Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Negativity (quantum mechanics)
Measure of quantum entanglement in quantum mechanics

In quantum mechanics, negativity is a measure of quantum entanglement which is easy to compute. It is a measure deriving from the PPT criterion for separability. It has been shown to be an entanglement monotone and hence a proper measure of entanglement.

We don't have any images related to Negativity (quantum mechanics) yet.
We don't have any YouTube videos related to Negativity (quantum mechanics) yet.
We don't have any PDF documents related to Negativity (quantum mechanics) yet.
We don't have any Books related to Negativity (quantum mechanics) yet.
We don't have any archived web articles related to Negativity (quantum mechanics) yet.

Definition

The negativity of a subsystem A {\displaystyle A} can be defined in terms of a density matrix ρ {\displaystyle \rho } as:

N ( ρ ) ≡ | | ρ Γ A | | 1 − 1 2 {\displaystyle {\mathcal {N}}(\rho )\equiv {\frac {||\rho ^{\Gamma _{A}}||_{1}-1}{2}}}

where:

  • ρ Γ A {\displaystyle \rho ^{\Gamma _{A}}} is the partial transpose of ρ {\displaystyle \rho } with respect to subsystem A {\displaystyle A}
  • | | X | | 1 = Tr | X | = Tr X † X {\displaystyle ||X||_{1}={\text{Tr}}|X|={\text{Tr}}{\sqrt {X^{\dagger }X}}} is the trace norm or the sum of the singular values of the operator X {\displaystyle X} .

An alternative and equivalent definition is the absolute sum of the negative eigenvalues of ρ Γ A {\displaystyle \rho ^{\Gamma _{A}}} :

N ( ρ ) = | ∑ λ i < 0 λ i | = ∑ i | λ i | − λ i 2 {\displaystyle {\mathcal {N}}(\rho )=\left|\sum _{\lambda _{i}<0}\lambda _{i}\right|=\sum _{i}{\frac {|\lambda _{i}|-\lambda _{i}}{2}}}

where λ i {\displaystyle \lambda _{i}} are all of the eigenvalues.

Properties

N ( ∑ i p i ρ i ) ≤ ∑ i p i N ( ρ i ) {\displaystyle {\mathcal {N}}(\sum _{i}p_{i}\rho _{i})\leq \sum _{i}p_{i}{\mathcal {N}}(\rho _{i})} N ( P ( ρ ) ) ≤ N ( ρ ) {\displaystyle {\mathcal {N}}(P(\rho ))\leq {\mathcal {N}}(\rho )}

where P ( ρ ) {\displaystyle P(\rho )} is an arbitrary LOCC operation over ρ {\displaystyle \rho }

Logarithmic negativity

The logarithmic negativity is an entanglement measure which is easily computable and an upper bound to the distillable entanglement.4 It is defined as

E N ( ρ ) ≡ log 2 ⁡ | | ρ Γ A | | 1 {\displaystyle E_{N}(\rho )\equiv \log _{2}||\rho ^{\Gamma _{A}}||_{1}}

where Γ A {\displaystyle \Gamma _{A}} is the partial transpose operation and | | ⋅ | | 1 {\displaystyle ||\cdot ||_{1}} denotes the trace norm.

It relates to the negativity as follows:5

E N ( ρ ) := log 2 ⁡ ( 2 N + 1 ) {\displaystyle E_{N}(\rho ):=\log _{2}(2{\mathcal {N}}+1)}

Properties

The logarithmic negativity

  • can be zero even if the state is entangled (if the state is PPT entangled).
  • does not reduce to the entropy of entanglement on pure states like most other entanglement measures.
  • is additive on tensor products: E N ( ρ ⊗ σ ) = E N ( ρ ) + E N ( σ ) {\displaystyle E_{N}(\rho \otimes \sigma )=E_{N}(\rho )+E_{N}(\sigma )}
  • is not asymptotically continuous. That means that for a sequence of bipartite Hilbert spaces H 1 , H 2 , … {\displaystyle H_{1},H_{2},\ldots } (typically with increasing dimension) we can have a sequence of quantum states ρ 1 , ρ 2 , … {\displaystyle \rho _{1},\rho _{2},\ldots } which converges to ρ ⊗ n 1 , ρ ⊗ n 2 , … {\displaystyle \rho ^{\otimes n_{1}},\rho ^{\otimes n_{2}},\ldots } (typically with increasing n i {\displaystyle n_{i}} ) in the trace distance, but the sequence E N ( ρ 1 ) / n 1 , E N ( ρ 2 ) / n 2 , … {\displaystyle E_{N}(\rho _{1})/n_{1},E_{N}(\rho _{2})/n_{2},\ldots } does not converge to E N ( ρ ) {\displaystyle E_{N}(\rho )} .
  • is an upper bound to the distillable entanglement
  • This page uses material from Quantiki licensed under GNU Free Documentation License 1.2

References

  1. K. Zyczkowski; P. Horodecki; A. Sanpera; M. Lewenstein (1998). "Volume of the set of separable states". Phys. Rev. A. 58 (2): 883–92. arXiv:quant-ph/9804024. Bibcode:1998PhRvA..58..883Z. doi:10.1103/PhysRevA.58.883. S2CID 119391103. /wiki/ArXiv_(identifier)

  2. J. Eisert (2001). Entanglement in quantum information theory (Thesis). University of Potsdam. arXiv:quant-ph/0610253. Bibcode:2006PhDT........59E. /wiki/ArXiv_(identifier)

  3. G. Vidal; R. F. Werner (2002). "A computable measure of entanglement". Phys. Rev. A. 65 (3): 032314. arXiv:quant-ph/0102117. Bibcode:2002PhRvA..65c2314V. doi:10.1103/PhysRevA.65.032314. S2CID 32356668. /wiki/ArXiv_(identifier)

  4. M. B. Plenio (2005). "The logarithmic negativity: A full entanglement monotone that is not convex". Phys. Rev. Lett. 95 (9): 090503. arXiv:quant-ph/0505071. Bibcode:2005PhRvL..95i0503P. doi:10.1103/PhysRevLett.95.090503. PMID 16197196. S2CID 20691213. /wiki/ArXiv_(identifier)

  5. K. Zyczkowski; P. Horodecki; A. Sanpera; M. Lewenstein (1998). "Volume of the set of separable states". Phys. Rev. A. 58 (2): 883–92. arXiv:quant-ph/9804024. Bibcode:1998PhRvA..58..883Z. doi:10.1103/PhysRevA.58.883. S2CID 119391103. /wiki/ArXiv_(identifier)