Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Matrix variate Dirichlet distribution

In statistics, the matrix variate Dirichlet distribution is a generalization of the matrix variate beta distribution and of the Dirichlet distribution.

Suppose U 1 , … , U r {\displaystyle U_{1},\ldots ,U_{r}} are p × p {\displaystyle p\times p} positive definite matrices with I p − ∑ i = 1 r U i {\displaystyle I_{p}-\sum _{i=1}^{r}U_{i}} also positive-definite, where I p {\displaystyle I_{p}} is the p × p {\displaystyle p\times p} identity matrix. Then we say that the U i {\displaystyle U_{i}} have a matrix variate Dirichlet distribution, ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r ; a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r};a_{r+1}\right)} , if their joint probability density function is

{ β p ( a 1 , … , a r , a r + 1 ) } − 1 ∏ i = 1 r det ( U i ) a i − ( p + 1 ) / 2 det ( I p − ∑ i = 1 r U i ) a r + 1 − ( p + 1 ) / 2 {\displaystyle \left\{\beta _{p}\left(a_{1},\ldots ,a_{r},a_{r+1}\right)\right\}^{-1}\prod _{i=1}^{r}\det \left(U_{i}\right)^{a_{i}-(p+1)/2}\det \left(I_{p}-\sum _{i=1}^{r}U_{i}\right)^{a_{r+1}-(p+1)/2}}

where a i > ( p − 1 ) / 2 , i = 1 , … , r + 1 {\displaystyle a_{i}>(p-1)/2,i=1,\ldots ,r+1} and β p ( ⋯ ) {\displaystyle \beta _{p}\left(\cdots \right)} is the multivariate beta function.

If we write U r + 1 = I p − ∑ i = 1 r U i {\displaystyle U_{r+1}=I_{p}-\sum _{i=1}^{r}U_{i}} then the PDF takes the simpler form

{ β p ( a 1 , … , a r + 1 ) } − 1 ∏ i = 1 r + 1 det ( U i ) a i − ( p + 1 ) / 2 , {\displaystyle \left\{\beta _{p}\left(a_{1},\ldots ,a_{r+1}\right)\right\}^{-1}\prod _{i=1}^{r+1}\det \left(U_{i}\right)^{a_{i}-(p+1)/2},}

on the understanding that ∑ i = 1 r + 1 U i = I p {\displaystyle \sum _{i=1}^{r+1}U_{i}=I_{p}} .

We don't have any images related to Matrix variate Dirichlet distribution yet.
We don't have any YouTube videos related to Matrix variate Dirichlet distribution yet.
We don't have any PDF documents related to Matrix variate Dirichlet distribution yet.
We don't have any Books related to Matrix variate Dirichlet distribution yet.
We don't have any archived web articles related to Matrix variate Dirichlet distribution yet.

Theorems

generalization of chi square-Dirichlet result

Suppose S i ∼ W p ( n i , Σ ) , i = 1 , … , r + 1 {\displaystyle S_{i}\sim W_{p}\left(n_{i},\Sigma \right),i=1,\ldots ,r+1} are independently distributed Wishart p × p {\displaystyle p\times p} positive definite matrices. Then, defining U i = S − 1 / 2 S i ( S − 1 / 2 ) T {\displaystyle U_{i}=S^{-1/2}S_{i}\left(S^{-1/2}\right)^{T}} (where S = ∑ i = 1 r + 1 S i {\displaystyle S=\sum _{i=1}^{r+1}S_{i}} is the sum of the matrices and S 1 / 2 ( S − 1 / 2 ) T {\displaystyle S^{1/2}\left(S^{-1/2}\right)^{T}} is any reasonable factorization of S {\displaystyle S} ), we have

( U 1 , … , U r ) ∼ D p ( n 1 / 2 , . . . , n r + 1 / 2 ) . {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(n_{1}/2,...,n_{r+1}/2\right).}

Marginal distribution

If ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} , and if s ≤ r {\displaystyle s\leq r} , then:

( U 1 , … , U s ) ∼ D p ( a 1 , … , a s , ∑ i = s + 1 r + 1 a i ) {\displaystyle \left(U_{1},\ldots ,U_{s}\right)\sim D_{p}\left(a_{1},\ldots ,a_{s},\sum _{i=s+1}^{r+1}a_{i}\right)}

Conditional distribution

Also, with the same notation as above, the density of ( U s + 1 , … , U r ) | ( U 1 , … , U s ) {\displaystyle \left(U_{s+1},\ldots ,U_{r}\right)\left|\left(U_{1},\ldots ,U_{s}\right)\right.} is given by

∏ i = s + 1 r + 1 det ( U i ) a i − ( p + 1 ) / 2 β p ( a s + 1 , … , a r + 1 ) det ( I p − ∑ i = 1 s U i ) ∑ i = s + 1 r + 1 a i − ( p + 1 ) / 2 {\displaystyle {\frac {\prod _{i=s+1}^{r+1}\det \left(U_{i}\right)^{a_{i}-(p+1)/2}}{\beta _{p}\left(a_{s+1},\ldots ,a_{r+1}\right)\det \left(I_{p}-\sum _{i=1}^{s}U_{i}\right)^{\sum _{i=s+1}^{r+1}a_{i}-(p+1)/2}}}}

where we write U r + 1 = I p − ∑ i = 1 r U i {\displaystyle U_{r+1}=I_{p}-\sum _{i=1}^{r}U_{i}} .

partitioned distribution

Suppose ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} and suppose that S 1 , … , S t {\displaystyle S_{1},\ldots ,S_{t}} is a partition of [ r + 1 ] = { 1 , … r + 1 } {\displaystyle \left[r+1\right]=\left\{1,\ldots r+1\right\}} (that is, ∪ i = 1 t S i = [ r + 1 ] {\displaystyle \cup _{i=1}^{t}S_{i}=\left[r+1\right]} and S i ∩ S j = ∅ {\displaystyle S_{i}\cap S_{j}=\emptyset } if i ≠ j {\displaystyle i\neq j} ). Then, writing U ( j ) = ∑ i ∈ S j U i {\displaystyle U_{(j)}=\sum _{i\in S_{j}}U_{i}} and a ( j ) = ∑ i ∈ S j a i {\displaystyle a_{(j)}=\sum _{i\in S_{j}}a_{i}} (with U r + 1 = I p − ∑ i = 1 r U r {\displaystyle U_{r+1}=I_{p}-\sum _{i=1}^{r}U_{r}} ), we have:

( U ( 1 ) , … U ( t ) ) ∼ D p ( a ( 1 ) , … , a ( t ) ) . {\displaystyle \left(U_{(1)},\ldots U_{(t)}\right)\sim D_{p}\left(a_{(1)},\ldots ,a_{(t)}\right).}

partitions

Suppose ( U 1 , … , U r ) ∼ D p ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{1},\ldots ,U_{r}\right)\sim D_{p}\left(a_{1},\ldots ,a_{r+1}\right)} . Define

U i = ( U 11 ( i ) U 12 ( i ) U 21 ( i ) U 22 ( i ) ) i = 1 , … , r {\displaystyle U_{i}=\left({\begin{array}{rr}U_{11(i)}&U_{12(i)}\\U_{21(i)}&U_{22(i)}\end{array}}\right)\qquad i=1,\ldots ,r}

where U 11 ( i ) {\displaystyle U_{11(i)}} is p 1 × p 1 {\displaystyle p_{1}\times p_{1}} and U 22 ( i ) {\displaystyle U_{22(i)}} is p 2 × p 2 {\displaystyle p_{2}\times p_{2}} . Writing the Schur complement U 22 ⋅ 1 ( i ) = U 21 ( i ) U 11 ( i ) − 1 U 12 ( i ) {\displaystyle U_{22\cdot 1(i)}=U_{21(i)}U_{11(i)}^{-1}U_{12(i)}} we have

( U 11 ( 1 ) , … , U 11 ( r ) ) ∼ D p 1 ( a 1 , … , a r + 1 ) {\displaystyle \left(U_{11(1)},\ldots ,U_{11(r)}\right)\sim D_{p_{1}}\left(a_{1},\ldots ,a_{r+1}\right)}

and

( U 22.1 ( 1 ) , … , U 22.1 ( r ) ) ∼ D p 2 ( a 1 − p 1 / 2 , … , a r − p 1 / 2 , a r + 1 − p 1 / 2 + p 1 r / 2 ) . {\displaystyle \left(U_{22.1(1)},\ldots ,U_{22.1(r)}\right)\sim D_{p_{2}}\left(a_{1}-p_{1}/2,\ldots ,a_{r}-p_{1}/2,a_{r+1}-p_{1}/2+p_{1}r/2\right).}

See also

A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.