Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Moduli stack of vector bundles
Concept in algebraic geometry

In algebraic geometry, the moduli stack of rank-n vector bundles Vectn is the stack parametrizing vector bundles (or locally free sheaves) of rank n over some reasonable spaces.

It is a smooth algebraic stack of the negative dimension − n 2 {\displaystyle -n^{2}} . Moreover, viewing a rank-n vector bundle as a principal G L n {\displaystyle GL_{n}} -bundle, Vectn is isomorphic to the classifying stack B G L n = [ pt / G L n ] . {\displaystyle BGL_{n}=[{\text{pt}}/GL_{n}].}

We don't have any images related to Moduli stack of vector bundles yet.
We don't have any YouTube videos related to Moduli stack of vector bundles yet.
We don't have any PDF documents related to Moduli stack of vector bundles yet.
We don't have any Books related to Moduli stack of vector bundles yet.
We don't have any archived web articles related to Moduli stack of vector bundles yet.

Definition

For the base category, let C be the category of schemes of finite type over a fixed field k. Then Vect n {\displaystyle \operatorname {Vect} _{n}} is the category where

  1. an object is a pair ( U , E ) {\displaystyle (U,E)} of a scheme U in C and a rank-n vector bundle E over U
  2. a morphism ( U , E ) → ( V , F ) {\displaystyle (U,E)\to (V,F)} consists of f : U → V {\displaystyle f:U\to V} in C and a bundle-isomorphism f ∗ F → ∼ E {\displaystyle f^{*}F{\overset {\sim }{\to }}E} .

Let p : Vect n → C {\displaystyle p:\operatorname {Vect} _{n}\to C} be the forgetful functor. Via p, Vect n {\displaystyle \operatorname {Vect} _{n}} is a prestack over C. That it is a stack over C is precisely the statement "vector bundles have the descent property". Note that each fiber Vect n ⁡ ( U ) = p − 1 ( U ) {\displaystyle \operatorname {Vect} _{n}(U)=p^{-1}(U)} over U is the category of rank-n vector bundles over U where every morphism is an isomorphism (i.e., each fiber of p is a groupoid).

See also

  • Behrend, Kai (2002). "Localization and Gromov-Witten Invariants". In de Bartolomeis; Dubrovin; Reina (eds.). Quantum Cohomology. Lecture Notes in Mathematics. Vol. 1776. Berlin: Springer. pp. 3–38. doi:10.1007/978-3-540-45617-9_2. ISBN 978-3-540-43121-3.

References

  1. Behrend 2002, Example 20.2. - Behrend, Kai (2002). "Localization and Gromov-Witten Invariants". In de Bartolomeis; Dubrovin; Reina (eds.). Quantum Cohomology. Lecture Notes in Mathematics. Vol. 1776. Berlin: Springer. pp. 3–38. doi:10.1007/978-3-540-45617-9_2. ISBN 978-3-540-43121-3. https://doi.org/10.1007%2F978-3-540-45617-9_2