internet Encyclopedia of Philosophy". Retrieved 5 April 2024. https://iep.utm.edu/val-snd/ ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
"Validity and Soundness | Internet Encyclopedia of Philosophy". Retrieved 5 April 2024. https://iep.utm.edu/val-snd/ ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
"Validity and Soundness | Internet Encyclopedia of Philosophy". Retrieved 5 April 2024. https://iep.utm.edu/val-snd/ ↩
"Validity and Soundness | Internet Encyclopedia of Philosophy". Retrieved 5 April 2024. https://iep.utm.edu/val-snd/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
Restall, Greg (2018), "Substructural Logics", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Spring 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2018/entries/logic-substructural/ ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
"Compactness | Internet Encyclopedia of Philosophy". Retrieved 22 March 2024. https://iep.utm.edu/compactness/ ↩
"Lecture Topics for Discrete Math Students". math.colorado.edu. Retrieved 22 March 2024. https://math.colorado.edu/~kearnes/Teaching/Courses/F23/discretel.html ↩
"Compactness | Internet Encyclopedia of Philosophy". Retrieved 22 March 2024. https://iep.utm.edu/compactness/ ↩
The turnstile, for syntactic consequence, is of lower precedence than the comma, which represents premise combination, which in turn is of lower precedence than the arrow, used for material implication; so no parentheses are needed to interpret this formula.[44] /wiki/Order_of_operations ↩
Paseau, Alexander; Pregel, Fabian (2023), "Deductivism in the Philosophy of Mathematics", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Fall 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/fall2023/entries/deductivism-mathematics/ ↩
"Lecture Topics for Discrete Math Students". math.colorado.edu. Retrieved 22 March 2024. https://math.colorado.edu/~kearnes/Teaching/Courses/F23/discretel.html ↩
"Compactness | Internet Encyclopedia of Philosophy". Retrieved 22 March 2024. https://iep.utm.edu/compactness/ ↩
"Compactness | Internet Encyclopedia of Philosophy". Retrieved 22 March 2024. https://iep.utm.edu/compactness/ ↩
Demey, Lorenz; Kooi, Barteld; Sack, Joshua (2023), "Logic and Probability", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Fall 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/fall2023/entries/logic-probability/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Weisstein, Eric W. "Connective". mathworld.wolfram.com. Retrieved 22 March 2024. https://mathworld.wolfram.com/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Humberstone, Lloyd (2011). The connectives. Cambridge, Mass: MIT Press. pp. 118, 702. ISBN 978-0-262-01654-4. OCLC 694679197. 978-0-262-01654-4 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Demey, Lorenz; Kooi, Barteld; Sack, Joshua (2023), "Logic and Probability", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Fall 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/fall2023/entries/logic-probability/ ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Humberstone, Lloyd (2011). The connectives. Cambridge, Mass: MIT Press. pp. 118, 702. ISBN 978-0-262-01654-4. OCLC 694679197. 978-0-262-01654-4 ↩
A very general and abstract syntax is given here, following the notation in the SEP,[2] but including the third definition, which is very commonly given explicitly by other sources, such as Gillon,[14] Bostock,[37] Allen & Hand,[38] and many others. As noted elsewhere in the article, languages variously compose their set of atomic propositional variables from uppercase or lowercase letters (often focusing on P/p, Q/q, and R/r), with or without subscript numerals; and in their set of connectives, they may include either the full set of five typical connectives, { ¬ , ∧ , ∨ , → , ↔ } {\displaystyle \{\neg ,\land ,\lor ,\to ,\leftrightarrow \}} , or any of the truth-functionally complete subsets of it. (And, of course, they may also use any of the notational variants of these connectives.) ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Note that the phrase "principle of composition" has referred to other things in other contexts, and even in the context of logic, since Bertrand Russell used it to refer to the principle that "a proposition which implies each of two propositions implies them both."[52] /wiki/Bertrand_Russell ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Makridis, Odysseus (2022). "Symbolic Logic". Palgrave Philosophy Today: 87. doi:10.1007/978-3-030-67396-3. ISBN 978-3-030-67395-6. ISSN 2947-9339. 978-3-030-67395-6 ↩
Hodges, Wilfrid (1977). Logic. Harmondsworth; New York: Penguin. pp. 80–85. ISBN 978-0-14-021985-2. 978-0-14-021985-2 ↩
Hansson, Sven Ove; Hendricks, Vincent F. (2018). Introduction to formal philosophy. Springer undergraduate texts in philosophy. Cham: Springer. p. 38. ISBN 978-3-030-08454-7. 978-3-030-08454-7 ↩
Hansson, Sven Ove; Hendricks, Vincent F. (2018). Introduction to formal philosophy. Springer undergraduate texts in philosophy. Cham: Springer. p. 38. ISBN 978-3-030-08454-7. 978-3-030-08454-7 ↩
Hodges, Wilfrid (1977). Logic. Harmondsworth; New York: Penguin. pp. 80–85. ISBN 978-0-14-021985-2. 978-0-14-021985-2 ↩
Hansson, Sven Ove; Hendricks, Vincent F. (2018). Introduction to formal philosophy. Springer undergraduate texts in philosophy. Cham: Springer. p. 38. ISBN 978-3-030-08454-7. 978-3-030-08454-7 ↩
Ayala-Rincón, Mauricio; de Moura, Flávio L.C. (2017). Applied Logic for Computer Scientists. Undergraduate Topics in Computer Science. Springer. p. 2. doi:10.1007/978-3-319-51653-0. ISBN 978-3-319-51651-6. 978-3-319-51651-6 ↩
Hansson, Sven Ove; Hendricks, Vincent F. (2018). Introduction to formal philosophy. Springer undergraduate texts in philosophy. Cham: Springer. p. 38. ISBN 978-3-030-08454-7. 978-3-030-08454-7 ↩
Lande, Nelson P. (2013). Classical logic and its rabbit holes: a first course. Indianapolis, Ind: Hackett Publishing Co., Inc. p. 20. ISBN 978-1-60384-948-7. 978-1-60384-948-7 ↩
Lande, Nelson P. (2013). Classical logic and its rabbit holes: a first course. Indianapolis, Ind: Hackett Publishing Co., Inc. p. 20. ISBN 978-1-60384-948-7. 978-1-60384-948-7 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Goldrei, Derek (2005). Propositional and predicate calculus: a model of argument. London: Springer. p. 69. ISBN 978-1-85233-921-0. 978-1-85233-921-0 ↩
"Propositional Logic". www.cs.rochester.edu. Retrieved 22 March 2024. https://www.cs.rochester.edu/u/nelson/courses/csc_173/proplogic/expressions.html ↩
"Propositional calculus". www.cs.cornell.edu. Retrieved 22 March 2024. https://www.cs.cornell.edu/courses/cs671/1999fa/typed%20logic/node18.html ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Humberstone, Lloyd (2011). The connectives. Cambridge, Mass: MIT Press. pp. 118, 702. ISBN 978-0-262-01654-4. OCLC 694679197. 978-0-262-01654-4 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Shramko, Yaroslav; Wansing, Heinrich (2021), "Truth Values", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Winter 2021 ed.), Metaphysics Research Lab, Stanford University, retrieved 23 March 2024 https://plato.stanford.edu/archives/win2021/entriesruth-values/ ↩
Metcalfe, David; Powell, John (2011). "Should doctors spurn Wikipedia?". Journal of the Royal Society of Medicine. 104 (12): 488–489. doi:10.1258/jrsm.2011.110227. ISSN 0141-0768. PMC 3241521. PMID 22179287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241521 ↩
Ayers, Phoebe; Matthews, Charles; Yates, Ben (2008). How Wikipedia works: and how you can be a part of it. San Francisco: No Starch Press. p. 22. ISBN 978-1-59327-176-3. OCLC 185698411. 978-1-59327-176-3 ↩
Shramko, Yaroslav; Wansing, Heinrich (2021), "Truth Values", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Winter 2021 ed.), Metaphysics Research Lab, Stanford University, retrieved 23 March 2024 https://plato.stanford.edu/archives/win2021/entriesruth-values/ ↩
Shapiro, Stewart; Kouri Kissel, Teresa (2024), "Classical Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 25 March 2024 https://plato.stanford.edu/archives/spr2024/entries/logic-classical/ ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Landman, Fred (1991). "Structures for Semantics". Studies in Linguistics and Philosophy. 45: 127. doi:10.1007/978-94-011-3212-1. ISBN 978-0-7923-1240-6. ISSN 0924-4662. 978-0-7923-1240-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Fitting, Melvin (6 December 2012). First-Order Logic and Automated Theorem Proving. Springer Science & Business Media. p. 16. ISBN 978-1-4612-2360-3. 978-1-4612-2360-3 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
The name "interpretation" is used by some authors and the name "case" by other authors. This article will be indifferent and use either, since it is collaboratively edited and there is no consensus about which terminology to adopt. ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Nascimento, Marco Antonio Chaer (2015). Frontiers in quantum methods and applications in chemistry and physics: selected proceedings of QSCP-XVIII (Paraty, Brazil, December, 2013). Progress in theoretical chemistry and physics. International Workshop on Quantum Systems in Chemistry and Physics. Cham: Springer. p. 255. ISBN 978-3-319-14397-2. 978-3-319-14397-2 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Restall, Greg; Standefer, Shawn (3 January 2023). Logical Methods. MIT Press. p. 76. ISBN 978-0-262-54484-9. 978-0-262-54484-9 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Landman, Fred (1991). "Structures for Semantics". Studies in Linguistics and Philosophy. 45: 127. doi:10.1007/978-94-011-3212-1. ISBN 978-0-7923-1240-6. ISSN 0924-4662. 978-0-7923-1240-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Landman, Fred (1991). "Structures for Semantics". Studies in Linguistics and Philosophy. 45: 127. doi:10.1007/978-94-011-3212-1. ISBN 978-0-7923-1240-6. ISSN 0924-4662. 978-0-7923-1240-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Landman, Fred (1991). "Structures for Semantics". Studies in Linguistics and Philosophy. 45: 127. doi:10.1007/978-94-011-3212-1. ISBN 978-0-7923-1240-6. ISSN 0924-4662. 978-0-7923-1240-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
"3.1 Propositional Logic". www.teach.cs.toronto.edu. Retrieved 22 March 2024. https://www.teach.cs.toronto.edu/~csc110y/fall/notes/03-logic/01-propositional-logic.html ↩
Davis, Steven; Gillon, Brendan S., eds. (2004). Semantics: a reader. New York: Oxford University Press. ISBN 978-0-19-513697-5. 978-0-19-513697-5 ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
"Propositional Logic". www.cs.miami.edu. Retrieved 22 March 2024. https://www.cs.miami.edu/home/geoff/Courses/CSC648-12S/Content/Propositional.shtml ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Aloni, Maria (2023), "Disjunction", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 23 March 2024 https://plato.stanford.edu/archives/spr2023/entries/disjunction/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Makridis, Odysseus (2022). Symbolic logic. Palgrave philosophy today. Cham, Switzerland: Palgrave Macmillan. p. 119. ISBN 978-3-030-67395-6. 978-3-030-67395-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Burgess, John P. (2009). Philosophical logic. Princeton foundations of contemporary philosophy. Princeton: Princeton University Press. p. 5. ISBN 978-0-691-13789-6. OCLC 276141382. 978-0-691-13789-6 ↩
Beall, J. C.; Restall, Greg (2006). Logical Pluralism. Clarendon Press. p. 38. ISBN 978-0-19-928840-3. 978-0-19-928840-3 ↩
Beall, J. C.; Restall, Greg (2006). Logical Pluralism. Clarendon Press. p. 38. ISBN 978-0-19-928840-3. 978-0-19-928840-3 ↩
Levin, Oscar. Propositional Logic. https://discrete.openmathbooks.org/dmoi3/sec_propositional.html ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
A truth-functionally complete set of connectives[2] is also called simply functionally complete, or adequate for truth-functional logic,[39] or expressively adequate,[77] or simply adequate.[39][77] ↩
Weisstein, Eric W. "Propositional Calculus". mathworld.wolfram.com. Retrieved 22 March 2024. https://mathworld.wolfram.com/ ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
See a table of all 16 bivalent truth functions. /wiki/Truth_table#Overview_table ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Cunningham, Daniel W. (2016). Set theory: a first course. Cambridge mathematical textbooks. New York, NY: Cambridge University Press. ISBN 978-1-107-12032-7. 978-1-107-12032-7 ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
Genesereth, Michael; Kao, Eric J. (2017). Introduction to Logic. Synthesis Lectures on Computer Science. Cham: Springer International Publishing. p. 18. doi:10.1007/978-3-031-01801-5. ISBN 978-3-031-00673-9. 978-3-031-00673-9 ↩
Some of these definitions use the word "interpretation", and speak of sentences/formulas being true or false "under" it, and some will use the word "case", and speak of sentences/formulas being true or false "in" it. Published reliable sources (WP:RS) have used both kinds of terminological convention, although usually a given author will use only one of them. Since this article is collaboratively edited and there is no consensus about which convention to use, these variations in terminology have been left standing. /wiki/Wikipedia:RS ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Conventionally ⊨ φ {\displaystyle \models \varphi } , with nothing to the left of the turnstile, is used to symbolize a tautology. It may be interpreted as saying that φ {\displaystyle \varphi } is a semantic consequence of the empty set of formulae, i.e., { } ⊨ φ {\displaystyle \{\}\models \varphi } , but with the empty brackets omitted for simplicity;[37] which is just the same as to say that it is a tautology, i.e., that there is no interpretation under which it is false.[37] ↩
"6. Semantics of Propositional Logic — Logic and Proof 3.18.4 documentation". leanprover.github.io. Retrieved 28 March 2024. https://leanprover.github.io/logic_and_proof/semantics_of_propositional_logic.html ↩
"Knowledge Representation and Reasoning: Basics of Logics". www.emse.fr. Retrieved 28 March 2024. https://www.emse.fr/~zimmermann/Teaching/KRR/generalities.html ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Chowdhary, K.R. (2020). "Fundamentals of Artificial Intelligence". SpringerLink: 31–34. doi:10.1007/978-81-322-3972-7. ISBN 978-81-322-3970-3. 978-81-322-3970-3 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
"1.4: Tautologies and contradictions". Mathematics LibreTexts. 9 September 2021. Retrieved 29 March 2024. https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/01%3A_Symbolic_language/1.04%3A_Tautologies_and_contradictions ↩
Sylvestre, Jeremy. EF Tautologies and contradictions. https://sites.ualberta.ca/~jsylvest/books/EF/section-symb-lang-taut-contra.html ↩
DeLancey, Craig; Woodrow, Jenna (2017). Elementary Formal Logic (1 ed.). Pressbooks. https://intrologicimport.pressbooks.tru.ca/chapter/9-if-and-only-if-using-theorems-a-concise-introduction-to-logic/ ↩
Klement, Kevin C. "Propositional Logic". In Fieser, James; Dowden, Bradley (eds.). Internet Encyclopedia of Philosophy. Retrieved 7 April 2025. https://iep.utm.edu/propositional-logic-sentential-logic/ ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Dix, J.; Fisher, Michael; Novak, Peter, eds. (2010). Computational logic in multi-agent systems: 10th international workshop, CLIMA X, Hamburg, Germany, September 9-10, 2009: revised selected and invited papers. Lecture notes in computer science. Berlin; New York: Springer. p. 49. ISBN 978-3-642-16866-6. OCLC 681481210. 978-3-642-16866-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Prakken, Henry; Bistarelli, Stefano; Santini, Francesco; Taticchi, Carlo, eds. (2020). Computational models of argument: proceedings of comma 2020. Frontiers in artificial intelligence and applications. Washington: IOS Press. p. 252. ISBN 978-1-64368-106-1. 978-1-64368-106-1 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Awodey, Steve; Arnold, Greg Frost-, eds. (2024). Rudolf Carnap: studies in semantics: the collected works of rudolf carnap, volume 7. New York: Oxford University Press. pp. xxvii. ISBN 978-0-19-289487-8. 978-0-19-289487-8 ↩
Harel, Guershon; Stylianides, Andreas J., eds. (2018). Advances in Mathematics Education Research on Proof and Proving: An International Perspective. ICME-13 Monographs (1st ed. 2018 ed.). Cham: Springer International Publishing : Imprint: Springer. p. 181. ISBN 978-3-319-70996-3. 978-3-319-70996-3 ↩
DeLancey, Craig (2017). "A Concise Introduction to Logic: §4. Proofs". Milne Publishing. Retrieved 23 March 2024. https://milnepublishing.geneseo.edu/concise-introduction-to-logic/chapter/4-proofs/ ↩
Ferguson, Thomas Macaulay; Priest, Graham (23 June 2016), "semantic consequence", A Dictionary of Logic, Oxford University Press, doi:10.1093/acref/9780191816802.001.0001, ISBN 978-0-19-181680-2, retrieved 23 March 2024 978-0-19-181680-2 ↩
Ferguson, Thomas Macaulay; Priest, Graham (23 June 2016), "syntactic consequence", A Dictionary of Logic, Oxford University Press, doi:10.1093/acref/9780191816802.001.0001, ISBN 978-0-19-181680-2, retrieved 23 March 2024 978-0-19-181680-2 ↩
Cook, Roy T. (2009). A dictionary of philosophical logic. Edinburgh: Edinburgh University Press. pp. 82, 176. ISBN 978-0-7486-2559-8. 978-0-7486-2559-8 ↩
Cook, Roy T. (2009). A dictionary of philosophical logic. Edinburgh: Edinburgh University Press. pp. 82, 176. ISBN 978-0-7486-2559-8. 978-0-7486-2559-8 ↩
"Truth table | Boolean, Operators, Rules | Britannica". www.britannica.com. 14 March 2024. Retrieved 23 March 2024. https://www.britannica.com/topic/truth-table ↩
"MathematicalLogic". www.cs.yale.edu. Retrieved 23 March 2024. https://www.cs.yale.edu/homes/aspnes/pinewiki/MathematicalLogic.html ↩
"Analytic Tableaux". www3.cs.stonybrook.edu. Retrieved 23 March 2024. https://www3.cs.stonybrook.edu/~skiena/113/lectures/lecture5/lecture5.html ↩
"Formal logic - Semantic Tableaux, Proofs, Rules | Britannica". www.britannica.com. Retrieved 23 March 2024. https://www.britannica.com/topic/formal-logic/Semantic-tableaux ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Cook, Roy T. (2009). A dictionary of philosophical logic. Edinburgh: Edinburgh University Press. pp. 82, 176. ISBN 978-0-7486-2559-8. 978-0-7486-2559-8 ↩
"Axiomatic method | Logic, Proofs & Foundations | Britannica". www.britannica.com. Retrieved 23 March 2024. https://www.britannica.com/science/axiomatic-method ↩
"Propositional Logic". mally.stanford.edu. Retrieved 23 March 2024. https://mally.stanford.edu/tutorial/sentential.html ↩
"Natural Deduction | Internet Encyclopedia of Philosophy". Retrieved 23 March 2024. https://iep.utm.edu/natural-deduction/ ↩
"Natural Deduction | Internet Encyclopedia of Philosophy". Retrieved 23 March 2024. https://iep.utm.edu/natural-deduction/ ↩
Weisstein, Eric W. "Sequent Calculus". mathworld.wolfram.com. Retrieved 23 March 2024. https://mathworld.wolfram.com/ ↩
Weisstein, Eric W. "Sequent Calculus". mathworld.wolfram.com. Retrieved 23 March 2024. https://mathworld.wolfram.com/ ↩
"Interactive Tutorial of the Sequent Calculus". logitext.mit.edu. Retrieved 23 March 2024. http://logitext.mit.edu/tutorial ↩
"MathematicalLogic". www.cs.yale.edu. Retrieved 23 March 2024. https://www.cs.yale.edu/homes/aspnes/pinewiki/MathematicalLogic.html ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
"MathematicalLogic". www.cs.yale.edu. Retrieved 23 March 2024. https://www.cs.yale.edu/homes/aspnes/pinewiki/MathematicalLogic.html ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
"1.4: Tautologies and contradictions". Mathematics LibreTexts. 9 September 2021. Retrieved 29 March 2024. https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/01%3A_Symbolic_language/1.04%3A_Tautologies_and_contradictions ↩
Sylvestre, Jeremy. EF Tautologies and contradictions. https://sites.ualberta.ca/~jsylvest/books/EF/section-symb-lang-taut-contra.html ↩
DeLancey, Craig; Woodrow, Jenna (2017). Elementary Formal Logic (1 ed.). Pressbooks. https://intrologicimport.pressbooks.tru.ca/chapter/9-if-and-only-if-using-theorems-a-concise-introduction-to-logic/ ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Kleene, Stephen Cole (2002). Mathematical logic (Dover ed.). Mineola, N.Y: Dover Publications. ISBN 978-0-486-42533-7. 978-0-486-42533-7 ↩
Hunter, Geoffrey (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press. ISBN 0-520-02356-0. 0-520-02356-0 ↩
Rogers, Robert L. (1971). Mathematical Logic and Formalized Theories. Elsevier. pp. 38–39. doi:10.1016/c2013-0-11894-6. ISBN 978-0-7204-2098-2. 978-0-7204-2098-2 ↩
Lucas, Peter; Gaag, Linda van der (1991). Principles of expert systems (PDF). International computer science series. Wokingham, England; Reading, Mass: Addison-Wesley. p. 26. ISBN 978-0-201-41640-4. 978-0-201-41640-4 ↩
Bachmair, Leo (2009). "CSE541 Logic in Computer Science" (PDF). Stony Brook University. https://www3.cs.stonybrook.edu/~cse541/Spring2009/cse541PropLogic.pdf ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Smullyan, Raymond M. (1995) [1968]. First-Order Logic. New York: Dover Publications. pp. 5, 10–11, 14. ISBN 978-0-486-68370-6. 978-0-486-68370-6 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Lawson, Mark V. (2019). A first course in logic. Boca Raton: CRC Press, Taylor & Francis Group. pp. example 1.58. ISBN 978-0-8153-8664-3. 978-0-8153-8664-3 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Dean, Neville (2003). Logic and language. Basingstoke: Palgrave Macmillan. p. 66. ISBN 978-0-333-91977-4. 978-0-333-91977-4 ↩
Chiswell, Ian; Hodges, Wilfrid (2007). Mathematical logic. Oxford texts in logic. Oxford: Oxford university press. p. 3. ISBN 978-0-19-857100-1. 978-0-19-857100-1 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Howson, Colin (1997). Logic with trees: an introduction to symbolic logic. London; New York: Routledge. pp. ix, x, 5–6, 15–16, 20, 24–29, 38, 42–43, 47. ISBN 978-0-415-13342-5. 978-0-415-13342-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Toida, Shunichi (2 August 2009). "Proof of Implications". CS381 Discrete Structures/Discrete Mathematics Web Course Material. Department of Computer Science, Old Dominion University. Retrieved 10 March 2010. http://www.cs.odu.edu/~toida/nerzic/content/logic/prop_logic/implications/implication_proof.html ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Hodges, Wilfrid (2001). Logic (2 ed.). London: Penguin Books. pp. 130–131. ISBN 978-0-14-100314-6. 978-0-14-100314-6 ↩
Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. pp. 6, 8, 14–16, 19–20, 44–48, 50–53, 56. ISBN 978-0-203-85155-5. 978-0-203-85155-5 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
Plato, Jan von (2013). Elements of logical reasoning (1. publ ed.). Cambridge: Cambridge University press. pp. 9, 32, 121. ISBN 978-1-107-03659-8. 978-1-107-03659-8 ↩
Restall, Greg (2010). Logic: an introduction. Fundamentals of philosophy. London: Routledge. pp. 5, 36–41, 55–60, 69. ISBN 978-0-415-40068-8. 978-0-415-40068-8 ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
"Natural Deduction Systems in Logic > Notes (Stanford Encyclopedia of Philosophy)". plato.stanford.edu. Retrieved 19 April 2024. https://plato.stanford.edu/entries/natural-deduction/notes.html#note-21 ↩
Pelletier, Francis Jeffry; Hazen, Allen (2024), "Natural Deduction Systems in Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 ed.), Metaphysics Research Lab, Stanford University, retrieved 22 March 2024 https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/ ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
To simplify the statement of the rule, the word "denial" here is used in this way: the denial of a formula φ {\displaystyle \varphi } that is not a negation is − φ {\displaystyle -\varphi } , whereas a negation, − φ {\displaystyle -\varphi } , has two denials, viz., φ {\displaystyle \varphi } and − − φ {\displaystyle --\varphi } .[38] ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Arthur, Richard T. W. (2017). An introduction to logic: using natural deduction, real arguments, a little history, and some humour (2nd ed.). Peterborough, Ontario: Broadview Press. ISBN 978-1-55481-332-2. OCLC 962129086. 978-1-55481-332-2 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Lemmon, Edward John (1998). Beginning logic. Boca Raton, FL: Chapman & Hall/CRC. pp. passim, especially 39–40. ISBN 978-0-412-38090-7. 978-0-412-38090-7 ↩
Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4. 978-0-262-54364-4 ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Franks, Curtis (2024). "Propositional Logic". In Zalta, Edward N.; Nodelman, Uri (eds.). Stanford Encyclopedia of Philosophy (Winter 2024 ed.). Metaphysics Research Lab, Stanford University. Retrieved 7 April 2025. https://plato.stanford.edu/archives/win2024/entries/logic-propositional/ ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Mendelsohn, Richard L. (10 January 2005). The Philosophy of Gottlob Frege. Cambridge University Press. p. 185. ISBN 978-1-139-44403-3. 978-1-139-44403-3 ↩
Łukasiewicz, Jan (1970). Jan Lukasiewicz: Selected Works. North-Holland. p. 136. https://books.google.com/books?id=Jb_zOwAACAAJ ↩
Mendelsohn, Richard L. (10 January 2005). The Philosophy of Gottlob Frege. Cambridge University Press. p. 185. ISBN 978-1-139-44403-3. 978-1-139-44403-3 ↩
Łukasiewicz, Jan (1970). Jan Lukasiewicz: Selected Works. North-Holland. p. 136. https://books.google.com/books?id=Jb_zOwAACAAJ ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
Church, Alonzo (1996). Introduction to Mathematical Logic. Princeton University Press. p. 119. ISBN 978-0-691-02906-1. 978-0-691-02906-1 ↩
Church, Alonzo (1996). Introduction to Mathematical Logic. Princeton University Press. p. 119. ISBN 978-0-691-02906-1. 978-0-691-02906-1 ↩
"Proof Explorer - Home Page - Metamath". us.metamath.org. Retrieved 2 July 2024. https://us.metamath.org/mpegif/mmset.html#scaxioms ↩
"Proof Explorer - Home Page - Metamath". us.metamath.org. Retrieved 2 July 2024. https://us.metamath.org/mpegif/mmset.html#scaxioms ↩
Bostock, David (1997). Intermediate logic. Oxford : New York: Clarendon Press; Oxford University Press. pp. 4–5, 8–13, 18–19, 22, 27, 29, 191, 194. ISBN 978-0-19-875141-0. 978-0-19-875141-0 ↩
"Proof Explorer - Home Page - Metamath". us.metamath.org. Retrieved 2 July 2024. https://us.metamath.org/mpegif/mmset.html#scaxioms ↩
Smullyan, Raymond M. (23 July 2014). A Beginner's Guide to Mathematical Logic. Courier Corporation. pp. 102–103. ISBN 978-0-486-49237-7. 978-0-486-49237-7 ↩
"Proof Explorer - Home Page - Metamath". us.metamath.org. Retrieved 2 July 2024. https://us.metamath.org/mpegif/mmset.html#scaxioms ↩
Walicki, Michał (2017). Introduction to mathematical logic (Extended ed.). New Jersey: World Scientific. p. 126. ISBN 978-981-4719-95-7. 978-981-4719-95-7 ↩
Walicki, Michał (2017). Introduction to mathematical logic (Extended ed.). New Jersey: World Scientific. p. 126. ISBN 978-981-4719-95-7. 978-981-4719-95-7 ↩
Quine, W. V. O. (1980). Mathematical Logic. Harvard University Press. ISBN 0-674-55451-5. 0-674-55451-5 ↩