In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.
Given a set X {\displaystyle X} , a collection of subsets S ⊂ P ( X ) {\displaystyle \mathbb {S} \subset {\mathcal {P}}(X)} is called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is, for any A ∈ S {\displaystyle A\in \mathbb {S} } , and any finite partition A = C 1 ∪ C 2 ∪ ⋯ ∪ C n {\displaystyle A=C_{1}\cup C_{2}\cup \cdots \cup C_{n}} , there exists an i ≤ n such that C i {\displaystyle C_{i}} belongs to S {\displaystyle \mathbb {S} } . Ramsey theory is sometimes characterized as the study of which collections S {\displaystyle \mathbb {S} } are partition regular.
Examples
- The collection of all infinite subsets of an infinite set X is a prototypical example. In this case partition regularity asserts that every finite partition of an infinite set has an infinite cell (i.e. the infinite pigeonhole principle.)
- Sets with positive upper density in N {\displaystyle \mathbb {N} } : the upper density d ¯ ( A ) {\displaystyle {\overline {d}}(A)} of A ⊂ N {\displaystyle A\subset \mathbb {N} } is defined as d ¯ ( A ) = lim sup n → ∞ | { 1 , 2 , … , n } ∩ A | n . {\displaystyle {\overline {d}}(A)=\limsup _{n\rightarrow \infty }{\frac {|\{1,2,\ldots ,n\}\cap A|}{n}}.} (Szemerédi's theorem)
- For any ultrafilter U {\displaystyle \mathbb {U} } on a set X {\displaystyle X} , U {\displaystyle \mathbb {U} } is partition regular: for any A ∈ U {\displaystyle A\in \mathbb {U} } , if A = C 1 ⊔ ⋯ ⊔ C n {\displaystyle A=C_{1}\sqcup \cdots \sqcup C_{n}} , then exactly one C i ∈ U {\displaystyle C_{i}\in \mathbb {U} } .
- Sets of recurrence: a set R of integers is called a set of recurrence if for any measure-preserving transformation T {\displaystyle T} of the probability space (Ω, β, μ) and A ∈ β {\displaystyle A\in \beta } of positive measure there is a nonzero n ∈ R {\displaystyle n\in R} so that μ ( A ∩ T n A ) > 0 {\displaystyle \mu (A\cap T^{n}A)>0} .
- Call a subset of natural numbers a.p.-rich if it contains arbitrarily long arithmetic progressions. Then the collection of a.p.-rich subsets is partition regular (Van der Waerden, 1927).
- Let [ A ] n {\displaystyle [A]^{n}} be the set of all n-subsets of A ⊂ N {\displaystyle A\subset \mathbb {N} } . Let S n = ⋃ A ⊂ N [ A ] n {\displaystyle \mathbb {S} ^{n}=\bigcup _{A\subset \mathbb {N} }^{}[A]^{n}} . For each n, S n {\displaystyle \mathbb {S} ^{n}} is partition regular. (Ramsey, 1930).
- For each infinite cardinal κ {\displaystyle \kappa } , the collection of stationary sets of κ {\displaystyle \kappa } is partition regular. More is true: if S {\displaystyle S} is stationary and S = ⋃ α < λ S α {\displaystyle S=\bigcup _{\alpha <\lambda }S_{\alpha }} for some λ < κ {\displaystyle \lambda <\kappa } , then some S α {\displaystyle S_{\alpha }} is stationary.
- The collection of Δ {\displaystyle \Delta } -sets: A ⊂ N {\displaystyle A\subset \mathbb {N} } is a Δ {\displaystyle \Delta } -set if A {\displaystyle A} contains the set of differences { s m − s n : m , n ∈ N , n < m } {\displaystyle \{s_{m}-s_{n}:m,n\in \mathbb {N} ,\,n<m\}} for some sequence ⟨ s n ⟩ n = 1 ∞ {\displaystyle \langle s_{n}\rangle _{n=1}^{\infty }} .
- The set of barriers on
N
{\displaystyle \mathbb {N} }
: call a collection
B
{\displaystyle \mathbb {B} }
of finite subsets of
N
{\displaystyle \mathbb {N} }
a barrier if:
- ∀ X , Y ∈ B , X ⊄ Y {\displaystyle \forall X,Y\in \mathbb {B} ,X\not \subset Y} and
- for all infinite I ⊂ ∪ B {\displaystyle I\subset \cup \mathbb {B} } , there is some X ∈ B {\displaystyle X\in \mathbb {B} } such that the elements of X are the smallest elements of I; i.e. X ⊂ I {\displaystyle X\subset I} and ∀ i ∈ I ∖ X , ∀ x ∈ X , x < i {\displaystyle \forall i\in I\setminus X,\forall x\in X,x<i} .
- Finite products of infinite trees (Halpern–Läuchli, 1966)
- Piecewise syndetic sets (Brown, 1968)2
- Call a subset of natural numbers i.p.-rich if it contains arbitrarily large finite sets together with all their finite sums. Then the collection of i.p.-rich subsets is partition regular (Jon Folkman, Richard Rado, and J. Sanders, 1968).3
- (m, p, c)-sets 4
- IP sets56
- MTk sets for each k, i.e. k-tuples of finite sums (Milliken–Taylor, 1975)
- Central sets; i.e. the members of any minimal idempotent in β N {\displaystyle \beta \mathbb {N} } , the Stone–Čech compactification of the integers. (Furstenberg, 1981, see also Hindman, Strauss, 1998)
Diophantine equations
A Diophantine equation P ( x ) = 0 {\displaystyle P(\mathbf {x} )=0} is called partition regular if the collection of all infinite subsets of N {\displaystyle \mathbb {N} } containing a solution is partition regular. Rado's theorem characterises exactly which systems of linear Diophantine equations A x = 0 {\displaystyle \mathbf {A} \mathbf {x} =\mathbf {0} } are partition regular. Much progress has been made recently on classifying nonlinear Diophantine equations.78
Further reading
- Bergelson, Vitaly; Hindman, Neil (2001). "Partition regular structures contained in large sets are abundant". Journal of Combinatorial Theory. Series A. 93 (1): 18–36. doi:10.1006/jcta.2000.3061.
References
Nash-Williams, C. St. J. A. (1965). "On well-quasi-ordering transfinite sequences". Mathematical Proceedings of the Cambridge Philosophical Society. 61 (1): 33–39. Bibcode:1965PCPS...61...33N. doi:10.1017/S0305004100038603. /wiki/Crispin_St._J._A._Nash-Williams ↩
Brown, Thomas Craig (1971). "An interesting combinatorial method in the theory of locally finite semigroups". Pacific Journal of Mathematics. 36 (2): 285–289. doi:10.2140/pjm.1971.36.285. http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1102971066 ↩
Sanders, Jon Henry (1968). A Generalization of Schur's Theorem, Doctoral Dissertation (PhD). Yale University. ↩
Deuber, Walter (1973). "Partitionen und lineare Gleichungssysteme". Mathematische Zeitschrift. 133 (2): 109–123. doi:10.1007/BF01237897. /wiki/Doi_(identifier) ↩
Hindman, Neil (1974). "Finite sums from sequences within cells of a partition of N {\displaystyle N} ". Journal of Combinatorial Theory. Series A. 17 (1): 1–11. doi:10.1016/0097-3165(74)90023-5. https://doi.org/10.1016%2F0097-3165%2874%2990023-5 ↩
Hindman, Neil; Strauss, Dona (1998). Algebra in the Stone–Čech compactification. De Gruyter. doi:10.1515/9783110258356. ISBN 978-3-11-025623-9. 978-3-11-025623-9 ↩
Di Nasso, Mauro; Luperi Baglini, Lorenzo (January 2018). "Ramsey properties of nonlinear Diophantine equations". Advances in Mathematics. 324: 84–117. arXiv:1606.02056. doi:10.1016/j.aim.2017.11.003. ISSN 0001-8708. https://doi.org/10.1016%2Fj.aim.2017.11.003 ↩
Barrett, Jordan Mitchell; Lupini, Martino; Moreira, Joel (May 2021). "On Rado conditions for nonlinear Diophantine equations". European Journal of Combinatorics. 94 103277. arXiv:1907.06163. doi:10.1016/j.ejc.2020.103277. ISSN 0195-6698. https://dx.doi.org/10.1016/j.ejc.2020.103277 ↩