In computer science, a parallel external memory (PEM) model is a cache-aware, external-memory abstract machine. It is the parallel-computing analogy to the single-processor external memory (EM) model. In a similar way, it is the cache-aware analogy to the parallel random-access machine (PRAM). The PEM model consists of a number of processors, together with their respective private caches and a shared main memory.
Model
Definition
The PEM model2 is a combination of the EM model and the PRAM model. The PEM model is a computation model which consists of P {\displaystyle P} processors and a two-level memory hierarchy. This memory hierarchy consists of a large external memory (main memory) of size N {\displaystyle N} and P {\displaystyle P} small internal memories (caches). The processors share the main memory. Each cache is exclusive to a single processor. A processor can't access another’s cache. The caches have a size M {\displaystyle M} which is partitioned in blocks of size B {\displaystyle B} . The processors can only perform operations on data which are in their cache. The data can be transferred between the main memory and the cache in blocks of size B {\displaystyle B} .
I/O complexity
The complexity measure of the PEM model is the I/O complexity,3 which determines the number of parallel blocks transfers between the main memory and the cache. During a parallel block transfer each processor can transfer a block. So if P {\displaystyle P} processors load parallelly a data block of size B {\displaystyle B} form the main memory into their caches, it is considered as an I/O complexity of O ( 1 ) {\displaystyle O(1)} not O ( P ) {\displaystyle O(P)} . A program in the PEM model should minimize the data transfer between main memory and caches and operate as much as possible on the data in the caches.
Read/write conflicts
In the PEM model, there is no direct communication network between the P processors. The processors have to communicate indirectly over the main memory. If multiple processors try to access the same block in main memory concurrently read/write conflicts4 occur. Like in the PRAM model, three different variations of this problem are considered:
- Concurrent Read Concurrent Write (CRCW): The same block in main memory can be read and written by multiple processors concurrently.
- Concurrent Read Exclusive Write (CREW): The same block in main memory can be read by multiple processors concurrently. Only one processor can write to a block at a time.
- Exclusive Read Exclusive Write (EREW): The same block in main memory cannot be read or written by multiple processors concurrently. Only one processor can access a block at a time.
The following two algorithms5 solve the CREW and EREW problem if P ≤ B {\displaystyle P\leq B} processors write to the same block simultaneously. A first approach is to serialize the write operations. Only one processor after the other writes to the block. This results in a total of P {\displaystyle P} parallel block transfers. A second approach needs O ( log ( P ) ) {\displaystyle O(\log(P))} parallel block transfers and an additional block for each processor. The main idea is to schedule the write operations in a binary tree fashion and gradually combine the data into a single block. In the first round P {\displaystyle P} processors combine their blocks into P / 2 {\displaystyle P/2} blocks. Then P / 2 {\displaystyle P/2} processors combine the P / 2 {\displaystyle P/2} blocks into P / 4 {\displaystyle P/4} . This procedure is continued until all the data is combined in one block.
Comparison to other models
Model | Multi-core | Cache-aware |
---|---|---|
Random-access machine (RAM) | No | No |
Parallel random-access machine (PRAM) | Yes | No |
External memory (EM) | No | Yes |
Parallel external memory (PEM) | Yes | Yes |
Examples
Multiway partitioning
Let M = { m 1 , . . . , m d − 1 } {\displaystyle M=\{m_{1},...,m_{d-1}\}} be a vector of d-1 pivots sorted in increasing order. Let A be an unordered set of N elements. A d-way partition6 of A is a set Π = { A 1 , . . . , A d } {\displaystyle \Pi =\{A_{1},...,A_{d}\}} , where ∪ i = 1 d A i = A {\displaystyle \cup _{i=1}^{d}A_{i}=A} and A i ∩ A j = ∅ {\displaystyle A_{i}\cap A_{j}=\emptyset } for 1 ≤ i < j ≤ d {\displaystyle 1\leq i<j\leq d} . A i {\displaystyle A_{i}} is called the i-th bucket. The number of elements in A i {\displaystyle A_{i}} is greater than m i − 1 {\displaystyle m_{i-1}} and smaller than m i 2 {\displaystyle m_{i}^{2}} . In the following algorithm7 the input is partitioned into N/P-sized contiguous segments S 1 , . . . , S P {\displaystyle S_{1},...,S_{P}} in main memory. The processor i primarily works on the segment S i {\displaystyle S_{i}} . The multiway partitioning algorithm (PEM_DIST_SORT8) uses a PEM prefix sum algorithm9 to calculate the prefix sum with the optimal O ( N P B + log P ) {\displaystyle O\left({\frac {N}{PB}}+\log P\right)} I/O complexity. This algorithm simulates an optimal PRAM prefix sum algorithm.
// Compute parallelly a d-way partition on the data segments S i {\displaystyle S_{i}} for each processor i in parallel do Read the vector of pivots M into the cache. Partition S i {\displaystyle S_{i}} into d buckets and let vector M i = { j 1 i , . . . , j d i } {\displaystyle M_{i}=\{j_{1}^{i},...,j_{d}^{i}\}} be the number of items in each bucket. end for Run PEM prefix sum on the set of vectors { M 1 , . . . , M P } {\displaystyle \{M_{1},...,M_{P}\}} simultaneously. // Use the prefix sum vector to compute the final partition for each processor i in parallel do Write elements S i {\displaystyle S_{i}} into memory locations offset appropriately by M i − 1 {\displaystyle M_{i-1}} and M i {\displaystyle M_{i}} . end for Using the prefix sums stored in M P {\displaystyle M_{P}} the last processor P calculates the vector B of bucket sizes and returns it.If the vector of d = O ( M B ) {\displaystyle d=O\left({\frac {M}{B}}\right)} pivots M and the input set A are located in contiguous memory, then the d-way partitioning problem can be solved in the PEM model with O ( N P B + ⌈ d B ⌉ > log ( P ) + d log ( B ) ) {\displaystyle O\left({\frac {N}{PB}}+\left\lceil {\frac {d}{B}}\right\rceil >\log(P)+d\log(B)\right)} I/O complexity. The content of the final buckets have to be located in contiguous memory.
Selection
The selection problem is about finding the k-th smallest item in an unordered list A of size N. The following code10 makes use of PRAMSORT which is a PRAM optimal sorting algorithm which runs in O ( log N ) {\displaystyle O(\log N)} , and SELECT, which is a cache optimal single-processor selection algorithm.
if N ≤ P {\displaystyle N\leq P} then PRAMSORT ( A , P ) {\displaystyle {\texttt {PRAMSORT}}(A,P)} return A [ k ] {\displaystyle A[k]} end if //Find median of each S i {\displaystyle S_{i}} for each processor i in parallel do m i = SELECT ( S i , N 2 P ) {\displaystyle m_{i}={\texttt {SELECT}}(S_{i},{\frac {N}{2P}})} end for // Sort medians PRAMSORT ( { m 1 , … , m 2 } , P ) {\displaystyle {\texttt {PRAMSORT}}(\lbrace m_{1},\dots ,m_{2}\rbrace ,P)} // Partition around median of medians t = PEMPARTITION ( A , m P / 2 , P ) {\displaystyle t={\texttt {PEMPARTITION}}(A,m_{P/2},P)} if k ≤ t {\displaystyle k\leq t} then return PEMSELECT ( A [ 1 : t ] , P , k ) {\displaystyle {\texttt {PEMSELECT}}(A[1:t],P,k)} else return PEMSELECT ( A [ t + 1 : N ] , P , k − t ) {\displaystyle {\texttt {PEMSELECT}}(A[t+1:N],P,k-t)} end ifUnder the assumption that the input is stored in contiguous memory, PEMSELECT has an I/O complexity of:
O ( N P B + log ( P B ) ⋅ log ( N P ) ) {\displaystyle O\left({\frac {N}{PB}}+\log(PB)\cdot \log({\frac {N}{P}})\right)}Distribution sort
Distribution sort partitions an input list A of size N into d disjoint buckets of similar size. Every bucket is then sorted recursively and the results are combined into a fully sorted list.
If P = 1 {\displaystyle P=1} the task is delegated to a cache-optimal single-processor sorting algorithm.
Otherwise the following algorithm11 is used:
// Sample 4 N d {\displaystyle {\tfrac {4N}{\sqrt {d}}}} elements from A for each processor i in parallel do if M < | S i | {\displaystyle M<|S_{i}|} then d = M / B {\displaystyle d=M/B} Load S i {\displaystyle S_{i}} in M-sized pages and sort pages individually else d = | S i | {\displaystyle d=|S_{i}|} Load and sort S i {\displaystyle S_{i}} as single page end if Pick every d / 4 {\displaystyle {\sqrt {d}}/4} 'th element from each sorted memory page into contiguous vector R i {\displaystyle R^{i}} of samples end for in parallel do Combine vectors R 1 … R P {\displaystyle R^{1}\dots R^{P}} into a single contiguous vector R {\displaystyle {\mathcal {R}}} Make d {\displaystyle {\sqrt {d}}} copies of R {\displaystyle {\mathcal {R}}} : R 1 … R d {\displaystyle {\mathcal {R}}_{1}\dots {\mathcal {R}}_{\sqrt {d}}} end do // Find d {\displaystyle {\sqrt {d}}} pivots M [ j ] {\displaystyle {\mathcal {M}}[j]} for j = 1 {\displaystyle j=1} to d {\displaystyle {\sqrt {d}}} in parallel do M [ j ] = PEMSELECT ( R i , P d , j ⋅ 4 N d ) {\displaystyle {\mathcal {M}}[j]={\texttt {PEMSELECT}}({\mathcal {R}}_{i},{\tfrac {P}{\sqrt {d}}},{\tfrac {j\cdot 4N}{d}})} end for Pack pivots in contiguous array M {\displaystyle {\mathcal {M}}} // Partition Aaround pivots into buckets B {\displaystyle {\mathcal {B}}} B = PEMMULTIPARTITION ( A [ 1 : N ] , M , d , P ) {\displaystyle {\mathcal {B}}={\texttt {PEMMULTIPARTITION}}(A[1:N],{\mathcal {M}},{\sqrt {d}},P)} // Recursively sort buckets for j = 1 {\displaystyle j=1} to d + 1 {\displaystyle {\sqrt {d}}+1} in parallel do recursively call PEMDISTSORT {\displaystyle {\texttt {PEMDISTSORT}}} on bucket jof size B [ j ] {\displaystyle {\mathcal {B}}[j]} using O ( ⌈ B [ j ] N / P ⌉ ) {\displaystyle O\left(\left\lceil {\tfrac {{\mathcal {B}}[j]}{N/P}}\right\rceil \right)} processors responsible for elements in bucket j end forThe I/O complexity of PEMDISTSORT is:
O ( ⌈ N P B ⌉ ( log d P + log M / B N P B ) + f ( N , P , d ) ⋅ log d P ) {\displaystyle O\left(\left\lceil {\frac {N}{PB}}\right\rceil \left(\log _{d}P+\log _{M/B}{\frac {N}{PB}}\right)+f(N,P,d)\cdot \log _{d}P\right)}where
f ( N , P , d ) = O ( log P B d log N P + ⌈ d B log P + d log B ⌉ ) {\displaystyle f(N,P,d)=O\left(\log {\frac {PB}{\sqrt {d}}}\log {\frac {N}{P}}+\left\lceil {\frac {\sqrt {d}}{B}}\log P+{\sqrt {d}}\log B\right\rceil \right)}If the number of processors is chosen that f ( N , P , d ) = O ( ⌈ N P B ⌉ ) {\displaystyle f(N,P,d)=O\left(\left\lceil {\tfrac {N}{PB}}\right\rceil \right)} and M < B O ( 1 ) {\displaystyle M<B^{O(1)}} the I/O complexity is then:
O ( N P B log M / B N B ) {\displaystyle O\left({\frac {N}{PB}}\log _{M/B}{\frac {N}{B}}\right)}
Other PEM algorithms
PEM Algorithm | I/O complexity | Constraints |
---|---|---|
Mergesort12 | O ( N P B log M B N B ) = sort P ( N ) {\displaystyle O\left({\frac {N}{PB}}\log _{\frac {M}{B}}{\frac {N}{B}}\right)={\textrm {sort}}_{P}(N)} | P ≤ N B 2 , M = B O ( 1 ) {\displaystyle P\leq {\frac {N}{B^{2}}},M=B^{O(1)}} |
List ranking13 | O ( sort P ( N ) ) {\displaystyle O\left({\textrm {sort}}_{P}(N)\right)} | P ≤ N / B 2 log B ⋅ log O ( 1 ) N , M = B O ( 1 ) {\displaystyle P\leq {\frac {N/B^{2}}{\log B\cdot \log ^{O(1)}N}},M=B^{O(1)}} |
Euler tour14 | O ( sort P ( N ) ) {\displaystyle O\left({\textrm {sort}}_{P}(N)\right)} | P ≤ N B 2 , M = B O ( 1 ) {\displaystyle P\leq {\frac {N}{B^{2}}},M=B^{O(1)}} |
Expression tree evaluation15 | O ( sort P ( N ) ) {\displaystyle O\left({\textrm {sort}}_{P}(N)\right)} | P ≤ N B 2 log B ⋅ log O ( 1 ) N , M = B O ( 1 ) {\displaystyle P\leq {\frac {N}{B^{2}\log B\cdot \log ^{O(1)}N}},M=B^{O(1)}} |
Finding a MST16 | O ( sort P ( | V | ) + sort P ( | E | ) log | V | p B ) {\displaystyle O\left({\textrm {sort}}_{P}(|V|)+{\textrm {sort}}_{P}(|E|)\log {\tfrac {|V|}{pB}}\right)} | p ≤ | V | + | E | B 2 log B ⋅ log O ( 1 ) N , M = B O ( 1 ) {\displaystyle p\leq {\frac {|V|+|E|}{B^{2}\log B\cdot \log ^{O(1)}N}},M=B^{O(1)}} |
Where sort P ( N ) {\displaystyle {\textrm {sort}}_{P}(N)} is the time it takes to sort N items with P processors in the PEM model.
See also
- Parallel random-access machine (PRAM)
- Random-access machine (RAM)
- External memory (EM)
References
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Nelson, Michael; Sitchinava, Nodari (2008). "Fundamental parallel algorithms for private-cache chip multiprocessors". Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures. New York, New York, USA: ACM Press. pp. 197–206. doi:10.1145/1378533.1378573. ISBN 9781595939739. S2CID 11067041. 9781595939739 ↩
Arge, Lars; Goodrich, Michael T.; Sitchinava, Nodari (2010). "Parallel external memory graph algorithms". 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. pp. 1–11. doi:10.1109/ipdps.2010.5470440. ISBN 9781424464425. S2CID 587572. 9781424464425 ↩
Arge, Lars; Goodrich, Michael T.; Sitchinava, Nodari (2010). "Parallel external memory graph algorithms". 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. pp. 1–11. doi:10.1109/ipdps.2010.5470440. ISBN 9781424464425. S2CID 587572. 9781424464425 ↩
Arge, Lars; Goodrich, Michael T.; Sitchinava, Nodari (2010). "Parallel external memory graph algorithms". 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. pp. 1–11. doi:10.1109/ipdps.2010.5470440. ISBN 9781424464425. S2CID 587572. 9781424464425 ↩
Arge, Lars; Goodrich, Michael T.; Sitchinava, Nodari (2010). "Parallel external memory graph algorithms". 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. pp. 1–11. doi:10.1109/ipdps.2010.5470440. ISBN 9781424464425. S2CID 587572. 9781424464425 ↩