Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of space groups
List article

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

  • P primitive
  • I body centered (from the German Innenzentriert)
  • F face centered (from the German Flächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

  • a {\displaystyle a} , b {\displaystyle b} , or c {\displaystyle c} : glide translation along half the lattice vector of this face
  • n {\displaystyle n} : glide translation along half the diagonal of this face
  • d {\displaystyle d} : glide planes with translation along a quarter of a face diagonal
  • e {\displaystyle e} : two glides with the same glide plane and translation along two (different) half-lattice vectors.1

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is 360 ∘ n {\displaystyle \color {Black}{\tfrac {360^{\circ }}{n}}} . The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of ⁠1/2⁠ of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of ⁠1/3⁠ of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction n m {\textstyle {\frac {n}{m}}} or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form Γ x y {\displaystyle \Gamma _{x}^{y}} which specifies the Bravais lattice. Here x ∈ { t , m , o , q , r h , h , c } {\displaystyle x\in \{t,m,o,q,rh,h,c\}} is the lattice system, and y ∈ { ∅ , b , v , f } {\displaystyle y\in \{\emptyset ,b,v,f\}} is the centering type.2

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Example for point group 4/mmm ( 4 m 2 m 2 m {\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} ): the symmorphic space groups are P4/mmm ( P 4 m 2 m 2 m {\displaystyle P{\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} , 36s) and I4/mmm ( I 4 m 2 m 2 m {\displaystyle I{\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} , 37s).

Hemisymmorphic

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm ( 4 m 2 m 2 m {\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} ): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc ( P 4 m 2 c 2 c {\displaystyle P{\tfrac {4}{m}}{\tfrac {2}{c}}{\tfrac {2}{c}}} , 35h), P4/nbm ( P 4 n 2 b 2 m {\displaystyle P{\tfrac {4}{n}}{\tfrac {2}{b}}{\tfrac {2}{m}}} , 36h), P4/nnc ( P 4 n 2 n 2 c {\displaystyle P{\tfrac {4}{n}}{\tfrac {2}{n}}{\tfrac {2}{c}}} , 37h), and I4/mcm ( I 4 m 2 c 2 m {\displaystyle I{\tfrac {4}{m}}{\tfrac {2}{c}}{\tfrac {2}{m}}} , 38h).

Asymmorphic

The remaining 103 space groups are asymmorphic. Example for point group 4/mmm ( 4 m 2 m 2 m {\displaystyle {\tfrac {4}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} ): P4/mbm ( P 4 m 2 1 b 2 m {\displaystyle P{\tfrac {4}{m}}{\tfrac {2_{1}}{b}}{\tfrac {2}{m}}} , 54a), P42/mmc ( P 4 2 m 2 m 2 c {\displaystyle P{\tfrac {4_{2}}{m}}{\tfrac {2}{m}}{\tfrac {2}{c}}} , 60a), I41/acd ( I 4 1 a 2 c 2 d {\displaystyle I{\tfrac {4_{1}}{a}}{\tfrac {2}{c}}{\tfrac {2}{d}}} , 58a) - none of these groups contains the axial combination 422.

List of triclinic

Triclinic Bravais lattice
Triclinic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
11 1 {\displaystyle 1} P1P 1 Γ t C 1 1 {\displaystyle \Gamma _{t}C_{1}^{1}} 1s ( a / b / c ) ⋅ 1 {\displaystyle (a/b/c)\cdot 1} ( ∘ ) {\displaystyle (\circ )}
21 × {\displaystyle \times } P1P 1 Γ t C i 1 {\displaystyle \Gamma _{t}C_{i}^{1}} 2s ( a / b / c ) ⋅ 2 ~ {\displaystyle (a/b/c)\cdot {\tilde {2}}} ( 2222 ) {\displaystyle (2222)}

List of monoclinic

Monoclinic Bravais lattice
Simple (P)Base (C)
Monoclinic crystal system
NumberPoint groupOrbifoldShort nameFull name(s)SchoenfliesFedorovShubnikovFibrifold (primary)Fibrifold (secondary)
32 22 {\displaystyle 22} P2P 1 2 1P 1 1 2 Γ m C 2 1 {\displaystyle \Gamma _{m}C_{2}^{1}} 3s ( b : ( c / a ) ) : 2 {\displaystyle (b:(c/a)):2} ( 2 0 2 0 2 0 2 0 ) {\displaystyle (2_{0}2_{0}2_{0}2_{0})} ( ∗ 0 ∗ 0 ) {\displaystyle ({*}_{0}{*}_{0})}
4P21P 1 21 1P 1 1 21 Γ m C 2 2 {\displaystyle \Gamma _{m}C_{2}^{2}} 1a ( b : ( c / a ) ) : 2 1 {\displaystyle (b:(c/a)):2_{1}} ( 2 1 2 1 2 1 2 1 ) {\displaystyle (2_{1}2_{1}2_{1}2_{1})} ( × ¯ × ¯ ) {\displaystyle ({\bar {\times }}{\bar {\times }})}
5C2C 1 2 1B 1 1 2 Γ m b C 2 3 {\displaystyle \Gamma _{m}^{b}C_{2}^{3}} 4s ( a + b 2 / b : ( c / a ) ) : 2 {\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right):2} ( 2 0 2 0 2 1 2 1 ) {\displaystyle (2_{0}2_{0}2_{1}2_{1})} ( ∗ 1 ∗ 1 ) {\displaystyle ({*}_{1}{*}_{1})} , ( ∗ × ¯ ) {\displaystyle ({*}{\bar {\times }})}
6m ∗ {\displaystyle *} PmP 1 m 1P 1 1 m Γ m C s 1 {\displaystyle \Gamma _{m}C_{s}^{1}} 5s ( b : ( c / a ) ) ⋅ m {\displaystyle (b:(c/a))\cdot m} [ ∘ 0 ] {\displaystyle [\circ _{0}]} ( ∗ ⋅ ∗ ⋅ ) {\displaystyle ({*}{\cdot }{*}{\cdot })}
7PcP 1 c 1P 1 1 b Γ m C s 2 {\displaystyle \Gamma _{m}C_{s}^{2}} 1h ( b : ( c / a ) ) ⋅ c ~ {\displaystyle (b:(c/a))\cdot {\tilde {c}}} ( ∘ ¯ 0 ) {\displaystyle ({\bar {\circ }}_{0})} ( ∗ : ∗ : ) {\displaystyle ({*}{:}{*}{:})} , ( × × 0 ) {\displaystyle ({\times }{\times }_{0})}
8CmC 1 m 1B 1 1 m Γ m b C s 3 {\displaystyle \Gamma _{m}^{b}C_{s}^{3}} 6s ( a + b 2 / b : ( c / a ) ) ⋅ m {\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot m} [ ∘ 1 ] {\displaystyle [\circ _{1}]} ( ∗ ⋅ ∗ : ) {\displaystyle ({*}{\cdot }{*}{:})} , ( ∗ ⋅ × ) {\displaystyle ({*}{\cdot }{\times })}
9CcC 1 c 1B 1 1 b Γ m b C s 4 {\displaystyle \Gamma _{m}^{b}C_{s}^{4}} 2h ( a + b 2 / b : ( c / a ) ) ⋅ c ~ {\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot {\tilde {c}}} ( ∘ ¯ 1 ) {\displaystyle ({\bar {\circ }}_{1})} ( ∗ : × ) {\displaystyle ({*}{:}{\times })} , ( × × 1 ) {\displaystyle ({\times }{\times }_{1})}
102/m 2 ∗ {\displaystyle 2*} P2/mP 1 2/m 1P 1 1 2/m Γ m C 2 h 1 {\displaystyle \Gamma _{m}C_{2h}^{1}} 7s ( b : ( c / a ) ) ⋅ m : 2 {\displaystyle (b:(c/a))\cdot m:2} [ 2 0 2 0 2 0 2 0 ] {\displaystyle [2_{0}2_{0}2_{0}2_{0}]} [ ∗ 2 ⋅ 22 ⋅ 2 ) {\displaystyle [*2{\cdot }22{\cdot }2)}
11P21/mP 1 21/m 1P 1 1 21/m Γ m C 2 h 2 {\displaystyle \Gamma _{m}C_{2h}^{2}} 2a ( b : ( c / a ) ) ⋅ m : 2 1 {\displaystyle (b:(c/a))\cdot m:2_{1}} [ 2 1 2 1 2 1 2 1 ] {\displaystyle [2_{1}2_{1}2_{1}2_{1}]} ( 22 ∗ ⋅ ) {\displaystyle (22{*}{\cdot })}
12C2/mC 1 2/m 1B 1 1 2/m Γ m b C 2 h 3 {\displaystyle \Gamma _{m}^{b}C_{2h}^{3}} 8s ( a + b 2 / b : ( c / a ) ) ⋅ m : 2 {\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot m:2} [ 2 0 2 0 2 1 2 1 ] {\displaystyle [2_{0}2_{0}2_{1}2_{1}]} ( ∗ 2 ⋅ 22 : 2 ) {\displaystyle (*2{\cdot }22{:}2)} , ( 2 ∗ ¯ 2 ⋅ 2 ) {\displaystyle (2{\bar {*}}2{\cdot }2)}
13P2/cP 1 2/c 1P 1 1 2/b Γ m C 2 h 4 {\displaystyle \Gamma _{m}C_{2h}^{4}} 3h ( b : ( c / a ) ) ⋅ c ~ : 2 {\displaystyle (b:(c/a))\cdot {\tilde {c}}:2} ( 2 0 2 0 22 ) {\displaystyle (2_{0}2_{0}22)} ( ∗ 2 : 22 : 2 ) {\displaystyle (*2{:}22{:}2)} , ( 22 ∗ 0 ) {\displaystyle (22{*}_{0})}
14P21/cP 1 21/c 1P 1 1 21/b Γ m C 2 h 5 {\displaystyle \Gamma _{m}C_{2h}^{5}} 3a ( b : ( c / a ) ) ⋅ c ~ : 2 1 {\displaystyle (b:(c/a))\cdot {\tilde {c}}:2_{1}} ( 2 1 2 1 22 ) {\displaystyle (2_{1}2_{1}22)} ( 22 ∗ : ) {\displaystyle (22{*}{:})} , ( 22 × ) {\displaystyle (22{\times })}
15C2/cC 1 2/c 1B 1 1 2/b Γ m b C 2 h 6 {\displaystyle \Gamma _{m}^{b}C_{2h}^{6}} 4h ( a + b 2 / b : ( c / a ) ) ⋅ c ~ : 2 {\displaystyle \left({\tfrac {a+b}{2}}/b:(c/a)\right)\cdot {\tilde {c}}:2} ( 2 0 2 1 22 ) {\displaystyle (2_{0}2_{1}22)} ( 2 ∗ ¯ 2 : 2 ) {\displaystyle (2{\bar {*}}2{:}2)} , ( 22 ∗ 1 ) {\displaystyle (22{*}_{1})}

List of orthorhombic

Orthorhombic Bravais lattice
Simple (P)Body (I)Face (F)Base (A or C)
Orthorhombic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold (primary)Fibrifold (secondary)
16222 222 {\displaystyle 222} P222P 2 2 2 Γ o D 2 1 {\displaystyle \Gamma _{o}D_{2}^{1}} 9s ( c : a : b ) : 2 : 2 {\displaystyle (c:a:b):2:2} ( ∗ 2 0 2 0 2 0 2 0 ) {\displaystyle (*2_{0}2_{0}2_{0}2_{0})}
17P2221P 2 2 21 Γ o D 2 2 {\displaystyle \Gamma _{o}D_{2}^{2}} 4a ( c : a : b ) : 2 1 : 2 {\displaystyle (c:a:b):2_{1}:2} ( ∗ 2 1 2 1 2 1 2 1 ) {\displaystyle (*2_{1}2_{1}2_{1}2_{1})} ( 2 0 2 0 ∗ ) {\displaystyle (2_{0}2_{0}{*})}
18P21212P 21 21 2 Γ o D 2 3 {\displaystyle \Gamma _{o}D_{2}^{3}} 7a ( c : a : b ) : 2 {\displaystyle (c:a:b):2} 2 1 {\displaystyle 2_{1}} ( 2 0 2 0 × ¯ ) {\displaystyle (2_{0}2_{0}{\bar {\times }})} ( 2 1 2 1 ∗ ) {\displaystyle (2_{1}2_{1}{*})}
19P212121P 21 21 21 Γ o D 2 4 {\displaystyle \Gamma _{o}D_{2}^{4}} 8a ( c : a : b ) : 2 1 {\displaystyle (c:a:b):2_{1}} 2 1 {\displaystyle 2_{1}} ( 2 1 2 1 × ¯ ) {\displaystyle (2_{1}2_{1}{\bar {\times }})}
20C2221C 2 2 21 Γ o b D 2 5 {\displaystyle \Gamma _{o}^{b}D_{2}^{5}} 5a ( a + b 2 : c : a : b ) : 2 1 : 2 {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):2_{1}:2} ( 2 1 ∗ 2 1 2 1 ) {\displaystyle (2_{1}{*}2_{1}2_{1})} ( 2 0 2 1 ∗ ) {\displaystyle (2_{0}2_{1}{*})}
21C222C 2 2 2 Γ o b D 2 6 {\displaystyle \Gamma _{o}^{b}D_{2}^{6}} 10s ( a + b 2 : c : a : b ) : 2 : 2 {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):2:2} ( 2 0 ∗ 2 0 2 0 ) {\displaystyle (2_{0}{*}2_{0}2_{0})} ( ∗ 2 0 2 0 2 1 2 1 ) {\displaystyle (*2_{0}2_{0}2_{1}2_{1})}
22F222F 2 2 2 Γ o f D 2 7 {\displaystyle \Gamma _{o}^{f}D_{2}^{7}} 12s ( a + c 2 / b + c 2 / a + b 2 : c : a : b ) : 2 : 2 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):2:2} ( ∗ 2 0 2 1 2 0 2 1 ) {\displaystyle (*2_{0}2_{1}2_{0}2_{1})}
23I222I 2 2 2 Γ o v D 2 8 {\displaystyle \Gamma _{o}^{v}D_{2}^{8}} 11s ( a + b + c 2 / c : a : b ) : 2 : 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):2:2} ( 2 1 ∗ 2 0 2 0 ) {\displaystyle (2_{1}{*}2_{0}2_{0})}
24I212121I 21 21 21 Γ o v D 2 9 {\displaystyle \Gamma _{o}^{v}D_{2}^{9}} 6a ( a + b + c 2 / c : a : b ) : 2 : 2 1 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):2:2_{1}} ( 2 0 ∗ 2 1 2 1 ) {\displaystyle (2_{0}{*}2_{1}2_{1})}
25mm2 ∗ 22 {\displaystyle *22} Pmm2P m m 2 Γ o C 2 v 1 {\displaystyle \Gamma _{o}C_{2v}^{1}} 13s ( c : a : b ) : m ⋅ 2 {\displaystyle (c:a:b):m\cdot 2} ( ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ) {\displaystyle (*{\cdot }2{\cdot }2{\cdot }2{\cdot }2)} [ ∗ 0 ⋅ ∗ 0 ⋅ ] {\displaystyle [{*}_{0}{\cdot }{*}_{0}{\cdot }]}
26Pmc21P m c 21 Γ o C 2 v 2 {\displaystyle \Gamma _{o}C_{2v}^{2}} 9a ( c : a : b ) : c ~ ⋅ 2 1 {\displaystyle (c:a:b):{\tilde {c}}\cdot 2_{1}} ( ∗ ⋅ 2 : 2 ⋅ 2 : 2 ) {\displaystyle (*{\cdot }2{:}2{\cdot }2{:}2)} ( ∗ ¯ ⋅ ∗ ¯ ⋅ ) {\displaystyle ({\bar {*}}{\cdot }{\bar {*}}{\cdot })} , [ × 0 × 0 ] {\displaystyle [{\times _{0}}{\times _{0}}]}
27Pcc2P c c 2 Γ o C 2 v 3 {\displaystyle \Gamma _{o}C_{2v}^{3}} 5h ( c : a : b ) : c ~ ⋅ 2 {\displaystyle (c:a:b):{\tilde {c}}\cdot 2} ( ∗ : 2 : 2 : 2 : 2 ) {\displaystyle (*{:}2{:}2{:}2{:}2)} ( ∗ ¯ 0 ∗ ¯ 0 ) {\displaystyle ({\bar {*}}_{0}{\bar {*}}_{0})}
28Pma2P m a 2 Γ o C 2 v 4 {\displaystyle \Gamma _{o}C_{2v}^{4}} 6h ( c : a : b ) : a ~ ⋅ 2 {\displaystyle (c:a:b):{\tilde {a}}\cdot 2} ( 2 0 2 0 ∗ ⋅ ) {\displaystyle (2_{0}2_{0}{*}{\cdot })} [ ∗ 0 : ∗ 0 : ] {\displaystyle [{*}_{0}{:}{*}_{0}{:}]} , ( ∗ ⋅ ∗ 0 ) {\displaystyle (*{\cdot }{*}_{0})}
29Pca21P c a 21 Γ o C 2 v 5 {\displaystyle \Gamma _{o}C_{2v}^{5}} 11a ( c : a : b ) : a ~ ⋅ 2 1 {\displaystyle (c:a:b):{\tilde {a}}\cdot 2_{1}} ( 2 1 2 1 ∗ : ) {\displaystyle (2_{1}2_{1}{*}{:})} ( ∗ ¯ : ∗ ¯ : ) {\displaystyle ({\bar {*}}{:}{\bar {*}}{:})}
30Pnc2P n c 2 Γ o C 2 v 6 {\displaystyle \Gamma _{o}C_{2v}^{6}} 7h ( c : a : b ) : c ~ ⊙ 2 {\displaystyle (c:a:b):{\tilde {c}}\odot 2} ( 2 0 2 0 ∗ : ) {\displaystyle (2_{0}2_{0}{*}{:})} ( ∗ ¯ 1 ∗ ¯ 1 ) {\displaystyle ({\bar {*}}_{1}{\bar {*}}_{1})} , ( ∗ 0 × 0 ) {\displaystyle ({*}_{0}{\times }_{0})}
31Pmn21P m n 21 Γ o C 2 v 7 {\displaystyle \Gamma _{o}C_{2v}^{7}} 10a ( c : a : b ) : a c ~ ⋅ 2 1 {\displaystyle (c:a:b):{\widetilde {ac}}\cdot 2_{1}} ( 2 1 2 1 ∗ ⋅ ) {\displaystyle (2_{1}2_{1}{*}{\cdot })} ( ∗ ⋅ × ¯ ) {\displaystyle (*{\cdot }{\bar {\times }})} , [ × 0 × 1 ] {\displaystyle [{\times }_{0}{\times }_{1}]}
32Pba2P b a 2 Γ o C 2 v 8 {\displaystyle \Gamma _{o}C_{2v}^{8}} 9h ( c : a : b ) : a ~ ⊙ 2 {\displaystyle (c:a:b):{\tilde {a}}\odot 2} ( 2 0 2 0 × 0 ) {\displaystyle (2_{0}2_{0}{\times }_{0})} ( ∗ : ∗ 0 ) {\displaystyle (*{:}{*}_{0})}
33Pna21P n a 21 Γ o C 2 v 9 {\displaystyle \Gamma _{o}C_{2v}^{9}} 12a ( c : a : b ) : a ~ ⊙ 2 1 {\displaystyle (c:a:b):{\tilde {a}}\odot 2_{1}} ( 2 1 2 1 × ) {\displaystyle (2_{1}2_{1}{\times })} ( ∗ : × ) {\displaystyle (*{:}{\times })} , ( × × 1 ) {\displaystyle ({\times }{\times }_{1})}
34Pnn2P n n 2 Γ o C 2 v 10 {\displaystyle \Gamma _{o}C_{2v}^{10}} 8h ( c : a : b ) : a c ~ ⊙ 2 {\displaystyle (c:a:b):{\widetilde {ac}}\odot 2} ( 2 0 2 0 × 1 ) {\displaystyle (2_{0}2_{0}{\times }_{1})} ( ∗ 0 × 1 ) {\displaystyle (*_{0}{\times }_{1})}
35Cmm2C m m 2 Γ o b C 2 v 11 {\displaystyle \Gamma _{o}^{b}C_{2v}^{11}} 14s ( a + b 2 : c : a : b ) : m ⋅ 2 {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):m\cdot 2} ( 2 0 ∗ ⋅ 2 ⋅ 2 ) {\displaystyle (2_{0}{*}{\cdot }2{\cdot }2)} [ ∗ 0 ⋅ ∗ 0 : ] {\displaystyle [*_{0}{\cdot }{*}_{0}{:}]}
36Cmc21C m c 21 Γ o b C 2 v 12 {\displaystyle \Gamma _{o}^{b}C_{2v}^{12}} 13a ( a + b 2 : c : a : b ) : c ~ ⋅ 2 1 {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):{\tilde {c}}\cdot 2_{1}} ( 2 1 ∗ ⋅ 2 : 2 ) {\displaystyle (2_{1}{*}{\cdot }2{:}2)} ( ∗ ¯ ⋅ ∗ ¯ : ) {\displaystyle ({\bar {*}}{\cdot }{\bar {*}}{:})} , [ × 1 × 1 ] {\displaystyle [{\times }_{1}{\times }_{1}]}
37Ccc2C c c 2 Γ o b C 2 v 13 {\displaystyle \Gamma _{o}^{b}C_{2v}^{13}} 10h ( a + b 2 : c : a : b ) : c ~ ⋅ 2 {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right):{\tilde {c}}\cdot 2} ( 2 0 ∗ : 2 : 2 ) {\displaystyle (2_{0}{*}{:}2{:}2)} ( ∗ ¯ 0 ∗ ¯ 1 ) {\displaystyle ({\bar {*}}_{0}{\bar {*}}_{1})}
38Amm2A m m 2 Γ o b C 2 v 14 {\displaystyle \Gamma _{o}^{b}C_{2v}^{14}} 15s ( b + c 2 / c : a : b ) : m ⋅ 2 {\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):m\cdot 2} ( ∗ ⋅ 2 ⋅ 2 ⋅ 2 : 2 ) {\displaystyle (*{\cdot }2{\cdot }2{\cdot }2{:}2)} [ ∗ 1 ⋅ ∗ 1 ⋅ ] {\displaystyle [{*}_{1}{\cdot }{*}_{1}{\cdot }]} , [ ∗ ⋅ × 0 ] {\displaystyle [*{\cdot }{\times }_{0}]}
39Aem2A b m 2 Γ o b C 2 v 15 {\displaystyle \Gamma _{o}^{b}C_{2v}^{15}} 11h ( b + c 2 / c : a : b ) : m ⋅ 2 1 {\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):m\cdot 2_{1}} ( ∗ ⋅ 2 : 2 : 2 : 2 ) {\displaystyle (*{\cdot }2{:}2{:}2{:}2)} [ ∗ 1 : ∗ 1 : ] {\displaystyle [{*}_{1}{:}{*}_{1}{:}]} , ( ∗ ¯ ⋅ ∗ ¯ 0 ) {\displaystyle ({\bar {*}}{\cdot }{\bar {*}}_{0})}
40Ama2A m a 2 Γ o b C 2 v 16 {\displaystyle \Gamma _{o}^{b}C_{2v}^{16}} 12h ( b + c 2 / c : a : b ) : a ~ ⋅ 2 {\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2} ( 2 0 2 1 ∗ ⋅ ) {\displaystyle (2_{0}2_{1}{*}{\cdot })} ( ∗ ⋅ ∗ 1 ) {\displaystyle (*{\cdot }{*}_{1})} , [ ∗ : × 1 ] {\displaystyle [*{:}{\times }_{1}]}
41Aea2A b a 2 Γ o b C 2 v 17 {\displaystyle \Gamma _{o}^{b}C_{2v}^{17}} 13h ( b + c 2 / c : a : b ) : a ~ ⋅ 2 1 {\displaystyle \left({\tfrac {b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2_{1}} ( 2 0 2 1 ∗ : ) {\displaystyle (2_{0}2_{1}{*}{:})} ( ∗ : ∗ 1 ) {\displaystyle (*{:}{*}_{1})} , ( ∗ ¯ : ∗ ¯ 1 ) {\displaystyle ({\bar {*}}{:}{\bar {*}}_{1})}
42Fmm2F m m 2 Γ o f C 2 v 18 {\displaystyle \Gamma _{o}^{f}C_{2v}^{18}} 17s ( a + c 2 / b + c 2 / a + b 2 : c : a : b ) : m ⋅ 2 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):m\cdot 2} ( ∗ ⋅ 2 ⋅ 2 : 2 : 2 ) {\displaystyle (*{\cdot }2{\cdot }2{:}2{:}2)} [ ∗ 1 ⋅ ∗ 1 : ] {\displaystyle [{*}_{1}{\cdot }{*}_{1}{:}]}
43Fdd2F d d 2 Γ o f C 2 v 19 {\displaystyle \Gamma _{o}^{f}C_{2v}^{19}} 16h ( a + c 2 / b + c 2 / a + b 2 : c : a : b ) : 1 2 a c ~ ⊙ 2 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right):{\tfrac {1}{2}}{\widetilde {ac}}\odot 2} ( 2 0 2 1 × ) {\displaystyle (2_{0}2_{1}{\times })} ( ∗ 1 × ) {\displaystyle ({*}_{1}{\times })}
44Imm2I m m 2 Γ o v C 2 v 20 {\displaystyle \Gamma _{o}^{v}C_{2v}^{20}} 16s ( a + b + c 2 / c : a : b ) : m ⋅ 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):m\cdot 2} ( 2 1 ∗ ⋅ 2 ⋅ 2 ) {\displaystyle (2_{1}{*}{\cdot }2{\cdot }2)} [ ∗ ⋅ × 1 ] {\displaystyle [*{\cdot }{\times }_{1}]}
45Iba2I b a 2 Γ o v C 2 v 21 {\displaystyle \Gamma _{o}^{v}C_{2v}^{21}} 15h ( a + b + c 2 / c : a : b ) : c ~ ⋅ 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):{\tilde {c}}\cdot 2} ( 2 1 ∗ : 2 : 2 ) {\displaystyle (2_{1}{*}{:}2{:}2)} ( ∗ ¯ : ∗ ¯ 0 ) {\displaystyle ({\bar {*}}{:}{\bar {*}}_{0})}
46Ima2I m a 2 Γ o v C 2 v 22 {\displaystyle \Gamma _{o}^{v}C_{2v}^{22}} 14h ( a + b + c 2 / c : a : b ) : a ~ ⋅ 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right):{\tilde {a}}\cdot 2} ( 2 0 ∗ ⋅ 2 : 2 ) {\displaystyle (2_{0}{*}{\cdot }2{:}2)} ( ∗ ¯ ⋅ ∗ ¯ 1 ) {\displaystyle ({\bar {*}}{\cdot }{\bar {*}}_{1})} , [ ∗ : × 0 ] {\displaystyle [*{:}{\times }_{0}]}
47 2 m 2 m 2 m {\displaystyle {\tfrac {2}{m}}{\tfrac {2}{m}}{\tfrac {2}{m}}} ∗ 222 {\displaystyle *222} PmmmP 2/m 2/m 2/m Γ o D 2 h 1 {\displaystyle \Gamma _{o}D_{2h}^{1}} 18s ( c : a : b ) ⋅ m : 2 ⋅ m {\displaystyle \left(c:a:b\right)\cdot m:2\cdot m} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]}
48PnnnP 2/n 2/n 2/n Γ o D 2 h 2 {\displaystyle \Gamma _{o}D_{2h}^{2}} 19h ( c : a : b ) ⋅ a b ~ : 2 ⊙ a c ~ {\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\odot {\widetilde {ac}}} ( 2 ∗ ¯ 1 2 0 2 0 ) {\displaystyle (2{\bar {*}}_{1}2_{0}2_{0})}
49PccmP 2/c 2/c 2/m Γ o D 2 h 3 {\displaystyle \Gamma _{o}D_{2h}^{3}} 17h ( c : a : b ) ⋅ m : 2 ⋅ c ~ {\displaystyle \left(c:a:b\right)\cdot m:2\cdot {\tilde {c}}} [ ∗ : 2 : 2 : 2 : 2 ] {\displaystyle [*{:}2{:}2{:}2{:}2]} ( ∗ 2 0 2 0 2 ⋅ 2 ) {\displaystyle (*2_{0}2_{0}2{\cdot }2)}
50PbanP 2/b 2/a 2/n Γ o D 2 h 4 {\displaystyle \Gamma _{o}D_{2h}^{4}} 18h ( c : a : b ) ⋅ a b ~ : 2 ⊙ a ~ {\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\odot {\tilde {a}}} ( 2 ∗ ¯ 0 2 0 2 0 ) {\displaystyle (2{\bar {*}}_{0}2_{0}2_{0})} ( ∗ 2 0 2 0 2 : 2 ) {\displaystyle (*2_{0}2_{0}2{:}2)}
51PmmaP 21/m 2/m 2/a Γ o D 2 h 5 {\displaystyle \Gamma _{o}D_{2h}^{5}} 14a ( c : a : b ) ⋅ a ~ : 2 ⋅ m {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\cdot m} [ 2 0 2 0 ∗ ⋅ ] {\displaystyle [2_{0}2_{0}{*}{\cdot }]} [ ∗ ⋅ 2 : 2 ⋅ 2 : 2 ] {\displaystyle [*{\cdot }2{:}2{\cdot }2{:}2]} , [ ∗ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] {\displaystyle [*2{\cdot }2{\cdot }2{\cdot }2]}
52PnnaP 2/n 21/n 2/a Γ o D 2 h 6 {\displaystyle \Gamma _{o}D_{2h}^{6}} 17a ( c : a : b ) ⋅ a ~ : 2 ⊙ a c ~ {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\odot {\widetilde {ac}}} ( 2 0 2 ∗ ¯ 1 ) {\displaystyle (2_{0}2{\bar {*}}_{1})} ( 2 0 ∗ 2 : 2 ) {\displaystyle (2_{0}{*}2{:}2)} , ( 2 ∗ ¯ 2 1 2 1 ) {\displaystyle (2{\bar {*}}2_{1}2_{1})}
53PmnaP 2/m 2/n 21/a Γ o D 2 h 7 {\displaystyle \Gamma _{o}D_{2h}^{7}} 15a ( c : a : b ) ⋅ a ~ : 2 1 ⋅ a c ~ {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\cdot {\widetilde {ac}}} [ 2 0 2 0 ∗ : ] {\displaystyle [2_{0}2_{0}{*}{:}]} ( ∗ 2 1 2 1 2 ⋅ 2 ) {\displaystyle (*2_{1}2_{1}2{\cdot }2)} , ( 2 0 ∗ 2 ⋅ 2 ) {\displaystyle (2_{0}{*}2{\cdot }2)}
54PccaP 21/c 2/c 2/a Γ o D 2 h 8 {\displaystyle \Gamma _{o}D_{2h}^{8}} 16a ( c : a : b ) ⋅ a ~ : 2 ⋅ c ~ {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}} ( 2 0 2 ∗ ¯ 0 ) {\displaystyle (2_{0}2{\bar {*}}_{0})} ( ∗ 2 : 2 : 2 : 2 ) {\displaystyle (*2{:}2{:}2{:}2)} , ( ∗ 2 1 2 1 2 : 2 ) {\displaystyle (*2_{1}2_{1}2{:}2)}
55PbamP 21/b 21/a 2/m Γ o D 2 h 9 {\displaystyle \Gamma _{o}D_{2h}^{9}} 22a ( c : a : b ) ⋅ m : 2 ⊙ a ~ {\displaystyle \left(c:a:b\right)\cdot m:2\odot {\tilde {a}}} [ 2 0 2 0 × 0 ] {\displaystyle [2_{0}2_{0}{\times }_{0}]} ( ∗ 2 ⋅ 2 : 2 ⋅ 2 ) {\displaystyle (*2{\cdot }2{:}2{\cdot }2)}
56PccnP 21/c 21/c 2/n Γ o D 2 h 10 {\displaystyle \Gamma _{o}D_{2h}^{10}} 27a ( c : a : b ) ⋅ a b ~ : 2 ⋅ c ~ {\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\cdot {\tilde {c}}} ( 2 ∗ ¯ : 2 : 2 ) {\displaystyle (2{\bar {*}}{:}2{:}2)} ( 2 1 2 ∗ ¯ 0 ) {\displaystyle (2_{1}2{\bar {*}}_{0})}
57PbcmP 2/b 21/c 21/m Γ o D 2 h 11 {\displaystyle \Gamma _{o}D_{2h}^{11}} 23a ( c : a : b ) ⋅ m : 2 1 ⊙ c ~ {\displaystyle \left(c:a:b\right)\cdot m:2_{1}\odot {\tilde {c}}} ( 2 0 2 ∗ ¯ ⋅ ) {\displaystyle (2_{0}2{\bar {*}}{\cdot })} ( ∗ 2 : 2 ⋅ 2 : 2 ) {\displaystyle (*2{:}2{\cdot }2{:}2)} , [ 2 1 2 1 ∗ : ] {\displaystyle [2_{1}2_{1}{*}{:}]}
58PnnmP 21/n 21/n 2/m Γ o D 2 h 12 {\displaystyle \Gamma _{o}D_{2h}^{12}} 25a ( c : a : b ) ⋅ m : 2 ⊙ a c ~ {\displaystyle \left(c:a:b\right)\cdot m:2\odot {\widetilde {ac}}} [ 2 0 2 0 × 1 ] {\displaystyle [2_{0}2_{0}{\times }_{1}]} ( 2 1 ∗ 2 ⋅ 2 ) {\displaystyle (2_{1}{*}2{\cdot }2)}
59PmmnP 21/m 21/m 2/n Γ o D 2 h 13 {\displaystyle \Gamma _{o}D_{2h}^{13}} 24a ( c : a : b ) ⋅ a b ~ : 2 ⋅ m {\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2\cdot m} ( 2 ∗ ¯ ⋅ 2 ⋅ 2 ) {\displaystyle (2{\bar {*}}{\cdot }2{\cdot }2)} [ 2 1 2 1 ∗ ⋅ ] {\displaystyle [2_{1}2_{1}{*}{\cdot }]}
60PbcnP 21/b 2/c 21/n Γ o D 2 h 14 {\displaystyle \Gamma _{o}D_{2h}^{14}} 26a ( c : a : b ) ⋅ a b ~ : 2 1 ⊙ c ~ {\displaystyle \left(c:a:b\right)\cdot {\widetilde {ab}}:2_{1}\odot {\tilde {c}}} ( 2 0 2 ∗ ¯ : ) {\displaystyle (2_{0}2{\bar {*}}{:})} ( 2 1 ∗ 2 : 2 ) {\displaystyle (2_{1}{*}2{:}2)} , ( 2 1 2 ∗ ¯ 1 ) {\displaystyle (2_{1}2{\bar {*}}_{1})}
61PbcaP 21/b 21/c 21/a Γ o D 2 h 15 {\displaystyle \Gamma _{o}D_{2h}^{15}} 29a ( c : a : b ) ⋅ a ~ : 2 1 ⊙ c ~ {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\odot {\tilde {c}}} ( 2 1 2 ∗ ¯ : ) {\displaystyle (2_{1}2{\bar {*}}{:})}
62PnmaP 21/n 21/m 21/a Γ o D 2 h 16 {\displaystyle \Gamma _{o}D_{2h}^{16}} 28a ( c : a : b ) ⋅ a ~ : 2 1 ⊙ m {\displaystyle \left(c:a:b\right)\cdot {\tilde {a}}:2_{1}\odot m} ( 2 1 2 ∗ ¯ ⋅ ) {\displaystyle (2_{1}2{\bar {*}}{\cdot })} ( 2 ∗ ¯ ⋅ 2 : 2 ) {\displaystyle (2{\bar {*}}{\cdot }2{:}2)} , [ 2 1 2 1 × ] {\displaystyle [2_{1}2_{1}{\times }]}
63CmcmC 2/m 2/c 21/m Γ o b D 2 h 17 {\displaystyle \Gamma _{o}^{b}D_{2h}^{17}} 18a ( a + b 2 : c : a : b ) ⋅ m : 2 1 ⋅ c ~ {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2_{1}\cdot {\tilde {c}}} [ 2 0 2 1 ∗ ⋅ ] {\displaystyle [2_{0}2_{1}{*}{\cdot }]} ( ∗ 2 ⋅ 2 ⋅ 2 : 2 ) {\displaystyle (*2{\cdot }2{\cdot }2{:}2)} , [ 2 1 ∗ ⋅ 2 : 2 ] {\displaystyle [2_{1}{*}{\cdot }2{:}2]}
64CmceC 2/m 2/c 21/a Γ o b D 2 h 18 {\displaystyle \Gamma _{o}^{b}D_{2h}^{18}} 19a ( a + b 2 : c : a : b ) ⋅ a ~ : 2 1 ⋅ c ~ {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2_{1}\cdot {\tilde {c}}} [ 2 0 2 1 ∗ : ] {\displaystyle [2_{0}2_{1}{*}{:}]} ( ∗ 2 ⋅ 2 : 2 : 2 ) {\displaystyle (*2{\cdot }2{:}2{:}2)} , ( ∗ 2 1 2 ⋅ 2 : 2 ) {\displaystyle (*2_{1}2{\cdot }2{:}2)}
65CmmmC 2/m 2/m 2/m Γ o b D 2 h 19 {\displaystyle \Gamma _{o}^{b}D_{2h}^{19}} 19s ( a + b 2 : c : a : b ) ⋅ m : 2 ⋅ m {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot m} [ 2 0 ∗ ⋅ 2 ⋅ 2 ] {\displaystyle [2_{0}{*}{\cdot }2{\cdot }2]} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 : 2 ] {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{:}2]}
66CccmC 2/c 2/c 2/m Γ o b D 2 h 20 {\displaystyle \Gamma _{o}^{b}D_{2h}^{20}} 20h ( a + b 2 : c : a : b ) ⋅ m : 2 ⋅ c ~ {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot {\tilde {c}}} [ 2 0 ∗ : 2 : 2 ] {\displaystyle [2_{0}{*}{:}2{:}2]} ( ∗ 2 0 2 1 2 ⋅ 2 ) {\displaystyle (*2_{0}2_{1}2{\cdot }2)}
67CmmeC 2/m 2/m 2/e Γ o b D 2 h 21 {\displaystyle \Gamma _{o}^{b}D_{2h}^{21}} 21h ( a + b 2 : c : a : b ) ⋅ a ~ : 2 ⋅ m {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2\cdot m} ( ∗ 2 0 2 ⋅ 2 ⋅ 2 ) {\displaystyle (*2_{0}2{\cdot }2{\cdot }2)} [ ∗ ⋅ 2 : 2 : 2 : 2 ] {\displaystyle [*{\cdot }2{:}2{:}2{:}2]}
68CcceC 2/c 2/c 2/e Γ o b D 2 h 22 {\displaystyle \Gamma _{o}^{b}D_{2h}^{22}} 22h ( a + b 2 : c : a : b ) ⋅ a ~ : 2 ⋅ c ~ {\displaystyle \left({\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}} ( ∗ 2 0 2 : 2 : 2 ) {\displaystyle (*2_{0}2{:}2{:}2)} ( ∗ 2 0 2 1 2 : 2 ) {\displaystyle (*2_{0}2_{1}2{:}2)}
69FmmmF 2/m 2/m 2/m Γ o f D 2 h 23 {\displaystyle \Gamma _{o}^{f}D_{2h}^{23}} 21s ( a + c 2 / b + c 2 / a + b 2 : c : a : b ) ⋅ m : 2 ⋅ m {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right)\cdot m:2\cdot m} [ ∗ ⋅ 2 ⋅ 2 : 2 : 2 ] {\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]}
70FdddF 2/d 2/d 2/d Γ o f D 2 h 24 {\displaystyle \Gamma _{o}^{f}D_{2h}^{24}} 24h ( a + c 2 / b + c 2 / a + b 2 : c : a : b ) ⋅ 1 2 a b ~ : 2 ⊙ 1 2 a c ~ {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:c:a:b\right)\cdot {\tfrac {1}{2}}{\widetilde {ab}}:2\odot {\tfrac {1}{2}}{\widetilde {ac}}} ( 2 ∗ ¯ 2 0 2 1 ) {\displaystyle (2{\bar {*}}2_{0}2_{1})}
71ImmmI 2/m 2/m 2/m Γ o v D 2 h 25 {\displaystyle \Gamma _{o}^{v}D_{2h}^{25}} 20s ( a + b + c 2 / c : a : b ) ⋅ m : 2 ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot m:2\cdot m} [ 2 1 ∗ ⋅ 2 ⋅ 2 ] {\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]}
72IbamI 2/b 2/a 2/m Γ o v D 2 h 26 {\displaystyle \Gamma _{o}^{v}D_{2h}^{26}} 23h ( a + b + c 2 / c : a : b ) ⋅ m : 2 ⋅ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot m:2\cdot {\tilde {c}}} [ 2 1 ∗ : 2 : 2 ] {\displaystyle [2_{1}{*}{:}2{:}2]} ( ∗ 2 0 2 ⋅ 2 : 2 ) {\displaystyle (*2_{0}2{\cdot }2{:}2)}
73IbcaI 2/b 2/c 2/a Γ o v D 2 h 27 {\displaystyle \Gamma _{o}^{v}D_{2h}^{27}} 21a ( a + b + c 2 / c : a : b ) ⋅ a ~ : 2 ⋅ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot {\tilde {a}}:2\cdot {\tilde {c}}} ( ∗ 2 1 2 : 2 : 2 ) {\displaystyle (*2_{1}2{:}2{:}2)}
74ImmaI 2/m 2/m 2/a Γ o v D 2 h 28 {\displaystyle \Gamma _{o}^{v}D_{2h}^{28}} 20a ( a + b + c 2 / c : a : b ) ⋅ a ~ : 2 ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:b\right)\cdot {\tilde {a}}:2\cdot m} ( ∗ 2 1 2 ⋅ 2 ⋅ 2 ) {\displaystyle (*2_{1}2{\cdot }2{\cdot }2)} [ 2 0 ∗ ⋅ 2 : 2 ] {\displaystyle [2_{0}{*}{\cdot }2{:}2]}

List of tetragonal

Tetragonal Bravais lattice
Simple (P)Body (I)
Tetragonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
754 44 {\displaystyle 44} P4P 4 Γ q C 4 1 {\displaystyle \Gamma _{q}C_{4}^{1}} 22s ( c : a : a ) : 4 {\displaystyle (c:a:a):4} ( 4 0 4 0 2 0 ) {\displaystyle (4_{0}4_{0}2_{0})}
76P41P 41 Γ q C 4 2 {\displaystyle \Gamma _{q}C_{4}^{2}} 30a ( c : a : a ) : 4 1 {\displaystyle (c:a:a):4_{1}} ( 4 1 4 1 2 1 ) {\displaystyle (4_{1}4_{1}2_{1})}
77P42P 42 Γ q C 4 3 {\displaystyle \Gamma _{q}C_{4}^{3}} 33a ( c : a : a ) : 4 2 {\displaystyle (c:a:a):4_{2}} ( 4 2 4 2 2 0 ) {\displaystyle (4_{2}4_{2}2_{0})}
78P43P 43 Γ q C 4 4 {\displaystyle \Gamma _{q}C_{4}^{4}} 31a ( c : a : a ) : 4 3 {\displaystyle (c:a:a):4_{3}} ( 4 1 4 1 2 1 ) {\displaystyle (4_{1}4_{1}2_{1})}
79I4I 4 Γ q v C 4 5 {\displaystyle \Gamma _{q}^{v}C_{4}^{5}} 23s ( a + b + c 2 / c : a : a ) : 4 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4} ( 4 2 4 0 2 1 ) {\displaystyle (4_{2}4_{0}2_{1})}
80I41I 41 Γ q v C 4 6 {\displaystyle \Gamma _{q}^{v}C_{4}^{6}} 32a ( a + b + c 2 / c : a : a ) : 4 1 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}} ( 4 3 4 1 2 0 ) {\displaystyle (4_{3}4_{1}2_{0})}
814 2 × {\displaystyle 2\times } P4P 4 Γ q S 4 1 {\displaystyle \Gamma _{q}S_{4}^{1}} 26s ( c : a : a ) : 4 ~ {\displaystyle (c:a:a):{\tilde {4}}} ( 442 0 ) {\displaystyle (442_{0})}
82I4I 4 Γ q v S 4 2 {\displaystyle \Gamma _{q}^{v}S_{4}^{2}} 27s ( a + b + c 2 / c : a : a ) : 4 ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}} ( 442 1 ) {\displaystyle (442_{1})}
834/m 4 ∗ {\displaystyle 4*} P4/mP 4/m Γ q C 4 h 1 {\displaystyle \Gamma _{q}C_{4h}^{1}} 28s ( c : a : a ) ⋅ m : 4 {\displaystyle (c:a:a)\cdot m:4} [ 4 0 4 0 2 0 ] {\displaystyle [4_{0}4_{0}2_{0}]}
84P42/mP 42/m Γ q C 4 h 2 {\displaystyle \Gamma _{q}C_{4h}^{2}} 41a ( c : a : a ) ⋅ m : 4 2 {\displaystyle (c:a:a)\cdot m:4_{2}} [ 4 2 4 2 2 0 ] {\displaystyle [4_{2}4_{2}2_{0}]}
85P4/nP 4/n Γ q C 4 h 3 {\displaystyle \Gamma _{q}C_{4h}^{3}} 29h ( c : a : a ) ⋅ a b ~ : 4 {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4} ( 44 0 2 ) {\displaystyle (44_{0}2)}
86P42/nP 42/n Γ q C 4 h 4 {\displaystyle \Gamma _{q}C_{4h}^{4}} 42a ( c : a : a ) ⋅ a b ~ : 4 2 {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}} ( 44 2 2 ) {\displaystyle (44_{2}2)}
87I4/mI 4/m Γ q v C 4 h 5 {\displaystyle \Gamma _{q}^{v}C_{4h}^{5}} 29s ( a + b + c 2 / c : a : a ) ⋅ m : 4 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4} [ 4 2 4 0 2 1 ] {\displaystyle [4_{2}4_{0}2_{1}]}
88I41/aI 41/a Γ q v C 4 h 6 {\displaystyle \Gamma _{q}^{v}C_{4h}^{6}} 40a ( a + b + c 2 / c : a : a ) ⋅ a ~ : 4 1 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}} ( 44 1 2 ) {\displaystyle (44_{1}2)}
89422 224 {\displaystyle 224} P422P 4 2 2 Γ q D 4 1 {\displaystyle \Gamma _{q}D_{4}^{1}} 30s ( c : a : a ) : 4 : 2 {\displaystyle (c:a:a):4:2} ( ∗ 4 0 4 0 2 0 ) {\displaystyle (*4_{0}4_{0}2_{0})}
90P4212P4212 Γ q D 4 2 {\displaystyle \Gamma _{q}D_{4}^{2}} 43a ( c : a : a ) : 4 {\displaystyle (c:a:a):4} 2 1 {\displaystyle 2_{1}} ( 4 0 ∗ 2 0 ) {\displaystyle (4_{0}{*}2_{0})}
91P4122P 41 2 2 Γ q D 4 3 {\displaystyle \Gamma _{q}D_{4}^{3}} 44a ( c : a : a ) : 4 1 : 2 {\displaystyle (c:a:a):4_{1}:2} ( ∗ 4 1 4 1 2 1 ) {\displaystyle (*4_{1}4_{1}2_{1})}
92P41212P 41 21 2 Γ q D 4 4 {\displaystyle \Gamma _{q}D_{4}^{4}} 48a ( c : a : a ) : 4 1 {\displaystyle (c:a:a):4_{1}} 2 1 {\displaystyle 2_{1}} ( 4 1 ∗ 2 1 ) {\displaystyle (4_{1}{*}2_{1})}
93P4222P 42 2 2 Γ q D 4 5 {\displaystyle \Gamma _{q}D_{4}^{5}} 47a ( c : a : a ) : 4 2 : 2 {\displaystyle (c:a:a):4_{2}:2} ( ∗ 4 2 4 2 2 0 ) {\displaystyle (*4_{2}4_{2}2_{0})}
94P42212P 42 21 2 Γ q D 4 6 {\displaystyle \Gamma _{q}D_{4}^{6}} 50a ( c : a : a ) : 4 2 {\displaystyle (c:a:a):4_{2}} 2 1 {\displaystyle 2_{1}} ( 4 2 ∗ 2 0 ) {\displaystyle (4_{2}{*}2_{0})}
95P4322P 43 2 2 Γ q D 4 7 {\displaystyle \Gamma _{q}D_{4}^{7}} 45a ( c : a : a ) : 4 3 : 2 {\displaystyle (c:a:a):4_{3}:2} ( ∗ 4 1 4 1 2 1 ) {\displaystyle (*4_{1}4_{1}2_{1})}
96P43212P 43 21 2 Γ q D 4 8 {\displaystyle \Gamma _{q}D_{4}^{8}} 49a ( c : a : a ) : 4 3 {\displaystyle (c:a:a):4_{3}} 2 1 {\displaystyle 2_{1}} ( 4 1 ∗ 2 1 ) {\displaystyle (4_{1}{*}2_{1})}
97I422I 4 2 2 Γ q v D 4 9 {\displaystyle \Gamma _{q}^{v}D_{4}^{9}} 31s ( a + b + c 2 / c : a : a ) : 4 : 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4:2} ( ∗ 4 2 4 0 2 1 ) {\displaystyle (*4_{2}4_{0}2_{1})}
98I4122I 41 2 2 Γ q v D 4 10 {\displaystyle \Gamma _{q}^{v}D_{4}^{10}} 46a ( a + b + c 2 / c : a : a ) : 4 : 2 1 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4:2_{1}} ( ∗ 4 3 4 1 2 0 ) {\displaystyle (*4_{3}4_{1}2_{0})}
994mm ∗ 44 {\displaystyle *44} P4mmP 4 m m Γ q C 4 v 1 {\displaystyle \Gamma _{q}C_{4v}^{1}} 24s ( c : a : a ) : 4 ⋅ m {\displaystyle (c:a:a):4\cdot m} ( ∗ ⋅ 4 ⋅ 4 ⋅ 2 ) {\displaystyle (*{\cdot }4{\cdot }4{\cdot }2)}
100P4bmP 4 b m Γ q C 4 v 2 {\displaystyle \Gamma _{q}C_{4v}^{2}} 26h ( c : a : a ) : 4 ⊙ a ~ {\displaystyle (c:a:a):4\odot {\tilde {a}}} ( 4 0 ∗ ⋅ 2 ) {\displaystyle (4_{0}{*}{\cdot }2)}
101P42cmP 42 c m Γ q C 4 v 3 {\displaystyle \Gamma _{q}C_{4v}^{3}} 37a ( c : a : a ) : 4 2 ⋅ c ~ {\displaystyle (c:a:a):4_{2}\cdot {\tilde {c}}} ( ∗ : 4 ⋅ 4 : 2 ) {\displaystyle (*{:}4{\cdot }4{:}2)}
102P42nmP 42 n m Γ q C 4 v 4 {\displaystyle \Gamma _{q}C_{4v}^{4}} 38a ( c : a : a ) : 4 2 ⊙ a c ~ {\displaystyle (c:a:a):4_{2}\odot {\widetilde {ac}}} ( 4 2 ∗ ⋅ 2 ) {\displaystyle (4_{2}{*}{\cdot }2)}
103P4ccP 4 c c Γ q C 4 v 5 {\displaystyle \Gamma _{q}C_{4v}^{5}} 25h ( c : a : a ) : 4 ⋅ c ~ {\displaystyle (c:a:a):4\cdot {\tilde {c}}} ( ∗ : 4 : 4 : 2 ) {\displaystyle (*{:}4{:}4{:}2)}
104P4ncP 4 n c Γ q C 4 v 6 {\displaystyle \Gamma _{q}C_{4v}^{6}} 27h ( c : a : a ) : 4 ⊙ a c ~ {\displaystyle (c:a:a):4\odot {\widetilde {ac}}} ( 4 0 ∗ : 2 ) {\displaystyle (4_{0}{*}{:}2)}
105P42mcP 42 m c Γ q C 4 v 7 {\displaystyle \Gamma _{q}C_{4v}^{7}} 36a ( c : a : a ) : 4 2 ⋅ m {\displaystyle (c:a:a):4_{2}\cdot m} ( ∗ ⋅ 4 : 4 ⋅ 2 ) {\displaystyle (*{\cdot }4{:}4{\cdot }2)}
106P42bcP 42 b c Γ q C 4 v 8 {\displaystyle \Gamma _{q}C_{4v}^{8}} 39a ( c : a : a ) : 4 ⊙ a ~ {\displaystyle (c:a:a):4\odot {\tilde {a}}} ( 4 2 ∗ : 2 ) {\displaystyle (4_{2}{*}{:}2)}
107I4mmI 4 m m Γ q v C 4 v 9 {\displaystyle \Gamma _{q}^{v}C_{4v}^{9}} 25s ( a + b + c 2 / c : a : a ) : 4 ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4\cdot m} ( ∗ ⋅ 4 ⋅ 4 : 2 ) {\displaystyle (*{\cdot }4{\cdot }4{:}2)}
108I4cmI 4 c m Γ q v C 4 v 10 {\displaystyle \Gamma _{q}^{v}C_{4v}^{10}} 28h ( a + b + c 2 / c : a : a ) : 4 ⋅ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4\cdot {\tilde {c}}} ( ∗ ⋅ 4 : 4 : 2 ) {\displaystyle (*{\cdot }4{:}4{:}2)}
109I41mdI 41 m d Γ q v C 4 v 11 {\displaystyle \Gamma _{q}^{v}C_{4v}^{11}} 34a ( a + b + c 2 / c : a : a ) : 4 1 ⊙ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}\odot m} ( 4 1 ∗ ⋅ 2 ) {\displaystyle (4_{1}{*}{\cdot }2)}
110I41cdI 41 c d Γ q v C 4 v 12 {\displaystyle \Gamma _{q}^{v}C_{4v}^{12}} 35a ( a + b + c 2 / c : a : a ) : 4 1 ⊙ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):4_{1}\odot {\tilde {c}}} ( 4 1 ∗ : 2 ) {\displaystyle (4_{1}{*}{:}2)}
11142m 2 ∗ 2 {\displaystyle 2{*}2} P42mP 4 2 m Γ q D 2 d 1 {\displaystyle \Gamma _{q}D_{2d}^{1}} 32s ( c : a : a ) : 4 ~ : 2 {\displaystyle (c:a:a):{\tilde {4}}:2} ( ∗ 4 ⋅ 42 0 ) {\displaystyle (*4{\cdot }42_{0})}
112P42cP 4 2 c Γ q D 2 d 2 {\displaystyle \Gamma _{q}D_{2d}^{2}} 30h ( c : a : a ) : 4 ~ {\displaystyle (c:a:a):{\tilde {4}}} 2 {\displaystyle 2} ( ∗ 4 : 42 0 ) {\displaystyle (*4{:}42_{0})}
113P421mP 4 21 m Γ q D 2 d 3 {\displaystyle \Gamma _{q}D_{2d}^{3}} 52a ( c : a : a ) : 4 ~ ⋅ a b ~ {\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {ab}}} ( 4 ∗ ¯ ⋅ 2 ) {\displaystyle (4{\bar {*}}{\cdot }2)}
114P421cP 4 21 c Γ q D 2 d 4 {\displaystyle \Gamma _{q}D_{2d}^{4}} 53a ( c : a : a ) : 4 ~ ⋅ a b c ~ {\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {abc}}} ( 4 ∗ ¯ : 2 ) {\displaystyle (4{\bar {*}}{:}2)}
115P4m2P 4 m 2 Γ q D 2 d 5 {\displaystyle \Gamma _{q}D_{2d}^{5}} 33s ( c : a : a ) : 4 ~ ⋅ m {\displaystyle (c:a:a):{\tilde {4}}\cdot m} ( ∗ ⋅ 44 ⋅ 2 ) {\displaystyle (*{\cdot }44{\cdot }2)}
116P4c2P 4 c 2 Γ q D 2 d 6 {\displaystyle \Gamma _{q}D_{2d}^{6}} 31h ( c : a : a ) : 4 ~ ⋅ c ~ {\displaystyle (c:a:a):{\tilde {4}}\cdot {\tilde {c}}} ( ∗ : 44 : 2 ) {\displaystyle (*{:}44{:}2)}
117P4b2P 4 b 2 Γ q D 2 d 7 {\displaystyle \Gamma _{q}D_{2d}^{7}} 32h ( c : a : a ) : 4 ~ ⊙ a ~ {\displaystyle (c:a:a):{\tilde {4}}\odot {\tilde {a}}} ( 4 ∗ ¯ 0 2 0 ) {\displaystyle (4{\bar {*}}_{0}2_{0})}
118P4n2P 4 n 2 Γ q D 2 d 8 {\displaystyle \Gamma _{q}D_{2d}^{8}} 33h ( c : a : a ) : 4 ~ ⋅ a c ~ {\displaystyle (c:a:a):{\tilde {4}}\cdot {\widetilde {ac}}} ( 4 ∗ ¯ 1 2 0 ) {\displaystyle (4{\bar {*}}_{1}2_{0})}
119I4m2I 4 m 2 Γ q v D 2 d 9 {\displaystyle \Gamma _{q}^{v}D_{2d}^{9}} 35s ( a + b + c 2 / c : a : a ) : 4 ~ ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\cdot m} ( ∗ 4 ⋅ 42 1 ) {\displaystyle (*4{\cdot }42_{1})}
120I4c2I 4 c 2 Γ q v D 2 d 10 {\displaystyle \Gamma _{q}^{v}D_{2d}^{10}} 34h ( a + b + c 2 / c : a : a ) : 4 ~ ⋅ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\cdot {\tilde {c}}} ( ∗ 4 : 42 1 ) {\displaystyle (*4{:}42_{1})}
121I42mI 4 2 m Γ q v D 2 d 11 {\displaystyle \Gamma _{q}^{v}D_{2d}^{11}} 34s ( a + b + c 2 / c : a : a ) : 4 ~ : 2 {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}:2} ( ∗ ⋅ 44 : 2 ) {\displaystyle (*{\cdot }44{:}2)}
122I42dI 4 2 d Γ q v D 2 d 12 {\displaystyle \Gamma _{q}^{v}D_{2d}^{12}} 51a ( a + b + c 2 / c : a : a ) : 4 ~ ⊙ 1 2 a b c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right):{\tilde {4}}\odot {\tfrac {1}{2}}{\widetilde {abc}}} ( 4 ∗ ¯ 2 1 ) {\displaystyle (4{\bar {*}}2_{1})}
1234/m 2/m 2/m ∗ 224 {\displaystyle *224} P4/mmmP 4/m 2/m 2/m Γ q D 4 h 1 {\displaystyle \Gamma _{q}D_{4h}^{1}} 36s ( c : a : a ) ⋅ m : 4 ⋅ m {\displaystyle (c:a:a)\cdot m:4\cdot m} [ ∗ ⋅ 4 ⋅ 4 ⋅ 2 ] {\displaystyle [*{\cdot }4{\cdot }4{\cdot }2]}
124P4/mccP 4/m 2/c 2/c Γ q D 4 h 2 {\displaystyle \Gamma _{q}D_{4h}^{2}} 35h ( c : a : a ) ⋅ m : 4 ⋅ c ~ {\displaystyle (c:a:a)\cdot m:4\cdot {\tilde {c}}} [ ∗ : 4 : 4 : 2 ] {\displaystyle [*{:}4{:}4{:}2]}
125P4/nbmP 4/n 2/b 2/m Γ q D 4 h 3 {\displaystyle \Gamma _{q}D_{4h}^{3}} 36h ( c : a : a ) ⋅ a b ~ : 4 ⊙ a ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\odot {\tilde {a}}} ( ∗ 4 0 4 ⋅ 2 ) {\displaystyle (*4_{0}4{\cdot }2)}
126P4/nncP 4/n 2/n 2/c Γ q D 4 h 4 {\displaystyle \Gamma _{q}D_{4h}^{4}} 37h ( c : a : a ) ⋅ a b ~ : 4 ⊙ a c ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\odot {\widetilde {ac}}} ( ∗ 4 0 4 : 2 ) {\displaystyle (*4_{0}4{:}2)}
127P4/mbmP 4/m 21/b 2/m Γ q D 4 h 5 {\displaystyle \Gamma _{q}D_{4h}^{5}} 54a ( c : a : a ) ⋅ m : 4 ⊙ a ~ {\displaystyle (c:a:a)\cdot m:4\odot {\tilde {a}}} [ 4 0 ∗ ⋅ 2 ] {\displaystyle [4_{0}{*}{\cdot }2]}
128P4/mncP 4/m 21/n 2/c Γ q D 4 h 6 {\displaystyle \Gamma _{q}D_{4h}^{6}} 56a ( c : a : a ) ⋅ m : 4 ⊙ a c ~ {\displaystyle (c:a:a)\cdot m:4\odot {\widetilde {ac}}} [ 4 0 ∗ : 2 ] {\displaystyle [4_{0}{*}{:}2]}
129P4/nmmP 4/n 21/m 2/m Γ q D 4 h 7 {\displaystyle \Gamma _{q}D_{4h}^{7}} 55a ( c : a : a ) ⋅ a b ~ : 4 ⋅ m {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\cdot m} ( ∗ 4 ⋅ 4 ⋅ 2 ) {\displaystyle (*4{\cdot }4{\cdot }2)}
130P4/nccP 4/n 21/c 2/c Γ q D 4 h 8 {\displaystyle \Gamma _{q}D_{4h}^{8}} 57a ( c : a : a ) ⋅ a b ~ : 4 ⋅ c ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4\cdot {\tilde {c}}} ( ∗ 4 : 4 : 2 ) {\displaystyle (*4{:}4{:}2)}
131P42/mmcP 42/m 2/m 2/c Γ q D 4 h 9 {\displaystyle \Gamma _{q}D_{4h}^{9}} 60a ( c : a : a ) ⋅ m : 4 2 ⋅ m {\displaystyle (c:a:a)\cdot m:4_{2}\cdot m} [ ∗ ⋅ 4 : 4 ⋅ 2 ] {\displaystyle [*{\cdot }4{:}4{\cdot }2]}
132P42/mcmP 42/m 2/c 2/m Γ q D 4 h 10 {\displaystyle \Gamma _{q}D_{4h}^{10}} 61a ( c : a : a ) ⋅ m : 4 2 ⋅ c ~ {\displaystyle (c:a:a)\cdot m:4_{2}\cdot {\tilde {c}}} [ ∗ : 4 ⋅ 4 : 2 ] {\displaystyle [*{:}4{\cdot }4{:}2]}
133P42/nbcP 42/n 2/b 2/c Γ q D 4 h 11 {\displaystyle \Gamma _{q}D_{4h}^{11}} 63a ( c : a : a ) ⋅ a b ~ : 4 2 ⊙ a ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\odot {\tilde {a}}} ( ∗ 4 2 4 : 2 ) {\displaystyle (*4_{2}4{:}2)}
134P42/nnmP 42/n 2/n 2/m Γ q D 4 h 12 {\displaystyle \Gamma _{q}D_{4h}^{12}} 62a ( c : a : a ) ⋅ a b ~ : 4 2 ⊙ a c ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\odot {\widetilde {ac}}} ( ∗ 4 2 4 ⋅ 2 ) {\displaystyle (*4_{2}4{\cdot }2)}
135P42/mbcP 42/m 21/b 2/c Γ q D 4 h 13 {\displaystyle \Gamma _{q}D_{4h}^{13}} 66a ( c : a : a ) ⋅ m : 4 2 ⊙ a ~ {\displaystyle (c:a:a)\cdot m:4_{2}\odot {\tilde {a}}} [ 4 2 ∗ : 2 ] {\displaystyle [4_{2}{*}{:}2]}
136P42/mnmP 42/m 21/n 2/m Γ q D 4 h 14 {\displaystyle \Gamma _{q}D_{4h}^{14}} 65a ( c : a : a ) ⋅ m : 4 2 ⊙ a c ~ {\displaystyle (c:a:a)\cdot m:4_{2}\odot {\widetilde {ac}}} [ 4 2 ∗ ⋅ 2 ] {\displaystyle [4_{2}{*}{\cdot }2]}
137P42/nmcP 42/n 21/m 2/c Γ q D 4 h 15 {\displaystyle \Gamma _{q}D_{4h}^{15}} 67a ( c : a : a ) ⋅ a b ~ : 4 2 ⋅ m {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\cdot m} ( ∗ 4 ⋅ 4 : 2 ) {\displaystyle (*4{\cdot }4{:}2)}
138P42/ncmP 42/n 21/c 2/m Γ q D 4 h 16 {\displaystyle \Gamma _{q}D_{4h}^{16}} 65a ( c : a : a ) ⋅ a b ~ : 4 2 ⋅ c ~ {\displaystyle (c:a:a)\cdot {\widetilde {ab}}:4_{2}\cdot {\tilde {c}}} ( ∗ 4 : 4 ⋅ 2 ) {\displaystyle (*4{:}4{\cdot }2)}
139I4/mmmI 4/m 2/m 2/m Γ q v D 4 h 17 {\displaystyle \Gamma _{q}^{v}D_{4h}^{17}} 37s ( a + b + c 2 / c : a : a ) ⋅ m : 4 ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4\cdot m} [ ∗ ⋅ 4 ⋅ 4 : 2 ] {\displaystyle [*{\cdot }4{\cdot }4{:}2]}
140I4/mcmI 4/m 2/c 2/m Γ q v D 4 h 18 {\displaystyle \Gamma _{q}^{v}D_{4h}^{18}} 38h ( a + b + c 2 / c : a : a ) ⋅ m : 4 ⋅ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot m:4\cdot {\tilde {c}}} [ ∗ ⋅ 4 : 4 : 2 ] {\displaystyle [*{\cdot }4{:}4{:}2]}
141I41/amdI 41/a 2/m 2/d Γ q v D 4 h 19 {\displaystyle \Gamma _{q}^{v}D_{4h}^{19}} 59a ( a + b + c 2 / c : a : a ) ⋅ a ~ : 4 1 ⊙ m {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}\odot m} ( ∗ 4 1 4 ⋅ 2 ) {\displaystyle (*4_{1}4{\cdot }2)}
142I41/acdI 41/a 2/c 2/d Γ q v D 4 h 20 {\displaystyle \Gamma _{q}^{v}D_{4h}^{20}} 58a ( a + b + c 2 / c : a : a ) ⋅ a ~ : 4 1 ⊙ c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/c:a:a\right)\cdot {\tilde {a}}:4_{1}\odot {\tilde {c}}} ( ∗ 4 1 4 : 2 ) {\displaystyle (*4_{1}4{:}2)}

List of trigonal

Trigonal Bravais lattice
Rhombohedral (R)Hexagonal (P)
Trigonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
1433 33 {\displaystyle 33} P3P 3 Γ h C 3 1 {\displaystyle \Gamma _{h}C_{3}^{1}} 38s ( c : ( a / a ) ) : 3 {\displaystyle (c:(a/a)):3} ( 3 0 3 0 3 0 ) {\displaystyle (3_{0}3_{0}3_{0})}
144P31P 31 Γ h C 3 2 {\displaystyle \Gamma _{h}C_{3}^{2}} 68a ( c : ( a / a ) ) : 3 1 {\displaystyle (c:(a/a)):3_{1}} ( 3 1 3 1 3 1 ) {\displaystyle (3_{1}3_{1}3_{1})}
145P32P 32 Γ h C 3 3 {\displaystyle \Gamma _{h}C_{3}^{3}} 69a ( c : ( a / a ) ) : 3 2 {\displaystyle (c:(a/a)):3_{2}} ( 3 1 3 1 3 1 ) {\displaystyle (3_{1}3_{1}3_{1})}
146R3R 3 Γ r h C 3 4 {\displaystyle \Gamma _{rh}C_{3}^{4}} 39s ( a / a / a ) / 3 {\displaystyle (a/a/a)/3} ( 3 0 3 1 3 2 ) {\displaystyle (3_{0}3_{1}3_{2})}
1473 3 × {\displaystyle 3\times } P3P 3 Γ h C 3 i 1 {\displaystyle \Gamma _{h}C_{3i}^{1}} 51s ( c : ( a / a ) ) : 6 ~ {\displaystyle (c:(a/a)):{\tilde {6}}} ( 63 0 2 ) {\displaystyle (63_{0}2)}
148R3R 3 Γ r h C 3 i 2 {\displaystyle \Gamma _{rh}C_{3i}^{2}} 52s ( a / a / a ) / 6 ~ {\displaystyle (a/a/a)/{\tilde {6}}} ( 63 1 2 ) {\displaystyle (63_{1}2)}
14932 223 {\displaystyle 223} P312P 3 1 2 Γ h D 3 1 {\displaystyle \Gamma _{h}D_{3}^{1}} 45s ( c : ( a / a ) ) : 2 : 3 {\displaystyle (c:(a/a)):2:3} ( ∗ 3 0 3 0 3 0 ) {\displaystyle (*3_{0}3_{0}3_{0})}
150P321P 3 2 1 Γ h D 3 2 {\displaystyle \Gamma _{h}D_{3}^{2}} 44s ( c : ( a / a ) ) ⋅ 2 : 3 {\displaystyle (c:(a/a))\cdot 2:3} ( 3 0 ∗ 3 0 ) {\displaystyle (3_{0}{*}3_{0})}
151P3112P 31 1 2 Γ h D 3 3 {\displaystyle \Gamma _{h}D_{3}^{3}} 72a ( c : ( a / a ) ) : 2 : 3 1 {\displaystyle (c:(a/a)):2:3_{1}} ( ∗ 3 1 3 1 3 1 ) {\displaystyle (*3_{1}3_{1}3_{1})}
152P3121P 31 2 1 Γ h D 3 4 {\displaystyle \Gamma _{h}D_{3}^{4}} 70a ( c : ( a / a ) ) ⋅ 2 : 3 1 {\displaystyle (c:(a/a))\cdot 2:3_{1}} ( 3 1 ∗ 3 1 ) {\displaystyle (3_{1}{*}3_{1})}
153P3212P 32 1 2 Γ h D 3 5 {\displaystyle \Gamma _{h}D_{3}^{5}} 73a ( c : ( a / a ) ) : 2 : 3 2 {\displaystyle (c:(a/a)):2:3_{2}} ( ∗ 3 1 3 1 3 1 ) {\displaystyle (*3_{1}3_{1}3_{1})}
154P3221P 32 2 1 Γ h D 3 6 {\displaystyle \Gamma _{h}D_{3}^{6}} 71a ( c : ( a / a ) ) ⋅ 2 : 3 2 {\displaystyle (c:(a/a))\cdot 2:3_{2}} ( 3 1 ∗ 3 1 ) {\displaystyle (3_{1}{*}3_{1})}
155R32R 3 2 Γ r h D 3 7 {\displaystyle \Gamma _{rh}D_{3}^{7}} 46s ( a / a / a ) / 3 : 2 {\displaystyle (a/a/a)/3:2} ( ∗ 3 0 3 1 3 2 ) {\displaystyle (*3_{0}3_{1}3_{2})}
1563m ∗ 33 {\displaystyle *33} P3m1P 3 m 1 Γ h C 3 v 1 {\displaystyle \Gamma _{h}C_{3v}^{1}} 40s ( c : ( a / a ) ) : m ⋅ 3 {\displaystyle (c:(a/a)):m\cdot 3} ( ∗ ⋅ 3 ⋅ 3 ⋅ 3 ) {\displaystyle (*{\cdot }3{\cdot }3{\cdot }3)}
157P31mP 3 1 m Γ h C 3 v 2 {\displaystyle \Gamma _{h}C_{3v}^{2}} 41s ( c : ( a / a ) ) ⋅ m ⋅ 3 {\displaystyle (c:(a/a))\cdot m\cdot 3} ( 3 0 ∗ ⋅ 3 ) {\displaystyle (3_{0}{*}{\cdot }3)}
158P3c1P 3 c 1 Γ h C 3 v 3 {\displaystyle \Gamma _{h}C_{3v}^{3}} 39h ( c : ( a / a ) ) : c ~ : 3 {\displaystyle (c:(a/a)):{\tilde {c}}:3} ( ∗ : 3 : 3 : 3 ) {\displaystyle (*{:}3{:}3{:}3)}
159P31cP 3 1 c Γ h C 3 v 4 {\displaystyle \Gamma _{h}C_{3v}^{4}} 40h ( c : ( a / a ) ) ⋅ c ~ : 3 {\displaystyle (c:(a/a))\cdot {\tilde {c}}:3} ( 3 0 ∗ : 3 ) {\displaystyle (3_{0}{*}{:}3)}
160R3mR 3 m Γ r h C 3 v 5 {\displaystyle \Gamma _{rh}C_{3v}^{5}} 42s ( a / a / a ) / 3 ⋅ m {\displaystyle (a/a/a)/3\cdot m} ( 3 1 ∗ ⋅ 3 ) {\displaystyle (3_{1}{*}{\cdot }3)}
161R3cR 3 c Γ r h C 3 v 6 {\displaystyle \Gamma _{rh}C_{3v}^{6}} 41h ( a / a / a ) / 3 ⋅ c ~ {\displaystyle (a/a/a)/3\cdot {\tilde {c}}} ( 3 1 ∗ : 3 ) {\displaystyle (3_{1}{*}{:}3)}
1623 2/m 2 ∗ 3 {\displaystyle 2{*}3} P31mP 3 1 2/m Γ h D 3 d 1 {\displaystyle \Gamma _{h}D_{3d}^{1}} 56s ( c : ( a / a ) ) ⋅ m ⋅ 6 ~ {\displaystyle (c:(a/a))\cdot m\cdot {\tilde {6}}} ( ∗ ⋅ 63 0 2 ) {\displaystyle (*{\cdot }63_{0}2)}
163P31cP 3 1 2/c Γ h D 3 d 2 {\displaystyle \Gamma _{h}D_{3d}^{2}} 46h ( c : ( a / a ) ) ⋅ c ~ ⋅ 6 ~ {\displaystyle (c:(a/a))\cdot {\tilde {c}}\cdot {\tilde {6}}} ( ∗ : 63 0 2 ) {\displaystyle (*{:}63_{0}2)}
164P3m1P 3 2/m 1 Γ h D 3 d 3 {\displaystyle \Gamma _{h}D_{3d}^{3}} 55s ( c : ( a / a ) ) : m ⋅ 6 ~ {\displaystyle (c:(a/a)):m\cdot {\tilde {6}}} ( ∗ 6 ⋅ 3 ⋅ 2 ) {\displaystyle (*6{\cdot }3{\cdot }2)}
165P3c1P 3 2/c 1 Γ h D 3 d 4 {\displaystyle \Gamma _{h}D_{3d}^{4}} 45h ( c : ( a / a ) ) : c ~ ⋅ 6 ~ {\displaystyle (c:(a/a)):{\tilde {c}}\cdot {\tilde {6}}} ( ∗ 6 : 3 : 2 ) {\displaystyle (*6{:}3{:}2)}
166R3mR 3 2/m Γ r h D 3 d 5 {\displaystyle \Gamma _{rh}D_{3d}^{5}} 57s ( a / a / a ) / 6 ~ ⋅ m {\displaystyle (a/a/a)/{\tilde {6}}\cdot m} ( ∗ ⋅ 63 1 2 ) {\displaystyle (*{\cdot }63_{1}2)}
167R3cR 3 2/c Γ r h D 3 d 6 {\displaystyle \Gamma _{rh}D_{3d}^{6}} 47h ( a / a / a ) / 6 ~ ⋅ c ~ {\displaystyle (a/a/a)/{\tilde {6}}\cdot {\tilde {c}}} ( ∗ : 63 1 2 ) {\displaystyle (*{:}63_{1}2)}

List of hexagonal

Hexagonal Bravais lattice
Hexagonal crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
1686 66 {\displaystyle 66} P6P 6 Γ h C 6 1 {\displaystyle \Gamma _{h}C_{6}^{1}} 49s ( c : ( a / a ) ) : 6 {\displaystyle (c:(a/a)):6} ( 6 0 3 0 2 0 ) {\displaystyle (6_{0}3_{0}2_{0})}
169P61P 61 Γ h C 6 2 {\displaystyle \Gamma _{h}C_{6}^{2}} 74a ( c : ( a / a ) ) : 6 1 {\displaystyle (c:(a/a)):6_{1}} ( 6 1 3 1 2 1 ) {\displaystyle (6_{1}3_{1}2_{1})}
170P65P 65 Γ h C 6 3 {\displaystyle \Gamma _{h}C_{6}^{3}} 75a ( c : ( a / a ) ) : 6 5 {\displaystyle (c:(a/a)):6_{5}} ( 6 1 3 1 2 1 ) {\displaystyle (6_{1}3_{1}2_{1})}
171P62P 62 Γ h C 6 4 {\displaystyle \Gamma _{h}C_{6}^{4}} 76a ( c : ( a / a ) ) : 6 2 {\displaystyle (c:(a/a)):6_{2}} ( 6 2 3 2 2 0 ) {\displaystyle (6_{2}3_{2}2_{0})}
172P64P 64 Γ h C 6 5 {\displaystyle \Gamma _{h}C_{6}^{5}} 77a ( c : ( a / a ) ) : 6 4 {\displaystyle (c:(a/a)):6_{4}} ( 6 2 3 2 2 0 ) {\displaystyle (6_{2}3_{2}2_{0})}
173P63P 63 Γ h C 6 6 {\displaystyle \Gamma _{h}C_{6}^{6}} 78a ( c : ( a / a ) ) : 6 3 {\displaystyle (c:(a/a)):6_{3}} ( 6 3 3 0 2 1 ) {\displaystyle (6_{3}3_{0}2_{1})}
1746 3 ∗ {\displaystyle 3*} P6P 6 Γ h C 3 h 1 {\displaystyle \Gamma _{h}C_{3h}^{1}} 43s ( c : ( a / a ) ) : 3 : m {\displaystyle (c:(a/a)):3:m} [ 3 0 3 0 3 0 ] {\displaystyle [3_{0}3_{0}3_{0}]}
1756/m 6 ∗ {\displaystyle 6*} P6/mP 6/m Γ h C 6 h 1 {\displaystyle \Gamma _{h}C_{6h}^{1}} 53s ( c : ( a / a ) ) ⋅ m : 6 {\displaystyle (c:(a/a))\cdot m:6} [ 6 0 3 0 2 0 ] {\displaystyle [6_{0}3_{0}2_{0}]}
176P63/mP 63/m Γ h C 6 h 2 {\displaystyle \Gamma _{h}C_{6h}^{2}} 81a ( c : ( a / a ) ) ⋅ m : 6 3 {\displaystyle (c:(a/a))\cdot m:6_{3}} [ 6 3 3 0 2 1 ] {\displaystyle [6_{3}3_{0}2_{1}]}
177622 226 {\displaystyle 226} P622P 6 2 2 Γ h D 6 1 {\displaystyle \Gamma _{h}D_{6}^{1}} 54s ( c : ( a / a ) ) ⋅ 2 : 6 {\displaystyle (c:(a/a))\cdot 2:6} ( ∗ 6 0 3 0 2 0 ) {\displaystyle (*6_{0}3_{0}2_{0})}
178P6122P 61 2 2 Γ h D 6 2 {\displaystyle \Gamma _{h}D_{6}^{2}} 82a ( c : ( a / a ) ) ⋅ 2 : 6 1 {\displaystyle (c:(a/a))\cdot 2:6_{1}} ( ∗ 6 1 3 1 2 1 ) {\displaystyle (*6_{1}3_{1}2_{1})}
179P6522P 65 2 2 Γ h D 6 3 {\displaystyle \Gamma _{h}D_{6}^{3}} 83a ( c : ( a / a ) ) ⋅ 2 : 6 5 {\displaystyle (c:(a/a))\cdot 2:6_{5}} ( ∗ 6 1 3 1 2 1 ) {\displaystyle (*6_{1}3_{1}2_{1})}
180P6222P 62 2 2 Γ h D 6 4 {\displaystyle \Gamma _{h}D_{6}^{4}} 84a ( c : ( a / a ) ) ⋅ 2 : 6 2 {\displaystyle (c:(a/a))\cdot 2:6_{2}} ( ∗ 6 2 3 2 2 0 ) {\displaystyle (*6_{2}3_{2}2_{0})}
181P6422P 64 2 2 Γ h D 6 5 {\displaystyle \Gamma _{h}D_{6}^{5}} 85a ( c : ( a / a ) ) ⋅ 2 : 6 4 {\displaystyle (c:(a/a))\cdot 2:6_{4}} ( ∗ 6 2 3 2 2 0 ) {\displaystyle (*6_{2}3_{2}2_{0})}
182P6322P 63 2 2 Γ h D 6 6 {\displaystyle \Gamma _{h}D_{6}^{6}} 86a ( c : ( a / a ) ) ⋅ 2 : 6 3 {\displaystyle (c:(a/a))\cdot 2:6_{3}} ( ∗ 6 3 3 0 2 1 ) {\displaystyle (*6_{3}3_{0}2_{1})}
1836mm ∗ 66 {\displaystyle *66} P6mmP 6 m m Γ h C 6 v 1 {\displaystyle \Gamma _{h}C_{6v}^{1}} 50s ( c : ( a / a ) ) : m ⋅ 6 {\displaystyle (c:(a/a)):m\cdot 6} ( ∗ ⋅ 6 ⋅ 3 ⋅ 2 ) {\displaystyle (*{\cdot }6{\cdot }3{\cdot }2)}
184P6ccP 6 c c Γ h C 6 v 2 {\displaystyle \Gamma _{h}C_{6v}^{2}} 44h ( c : ( a / a ) ) : c ~ ⋅ 6 {\displaystyle (c:(a/a)):{\tilde {c}}\cdot 6} ( ∗ : 6 : 3 : 2 ) {\displaystyle (*{:}6{:}3{:}2)}
185P63cmP 63 c m Γ h C 6 v 3 {\displaystyle \Gamma _{h}C_{6v}^{3}} 80a ( c : ( a / a ) ) : c ~ ⋅ 6 3 {\displaystyle (c:(a/a)):{\tilde {c}}\cdot 6_{3}} ( ∗ ⋅ 6 : 3 : 2 ) {\displaystyle (*{\cdot }6{:}3{:}2)}
186P63mcP 63 m c Γ h C 6 v 4 {\displaystyle \Gamma _{h}C_{6v}^{4}} 79a ( c : ( a / a ) ) : m ⋅ 6 3 {\displaystyle (c:(a/a)):m\cdot 6_{3}} ( ∗ : 6 ⋅ 3 ⋅ 2 ) {\displaystyle (*{:}6{\cdot }3{\cdot }2)}
1876m2 ∗ 223 {\displaystyle *223} P6m2P 6 m 2 Γ h D 3 h 1 {\displaystyle \Gamma _{h}D_{3h}^{1}} 48s ( c : ( a / a ) ) : m ⋅ 3 : m {\displaystyle (c:(a/a)):m\cdot 3:m} [ ∗ ⋅ 3 ⋅ 3 ⋅ 3 ] {\displaystyle [*{\cdot }3{\cdot }3{\cdot }3]}
188P6c2P 6 c 2 Γ h D 3 h 2 {\displaystyle \Gamma _{h}D_{3h}^{2}} 43h ( c : ( a / a ) ) : c ~ ⋅ 3 : m {\displaystyle (c:(a/a)):{\tilde {c}}\cdot 3:m} [ ∗ : 3 : 3 : 3 ] {\displaystyle [*{:}3{:}3{:}3]}
189P62mP 6 2 m Γ h D 3 h 3 {\displaystyle \Gamma _{h}D_{3h}^{3}} 47s ( c : ( a / a ) ) ⋅ m : 3 ⋅ m {\displaystyle (c:(a/a))\cdot m:3\cdot m} [ 3 0 ∗ ⋅ 3 ] {\displaystyle [3_{0}{*}{\cdot }3]}
190P62cP 6 2 c Γ h D 3 h 4 {\displaystyle \Gamma _{h}D_{3h}^{4}} 42h ( c : ( a / a ) ) ⋅ m : 3 ⋅ c ~ {\displaystyle (c:(a/a))\cdot m:3\cdot {\tilde {c}}} [ 3 0 ∗ : 3 ] {\displaystyle [3_{0}{*}{:}3]}
1916/m 2/m 2/m ∗ 226 {\displaystyle *226} P6/mmmP 6/m 2/m 2/m Γ h D 6 h 1 {\displaystyle \Gamma _{h}D_{6h}^{1}} 58s ( c : ( a / a ) ) ⋅ m : 6 ⋅ m {\displaystyle (c:(a/a))\cdot m:6\cdot m} [ ∗ ⋅ 6 ⋅ 3 ⋅ 2 ] {\displaystyle [*{\cdot }6{\cdot }3{\cdot }2]}
192P6/mccP 6/m 2/c 2/c Γ h D 6 h 2 {\displaystyle \Gamma _{h}D_{6h}^{2}} 48h ( c : ( a / a ) ) ⋅ m : 6 ⋅ c ~ {\displaystyle (c:(a/a))\cdot m:6\cdot {\tilde {c}}} [ ∗ : 6 : 3 : 2 ] {\displaystyle [*{:}6{:}3{:}2]}
193P63/mcmP 63/m 2/c 2/m Γ h D 6 h 3 {\displaystyle \Gamma _{h}D_{6h}^{3}} 87a ( c : ( a / a ) ) ⋅ m : 6 3 ⋅ c ~ {\displaystyle (c:(a/a))\cdot m:6_{3}\cdot {\tilde {c}}} [ ∗ ⋅ 6 : 3 : 2 ] {\displaystyle [*{\cdot }6{:}3{:}2]}
194P63/mmcP 63/m 2/m 2/c Γ h D 6 h 4 {\displaystyle \Gamma _{h}D_{6h}^{4}} 88a ( c : ( a / a ) ) ⋅ m : 6 3 ⋅ m {\displaystyle (c:(a/a))\cdot m:6_{3}\cdot m} [ ∗ : 6 ⋅ 3 ⋅ 2 ] {\displaystyle [*{:}6{\cdot }3{\cdot }2]}

List of cubic

Cubic Bravais lattice
Simple (P)Body centered (I)Face centered (F)
Example cubic structures Cubic crystal system
NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovConwayFibrifold (preserving z {\displaystyle z} )Fibrifold (preserving x {\displaystyle x} , y {\displaystyle y} , z {\displaystyle z} )
19523 332 {\displaystyle 332} P23P 2 3 Γ c T 1 {\displaystyle \Gamma _{c}T^{1}} 59s ( a : a : a ) : 2 / 3 {\displaystyle \left(a:a:a\right):2/3} 2 ∘ {\displaystyle 2^{\circ }} ( ∗ 2 0 2 0 2 0 2 0 ) : 3 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}3} ( ∗ 2 0 2 0 2 0 2 0 ) : 3 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}3}
196F23F 2 3 Γ c f T 2 {\displaystyle \Gamma _{c}^{f}T^{2}} 61s ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 2 / 3 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):2/3} 1 ∘ {\displaystyle 1^{\circ }} ( ∗ 2 0 2 1 2 0 2 1 ) : 3 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}3} ( ∗ 2 0 2 1 2 0 2 1 ) : 3 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}3}
197I23I 2 3 Γ c v T 3 {\displaystyle \Gamma _{c}^{v}T^{3}} 60s ( a + b + c 2 / a : a : a ) : 2 / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):2/3} 4 ∘ ∘ {\displaystyle 4^{\circ \circ }} ( 2 1 ∗ 2 0 2 0 ) : 3 {\displaystyle (2_{1}{*}2_{0}2_{0}){:}3} ( 2 1 ∗ 2 0 2 0 ) : 3 {\displaystyle (2_{1}{*}2_{0}2_{0}){:}3}
198P213P 21 3 Γ c T 4 {\displaystyle \Gamma _{c}T^{4}} 89a ( a : a : a ) : 2 1 / 3 {\displaystyle \left(a:a:a\right):2_{1}/3} 1 ∘ / 4 {\displaystyle 1^{\circ }/4} ( 2 1 2 1 × ¯ ) : 3 {\displaystyle (2_{1}2_{1}{\bar {\times }}){:}3} ( 2 1 2 1 × ¯ ) : 3 {\displaystyle (2_{1}2_{1}{\bar {\times }}){:}3}
199I213I 21 3 Γ c v T 5 {\displaystyle \Gamma _{c}^{v}T^{5}} 90a ( a + b + c 2 / a : a : a ) : 2 1 / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):2_{1}/3} 2 ∘ / 4 {\displaystyle 2^{\circ }/4} ( 2 0 ∗ 2 1 2 1 ) : 3 {\displaystyle (2_{0}{*}2_{1}2_{1}){:}3} ( 2 0 ∗ 2 1 2 1 ) : 3 {\displaystyle (2_{0}{*}2_{1}2_{1}){:}3}
2002/m 3 3 ∗ 2 {\displaystyle 3{*}2} Pm3P 2/m 3 Γ c T h 1 {\displaystyle \Gamma _{c}T_{h}^{1}} 62s ( a : a : a ) ⋅ m / 6 ~ {\displaystyle \left(a:a:a\right)\cdot m/{\tilde {6}}} 4 − {\displaystyle 4^{-}} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] : 3 {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}3} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] : 3 {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}3}
201Pn3P 2/n 3 Γ c T h 2 {\displaystyle \Gamma _{c}T_{h}^{2}} 49h ( a : a : a ) ⋅ a b ~ / 6 ~ {\displaystyle \left(a:a:a\right)\cdot {\widetilde {ab}}/{\tilde {6}}} 4 ∘ + {\displaystyle 4^{\circ +}} ( 2 ∗ ¯ 1 2 0 2 0 ) : 3 {\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}3} ( 2 ∗ ¯ 1 2 0 2 0 ) : 3 {\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}3}
202Fm3F 2/m 3 Γ c f T h 3 {\displaystyle \Gamma _{c}^{f}T_{h}^{3}} 64s ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) ⋅ m / 6 ~ {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right)\cdot m/{\tilde {6}}} 2 − {\displaystyle 2^{-}} [ ∗ ⋅ 2 ⋅ 2 : 2 : 2 ] : 3 {\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}3} [ ∗ ⋅ 2 ⋅ 2 : 2 : 2 ] : 3 {\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}3}
203Fd3F 2/d 3 Γ c f T h 4 {\displaystyle \Gamma _{c}^{f}T_{h}^{4}} 50h ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) ⋅ 1 2 a b ~ / 6 ~ {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right)\cdot {\tfrac {1}{2}}{\widetilde {ab}}/{\tilde {6}}} 2 ∘ + {\displaystyle 2^{\circ +}} ( 2 ∗ ¯ 2 0 2 1 ) : 3 {\displaystyle (2{\bar {*}}2_{0}2_{1}){:}3} ( 2 ∗ ¯ 2 0 2 1 ) : 3 {\displaystyle (2{\bar {*}}2_{0}2_{1}){:}3}
204Im3I 2/m 3 Γ c v T h 5 {\displaystyle \Gamma _{c}^{v}T_{h}^{5}} 63s ( a + b + c 2 / a : a : a ) ⋅ m / 6 ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right)\cdot m/{\tilde {6}}} 8 − ∘ {\displaystyle 8^{-\circ }} [ 2 1 ∗ ⋅ 2 ⋅ 2 ] : 3 {\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}3} [ 2 1 ∗ ⋅ 2 ⋅ 2 ] : 3 {\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}3}
205Pa3P 21/a 3 Γ c T h 6 {\displaystyle \Gamma _{c}T_{h}^{6}} 91a ( a : a : a ) ⋅ a ~ / 6 ~ {\displaystyle \left(a:a:a\right)\cdot {\tilde {a}}/{\tilde {6}}} 2 − / 4 {\displaystyle 2^{-}/4} ( 2 1 2 ∗ ¯ : ) : 3 {\displaystyle (2_{1}2{\bar {*}}{:}){:}3} ( 2 1 2 ∗ ¯ : ) : 3 {\displaystyle (2_{1}2{\bar {*}}{:}){:}3}
206Ia3I 21/a 3 Γ c v T h 7 {\displaystyle \Gamma _{c}^{v}T_{h}^{7}} 92a ( a + b + c 2 / a : a : a ) ⋅ a ~ / 6 ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right)\cdot {\tilde {a}}/{\tilde {6}}} 4 − / 4 {\displaystyle 4^{-}/4} ( ∗ 2 1 2 : 2 : 2 ) : 3 {\displaystyle (*2_{1}2{:}2{:}2){:}3} ( ∗ 2 1 2 : 2 : 2 ) : 3 {\displaystyle (*2_{1}2{:}2{:}2){:}3}
207432 432 {\displaystyle 432} P432P 4 3 2 Γ c O 1 {\displaystyle \Gamma _{c}O^{1}} 68s ( a : a : a ) : 4 / 3 {\displaystyle \left(a:a:a\right):4/3} 4 ∘ − {\displaystyle 4^{\circ -}} ( ∗ 4 0 4 0 2 0 ) : 3 {\displaystyle (*4_{0}4_{0}2_{0}){:}3} ( ∗ 2 0 2 0 2 0 2 0 ) : 6 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
208P4232P 42 3 2 Γ c O 2 {\displaystyle \Gamma _{c}O^{2}} 98a ( a : a : a ) : 4 2 / / 3 {\displaystyle \left(a:a:a\right):4_{2}//3} 4 + {\displaystyle 4^{+}} ( ∗ 4 2 4 2 2 0 ) : 3 {\displaystyle (*4_{2}4_{2}2_{0}){:}3} ( ∗ 2 0 2 0 2 0 2 0 ) : 6 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
209F432F 4 3 2 Γ c f O 3 {\displaystyle \Gamma _{c}^{f}O^{3}} 70s ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 / 3 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/3} 2 ∘ − {\displaystyle 2^{\circ -}} ( ∗ 4 2 4 0 2 1 ) : 3 {\displaystyle (*4_{2}4_{0}2_{1}){:}3} ( ∗ 2 0 2 1 2 0 2 1 ) : 6 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
210F4132F 41 3 2 Γ c f O 4 {\displaystyle \Gamma _{c}^{f}O^{4}} 97a ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 1 / / 3 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//3} 2 + {\displaystyle 2^{+}} ( ∗ 4 3 4 1 2 0 ) : 3 {\displaystyle (*4_{3}4_{1}2_{0}){:}3} ( ∗ 2 0 2 1 2 0 2 1 ) : 6 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
211I432I 4 3 2 Γ c v O 5 {\displaystyle \Gamma _{c}^{v}O^{5}} 69s ( a + b + c 2 / a : a : a ) : 4 / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4/3} 8 + ∘ {\displaystyle 8^{+\circ }} ( 4 2 4 0 2 1 ) : 3 {\displaystyle (4_{2}4_{0}2_{1}){:}3} ( 2 1 ∗ 2 0 2 0 ) : 6 {\displaystyle (2_{1}{*}2_{0}2_{0}){:}6}
212P4332P 43 3 2 Γ c O 6 {\displaystyle \Gamma _{c}O^{6}} 94a ( a : a : a ) : 4 3 / / 3 {\displaystyle \left(a:a:a\right):4_{3}//3} 2 + / 4 {\displaystyle 2^{+}/4} ( 4 1 ∗ 2 1 ) : 3 {\displaystyle (4_{1}{*}2_{1}){:}3} ( 2 1 2 1 × ¯ ) : 6 {\displaystyle (2_{1}2_{1}{\bar {\times }}){:}6}
213P4132P 41 3 2 Γ c O 7 {\displaystyle \Gamma _{c}O^{7}} 95a ( a : a : a ) : 4 1 / / 3 {\displaystyle \left(a:a:a\right):4_{1}//3} 2 + / 4 {\displaystyle 2^{+}/4} ( 4 1 ∗ 2 1 ) : 3 {\displaystyle (4_{1}{*}2_{1}){:}3} ( 2 1 2 1 × ¯ ) : 6 {\displaystyle (2_{1}2_{1}{\bar {\times }}){:}6}
214I4132I 41 3 2 Γ c v O 8 {\displaystyle \Gamma _{c}^{v}O^{8}} 96a ( a + b + c 2 / : a : a : a ) : 4 1 / / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/:a:a:a\right):4_{1}//3} 4 + / 4 {\displaystyle 4^{+}/4} ( ∗ 4 3 4 1 2 0 ) : 3 {\displaystyle (*4_{3}4_{1}2_{0}){:}3} ( 2 0 ∗ 2 1 2 1 ) : 6 {\displaystyle (2_{0}{*}2_{1}2_{1}){:}6}
21543m ∗ 332 {\displaystyle *332} P43mP 4 3 m Γ c T d 1 {\displaystyle \Gamma _{c}T_{d}^{1}} 65s ( a : a : a ) : 4 ~ / 3 {\displaystyle \left(a:a:a\right):{\tilde {4}}/3} 2 ∘ : 2 {\displaystyle 2^{\circ }{:}2} ( ∗ 4 ⋅ 42 0 ) : 3 {\displaystyle (*4{\cdot }42_{0}){:}3} ( ∗ 2 0 2 0 2 0 2 0 ) : 6 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
216F43mF 4 3 m Γ c f T d 2 {\displaystyle \Gamma _{c}^{f}T_{d}^{2}} 67s ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 ~ / 3 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):{\tilde {4}}/3} 1 ∘ : 2 {\displaystyle 1^{\circ }{:}2} ( ∗ 4 ⋅ 42 1 ) : 3 {\displaystyle (*4{\cdot }42_{1}){:}3} ( ∗ 2 0 2 1 2 0 2 1 ) : 6 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
217I43mI 4 3 m Γ c v T d 3 {\displaystyle \Gamma _{c}^{v}T_{d}^{3}} 66s ( a + b + c 2 / a : a : a ) : 4 ~ / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):{\tilde {4}}/3} 4 ∘ : 2 {\displaystyle 4^{\circ }{:}2} ( ∗ ⋅ 44 : 2 ) : 3 {\displaystyle (*{\cdot }44{:}2){:}3} ( 2 1 ∗ 2 0 2 0 ) : 6 {\displaystyle (2_{1}{*}2_{0}2_{0}){:}6}
218P43nP 4 3 n Γ c T d 4 {\displaystyle \Gamma _{c}T_{d}^{4}} 51h ( a : a : a ) : 4 ~ / / 3 {\displaystyle \left(a:a:a\right):{\tilde {4}}//3} 4 ∘ {\displaystyle 4^{\circ }} ( ∗ 4 : 42 0 ) : 3 {\displaystyle (*4{:}42_{0}){:}3} ( ∗ 2 0 2 0 2 0 2 0 ) : 6 {\displaystyle (*2_{0}2_{0}2_{0}2_{0}){:}6}
219F43cF 4 3 c Γ c f T d 5 {\displaystyle \Gamma _{c}^{f}T_{d}^{5}} 52h ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 ~ / / 3 {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):{\tilde {4}}//3} 2 ∘ ∘ {\displaystyle 2^{\circ \circ }} ( ∗ 4 : 42 1 ) : 3 {\displaystyle (*4{:}42_{1}){:}3} ( ∗ 2 0 2 1 2 0 2 1 ) : 6 {\displaystyle (*2_{0}2_{1}2_{0}2_{1}){:}6}
220I43dI 4 3 d Γ c v T d 6 {\displaystyle \Gamma _{c}^{v}T_{d}^{6}} 93a ( a + b + c 2 / a : a : a ) : 4 ~ / / 3 {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):{\tilde {4}}//3} 4 ∘ / 4 {\displaystyle 4^{\circ }/4} ( 4 ∗ ¯ 2 1 ) : 3 {\displaystyle (4{\bar {*}}2_{1}){:}3} ( 2 0 ∗ 2 1 2 1 ) : 6 {\displaystyle (2_{0}{*}2_{1}2_{1}){:}6}
2214/m 3 2/m ∗ 432 {\displaystyle *432} Pm3mP 4/m 3 2/m Γ c O h 1 {\displaystyle \Gamma _{c}O_{h}^{1}} 71s ( a : a : a ) : 4 / 6 ~ ⋅ m {\displaystyle \left(a:a:a\right):4/{\tilde {6}}\cdot m} 4 − : 2 {\displaystyle 4^{-}{:}2} [ ∗ ⋅ 4 ⋅ 4 ⋅ 2 ] : 3 {\displaystyle [*{\cdot }4{\cdot }4{\cdot }2]{:}3} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] : 6 {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}6}
222Pn3nP 4/n 3 2/n Γ c O h 2 {\displaystyle \Gamma _{c}O_{h}^{2}} 53h ( a : a : a ) : 4 / 6 ~ ⋅ a b c ~ {\displaystyle \left(a:a:a\right):4/{\tilde {6}}\cdot {\widetilde {abc}}} 8 ∘ ∘ {\displaystyle 8^{\circ \circ }} ( ∗ 4 0 4 : 2 ) : 3 {\displaystyle (*4_{0}4{:}2){:}3} ( 2 ∗ ¯ 1 2 0 2 0 ) : 6 {\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}6}
223Pm3nP 42/m 3 2/n Γ c O h 3 {\displaystyle \Gamma _{c}O_{h}^{3}} 102a ( a : a : a ) : 4 2 / / 6 ~ ⋅ a b c ~ {\displaystyle \left(a:a:a\right):4_{2}//{\tilde {6}}\cdot {\widetilde {abc}}} 8 ∘ {\displaystyle 8^{\circ }} [ ∗ ⋅ 4 : 4 ⋅ 2 ] : 3 {\displaystyle [*{\cdot }4{:}4{\cdot }2]{:}3} [ ∗ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ] : 6 {\displaystyle [*{\cdot }2{\cdot }2{\cdot }2{\cdot }2]{:}6}
224Pn3mP 42/n 3 2/m Γ c O h 4 {\displaystyle \Gamma _{c}O_{h}^{4}} 103a ( a : a : a ) : 4 2 / / 6 ~ ⋅ m {\displaystyle \left(a:a:a\right):4_{2}//{\tilde {6}}\cdot m} 4 + : 2 {\displaystyle 4^{+}{:}2} ( ∗ 4 2 4 ⋅ 2 ) : 3 {\displaystyle (*4_{2}4{\cdot }2){:}3} ( 2 ∗ ¯ 1 2 0 2 0 ) : 6 {\displaystyle (2{\bar {*}}_{1}2_{0}2_{0}){:}6}
225Fm3mF 4/m 3 2/m Γ c f O h 5 {\displaystyle \Gamma _{c}^{f}O_{h}^{5}} 73s ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 / 6 ~ ⋅ m {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/{\tilde {6}}\cdot m} 2 − : 2 {\displaystyle 2^{-}{:}2} [ ∗ ⋅ 4 ⋅ 4 : 2 ] : 3 {\displaystyle [*{\cdot }4{\cdot }4{:}2]{:}3} [ ∗ ⋅ 2 ⋅ 2 : 2 : 2 ] : 6 {\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}6}
226Fm3cF 4/m 3 2/c Γ c f O h 6 {\displaystyle \Gamma _{c}^{f}O_{h}^{6}} 54h ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 / 6 ~ ⋅ c ~ {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4/{\tilde {6}}\cdot {\tilde {c}}} 4 − − {\displaystyle 4^{--}} [ ∗ ⋅ 4 : 4 : 2 ] : 3 {\displaystyle [*{\cdot }4{:}4{:}2]{:}3} [ ∗ ⋅ 2 ⋅ 2 : 2 : 2 ] : 6 {\displaystyle [*{\cdot }2{\cdot }2{:}2{:}2]{:}6}
227Fd3mF 41/d 3 2/m Γ c f O h 7 {\displaystyle \Gamma _{c}^{f}O_{h}^{7}} 100a ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 1 / / 6 ~ ⋅ m {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//{\tilde {6}}\cdot m} 2 + : 2 {\displaystyle 2^{+}{:}2} ( ∗ 4 1 4 ⋅ 2 ) : 3 {\displaystyle (*4_{1}4{\cdot }2){:}3} ( 2 ∗ ¯ 2 0 2 1 ) : 6 {\displaystyle (2{\bar {*}}2_{0}2_{1}){:}6}
228Fd3cF 41/d 3 2/c Γ c f O h 8 {\displaystyle \Gamma _{c}^{f}O_{h}^{8}} 101a ( a + c 2 / b + c 2 / a + b 2 : a : a : a ) : 4 1 / / 6 ~ ⋅ c ~ {\displaystyle \left({\tfrac {a+c}{2}}/{\tfrac {b+c}{2}}/{\tfrac {a+b}{2}}:a:a:a\right):4_{1}//{\tilde {6}}\cdot {\tilde {c}}} 4 + + {\displaystyle 4^{++}} ( ∗ 4 1 4 : 2 ) : 3 {\displaystyle (*4_{1}4{:}2){:}3} ( 2 ∗ ¯ 2 0 2 1 ) : 6 {\displaystyle (2{\bar {*}}2_{0}2_{1}){:}6}
229Im3mI 4/m 3 2/m Γ c v O h 9 {\displaystyle \Gamma _{c}^{v}O_{h}^{9}} 72s ( a + b + c 2 / a : a : a ) : 4 / 6 ~ ⋅ m {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4/{\tilde {6}}\cdot m} 8 ∘ : 2 {\displaystyle 8^{\circ }{:}2} [ ∗ ⋅ 4 ⋅ 4 : 2 ] : 3 {\displaystyle [*{\cdot }4{\cdot }4{:}2]{:}3} [ 2 1 ∗ ⋅ 2 ⋅ 2 ] : 6 {\displaystyle [2_{1}{*}{\cdot }2{\cdot }2]{:}6}
230Ia3dI 41/a 3 2/d Γ c v O h 10 {\displaystyle \Gamma _{c}^{v}O_{h}^{10}} 99a ( a + b + c 2 / a : a : a ) : 4 1 / / 6 ~ ⋅ 1 2 a b c ~ {\displaystyle \left({\tfrac {a+b+c}{2}}/a:a:a\right):4_{1}//{\tilde {6}}\cdot {\tfrac {1}{2}}{\widetilde {abc}}} 8 ∘ / 4 {\displaystyle 8^{\circ }/4} ( ∗ 4 1 4 : 2 ) : 3 {\displaystyle (*4_{1}4{:}2){:}3} ( ∗ 2 1 2 : 2 : 2 ) : 6 {\displaystyle (*2_{1}2{:}2{:}2){:}6}

Notes

Wikimedia Commons has media related to Space groups.

References

  1. The symbol e {\displaystyle e} was introduced by the IUCR in 1992. Prior to this, the space groups Aem2 (No. 39), Aea2 (No. 41), Cmce (No. 64), Cmme (No. 67), and Ccce (No. 68) were known as Abm2 (No. 39), Aba2 (No. 41), Cmca (No. 64), Cmma (No. 67), and Ccca (No. 68) respectively. Historical literature may refer to the old names, but their meaning is unchanged.[1] /wiki/International_Union_of_Crystallography

  2. Bradley, C. J.; Cracknell, A. P. (2010). The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford New York: Clarendon Press. pp. 127–134. ISBN 978-0-19-958258-7. OCLC 859155300. 978-0-19-958258-7