Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Pascal (microarchitecture)
GPU microarchitecture by Nvidia

Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070 (both using the GP104 GPU), which were released on May 27, 2016, and June 10, 2016, respectively. Pascal was manufactured using TSMC's 16 nm FinFET process, and later Samsung's 14 nm FinFET process.

The architecture is named after the 17th century French mathematician and physicist, Blaise Pascal.

In April 2019, Nvidia enabled a software implementation of DirectX Raytracing on Pascal-based cards starting with the GTX 1060 6 GB, and in the 16 series cards, a feature reserved to the Turing-based RTX series up to that point.

Related Image Collections Add Image
We don't have any YouTube videos related to Pascal (microarchitecture) yet.
We don't have any PDF documents related to Pascal (microarchitecture) yet.
We don't have any Books related to Pascal (microarchitecture) yet.
We don't have any archived web articles related to Pascal (microarchitecture) yet.

Details

In March 2014, Nvidia announced that the successor to Maxwell would be the Pascal microarchitecture; announced on May 6, 2016, and released on May 27 of the same year. The Tesla P100 (GP100 chip) has a different version of the Pascal architecture compared to the GTX GPUs (GP104 chip). The shader units in GP104 have a Maxwell-like design.5

Architectural improvements of the GP100 architecture include the following:678

  • In Pascal, a SM (streaming multiprocessor) consists of between 64-128 CUDA cores, depending on if it is GP100 or GP104. Maxwell contained 128 CUDA cores per SM; Kepler had 192, Fermi 32 and Tesla 8. The GP100 SM is partitioned into two processing blocks, each having 32 single-precision CUDA cores, an instruction buffer, a warp scheduler, 2 texture mapping units and 2 dispatch units.
  • CUDA Compute Capability 6.0.
  • High Bandwidth Memory 2 — some cards feature 16 GiB HBM2 in four stacks with a total bus width of 4096 bits and a memory bandwidth of 720 GB/s.
  • Unified memory — a memory architecture where the CPU and GPU can access both main system memory and memory on the graphics card with the help of a technology called "Page Migration Engine".
  • NVLink — a high-bandwidth bus between the CPU and GPU, and between multiple GPUs. Allows much higher transfer speeds than those achievable by using PCI Express; estimated to provide between 80 and 200 GB/s.910
  • 16-bit (FP16) floating-point operations (colloquially "half precision") can be executed at twice the rate of 32-bit floating-point operations ("single precision")11 and 64-bit floating-point operations (colloquially "double precision") executed at half the rate of 32-bit floating point operations.12
  • More registers — twice the amount of registers per CUDA core compared to Maxwell.
  • More shared memory.
  • Dynamic load balancing scheduling system.13 This allows the scheduler to dynamically adjust the amount of the GPU assigned to multiple tasks, ensuring that the GPU remains saturated with work except when there is no more work that can safely be distributed to distribute.14 Nvidia therefore has safely enabled asynchronous compute in Pascal's driver.15
  • Instruction-level and thread-level preemption.16

Architectural improvements of the GP104 architecture include the following:17

  • CUDA Compute Capability 6.1.
  • GDDR5X — new memory standard supporting 10Gbit/s data rates, updated memory controller.18
  • Simultaneous Multi-Projection - generating multiple projections of a single geometry stream, as it enters the SMP engine from upstream shader stages.19
  • DisplayPort 1.4, HDMI 2.0b.
  • Fourth generation Delta Color Compression.
  • Enhanced SLI Interface — SLI interface with higher bandwidth compared to the previous versions.
  • PureVideo Feature Set H hardware video decoding HEVC Main10 (10-bit), Main12 (12-bit) and VP9 hardware decoding.
  • HDCP 2.2 support for 4K DRM protected content playback and streaming (Maxwell GM200 and GM204 lack HDCP 2.2 support, GM206 supports HDCP 2.2).20
  • NVENC HEVC Main10 10bit hardware encoding.
  • GPU Boost 3.0.
  • Instruction-level preemption.21 In graphics tasks, the driver restricts preemption to the pixel-level, because pixel tasks typically finish quickly and the overhead costs of doing pixel-level preemption are lower than instruction-level preemption (which is expensive).22 Compute tasks get thread-level or instruction-level preemption,23 because they can take longer times to finish and there are no guarantees on when a compute task finishes. Therefore the driver enables the expensive instruction-level preemption for these tasks.24

Overview

Graphics Processor Cluster

A chip is partitioned into Graphics Processor Clusters (GPCs). For the GP104 chips, a GPC encompasses 5 SMs.

Streaming Multiprocessor "Pascal"

A "Streaming Multiprocessor" is analogous to AMD's Compute Unit. An SM encompasses 128 single-precision ALUs ("CUDA cores") on GP104 chips and 64 single-precision ALUs on GP100 chips. While all CU versions consist of 64 shader processors (i.e. 4 SIMD Vector Units, each 16 lanes wide), Nvidia experimented with very different numbers of CUDA cores:

  • On Tesla, 1 SM combines 8 single-precision (FP32) shader processors
  • On Fermi, 1 SM combines 32 single-precision (FP32) shader processors
  • On Kepler, 1 SM combines 192 single-precision (FP32) shader processors and 64 double-precision (FP64) units (on GK110 GPUs)
  • On Maxwell, 1 SM combines 128 single-precision (FP32) shader processors
  • On Pascal, it depends:
    • On GP100, 1 SM combines 64 single-precision (FP32) shader processors and also 32 double-precision (FP64) providing a 2:1 ratio of single- to double-precision throughput. The GP100 uses more flexible FP32 cores that are able to process one single-precision or two half-precision numbers in a two-element vector.25 This is intended to better serve machine learning tasks.
    • On GP104, 1 SM combines 128 single-precision ALUs, 4 double-precision ALUs (providing a 32:1 ratio), and one half-precision ALU which contains a vector of two half-precision floats which can execute the same instruction on both floats, providing a 64:1 ratio if the same instruction is used on both elements.

Polymorph-Engine 4.0

The Polymorph Engine version 4.0 is the unit responsible for Tessellation. It corresponds functionally with AMD's Geometric Processor. It has been moved from the shader module to the TPC to allow one Polymorph engine to feed multiple SMs within the TPC.26

Chips

  • GP100: Nvidia's Tesla P100 GPU accelerator is targeted at GPGPU applications such as FP64 double precision compute and deep learning training that uses FP16. It uses HBM2 memory.27 Quadro GP100 also uses the GP100 GPU.
  • GP102: This GPU is used in the Titan Xp,28 Titan X Pascal29 and the GeForce GTX 1080 Ti. It is also used in the Quadro P600030 & Tesla P40.31
  • GP104: This GPU is used in the GeForce GTX 1070, GTX 1070 Ti, GTX 1080, and some GTX 1060 6 GB's. The GTX 1070 has 15/20 and the GTX 1070 Ti has 19/20 of its SMs enabled; both utilize GDDR5 memory. The GTX 1080 is a fully unlocked chip and uses GDDR5X memory. Some GTX 1060 6 GB's use GP104 with 10/20 SMs enabled and GDDR5X memory.32 It is also used in the Quadro P5000, Quadro P4000, Quadro P3200 (mobile applications) and Tesla P4.
  • GP106: This GPU is used in the GeForce GTX 1060 with GDDR533 memory.3435 It is also used in the Quadro P2000.
  • GP107: This GPU is used in the GeForce GTX 1050 and 1050 Ti. It is also used in the Quadro P1000, Quadro P600, Quadro P620 & Quadro P400.
  • GP108: This GPU is used in the GeForce GT 1010 and GeForce GT 1030.
Comparison table of some Kepler, Maxwell, and Pascal chips
GK104GK110GM204 (GTX 970)GM204 (GTX 980)GM200GP104GP100
Dedicated texture cache per SM48 KiB
Texture (graphics or compute) or read-only data (compute only) cache per SM48 KiB36
Programmer-selectable shared memory/L1 partitions per SM48 KiB shared memory + 16 KiB L1 cache (default)3748 KiB shared memory + 16 KiB L1 cache (default)38
32 KiB shared memory + 32 KiB L1 cache3932 KiB shared memory + 32 KiB L1 cache40
16 KiB shared memory + 48 KiB L1 cache4116 KiB shared memory + 48 KiB L1 cache42
Unified L1 cache/texture cache per SM48 KiB4348 KiB4448 KiB4548 KiB4624 KiB47
Dedicated shared memory per SM96 KiB4896 KiB4996 KiB5096 KiB5164 KiB52
L2 cache per chip512 KiB531536 KiB541792 KiB552048 KiB563072 KiB572048 KiB584096 KiB59

Performance

The theoretical single-precision processing power of a Pascal GPU in GFLOPS is computed as 2 × operations per FMA instruction per CUDA core per cycle × number of CUDA cores × core clock speed (in GHz).

The theoretical double-precision processing power of a Pascal GPU is 1/2 of the single precision performance on Nvidia GP100, and 1/32 of Nvidia GP102, GP104, GP106, GP107 & GP108.

The theoretical half-precision processing power of a Pascal GPU is 2× of the single precision performance on GP10060 and 1/64 on GP104, GP106, GP107 & GP108.61

Successor

The Pascal architecture was succeeded in 2017 by Volta in the HPC, cloud computing, and self-driving car markets, and in 2018 by Turing in the consumer and business market.62

P100 accelerator and DGX-1

Comparison of accelerators used in DGX:636465

ModelArchitectureSocketFP32CUDAcoresFP64 cores(excl. tensor)MixedINT32/FP32coresINT32coresBoostclockMemoryclockMemorybus widthMemorybandwidthVRAMSingleprecision(FP32)Doubleprecision(FP64)INT8(non-tensor)INT8dense tensorINT32FP4 dense tensorFP16FP16dense tensorbfloat16dense tensorTensorFloat-32(TF32)dense tensorFP64dense tensorInterconnect(NVLink)GPUL1 CacheL2 CacheTDPDie sizeTransistorcountProcessLaunched
P100PascalSXM/SXM235841792N/AN/A1480 MHz1.4 Gbit/s HBM24096-bit720 GB/sec16 GB HBM210.6 TFLOPS5.3 TFLOPSN/AN/AN/AN/A21.2 TFLOPSN/AN/AN/AN/A160 GB/secGP1001344 KB (24 KB × 56)4096 KB300 W610 mm215.3 BTSMC 16FF+Q2 2016
V100 16GBVoltaSXM251202560N/A51201530 MHz1.75 Gbit/s HBM24096-bit900 GB/sec16 GB HBM215.7 TFLOPS7.8 TFLOPS62 TOPSN/A15.7 TOPSN/A31.4 TFLOPS125 TFLOPSN/AN/AN/A300 GB/secGV10010240 KB (128 KB × 80)6144 KB300 W815 mm221.1 BTSMC 12FFNQ3 2017
V100 32GBVoltaSXM351202560N/A51201530 MHz1.75 Gbit/s HBM24096-bit900 GB/sec32 GB HBM215.7 TFLOPS7.8 TFLOPS62 TOPSN/A15.7 TOPSN/A31.4 TFLOPS125 TFLOPSN/AN/AN/A300 GB/secGV10010240 KB (128 KB × 80)6144 KB350 W815 mm221.1 BTSMC 12FFN
A100 40GBAmpereSXM4691234566912N/A1410 MHz2.4 Gbit/s HBM25120-bit1.52 TB/sec40 GB HBM219.5 TFLOPS9.7 TFLOPSN/A624 TOPS19.5 TOPSN/A78 TFLOPS312 TFLOPS312 TFLOPS156 TFLOPS19.5 TFLOPS600 GB/secGA10020736 KB (192 KB × 108)40960 KB400 W826 mm254.2 BTSMC N7Q1 2020
A100 80GBAmpereSXM4691234566912N/A1410 MHz3.2 Gbit/s HBM2e5120-bit1.52 TB/sec80 GB HBM2e19.5 TFLOPS9.7 TFLOPSN/A624 TOPS19.5 TOPSN/A78 TFLOPS312 TFLOPS312 TFLOPS156 TFLOPS19.5 TFLOPS600 GB/secGA10020736 KB (192 KB × 108)40960 KB400 W826 mm254.2 BTSMC N7
H100HopperSXM516896460816896N/A1980 MHz5.2 Gbit/s HBM35120-bit3.35 TB/sec80 GB HBM367 TFLOPS34 TFLOPSN/A1.98 POPSN/AN/AN/A990 TFLOPS990 TFLOPS495 TFLOPS67 TFLOPS900 GB/secGH10025344 KB (192 KB × 132)51200 KB700 W814 mm280 BTSMC 4NQ3 2022
H200HopperSXM516896460816896N/A1980 MHz6.3 Gbit/s HBM3e6144-bit4.8 TB/sec141 GB HBM3e67 TFLOPS34 TFLOPSN/A1.98 POPSN/AN/AN/A990 TFLOPS990 TFLOPS495 TFLOPS67 TFLOPS900 GB/secGH10025344 KB (192 KB × 132)51200 KB1000 W814 mm280 BTSMC 4NQ3 2023
B100BlackwellSXM6N/AN/AN/AN/AN/A8 Gbit/s HBM3e8192-bit8 TB/sec192 GB HBM3eN/AN/AN/A3.5 POPSN/A7 PFLOPSN/A1.98 PFLOPS1.98 PFLOPS989 TFLOPS30 TFLOPS1.8 TB/secGB100N/AN/A700 WN/A208 BTSMC 4NPQ4 2024 (expected)
B200BlackwellSXM6N/AN/AN/AN/AN/A8 Gbit/s HBM3e8192-bit8 TB/sec192 GB HBM3eN/AN/AN/A4.5 POPSN/A9 PFLOPSN/A2.25 PFLOPS2.25 PFLOPS1.2 PFLOPS40 TFLOPS1.8 TB/secGB100N/AN/A1000 WN/A208 BTSMC 4NP

See also

References

  1. "NVIDIA 7nm Next-Gen-GPUs To Be Built By TSMC". Wccftech. June 24, 2018. Retrieved July 6, 2019. https://wccftech.com/nvidia-7nm-next-gen-gpus-tsmc/

  2. "Samsung to Optical-Shrink NVIDIA "Pascal" to 14 nm". Retrieved August 13, 2016. https://www.techpowerup.com/224976/samsung-to-optical-shrink-nvidia-pascal-to-14-nm.html

  3. "Accelerating The Real-Time Ray Tracing Ecosystem: DXR For GeForce RTX and GeForce GTX". NVIDIA. https://www.nvidia.com/en-us/geforce/news/geforce-gtx-ray-tracing-coming-soon/

  4. "Ray Tracing Comes to Nvidia GTX GPUs: Here's How to Enable It". April 11, 2019. https://www.tomsguide.com/us/ray-tracing-gtx-gpu-driver,news-29847.html

  5. "NVIDIA GeForce GTX 1080" (PDF). International.download.nvidia.com. Retrieved September 15, 2016. http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf

  6. Gupta, Sumit (March 21, 2014). "NVIDIA Updates GPU Roadmap; Announces Pascal". Blogs.nvidia.com. Retrieved March 25, 2014. http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/

  7. "Parallel Forall". NVIDIA Developer Zone. Devblogs.nvidia.com. Archived from the original on March 26, 2014. Retrieved March 25, 2014. https://web.archive.org/web/20140326025738/http://devblogs.nvidia.com/parallelforall/

  8. "NVIDIA Tesla P100" (PDF). International.download.nvidia.com. Retrieved September 15, 2016. https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

  9. "Inside Pascal: NVIDIA's Newest Computing Platform". April 5, 2016. https://devblogs.nvidia.com/parallelforall/inside-pascal/

  10. Denis Foley (March 25, 2014). "NVLink, Pascal and Stacked Memory: Feeding the Appetite for Big Data". nvidia.com. Retrieved July 7, 2014. http://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-feeding-appetite-big-data/

  11. "NVIDIA's Next-Gen Pascal GPU Architecture to Provide 10X Speedup for Deep Learning Apps". The Official NVIDIA Blog. Retrieved March 23, 2015. http://blogs.nvidia.com/blog/2015/03/17/pascal/

  12. Smith, Ryan (April 5, 2015). "NVIDIA Announces Tesla P100 Accelerator - Pascal GP100 Power for HPC". AnandTech. Retrieved May 27, 2016. Each of those SMs also contains 32 FP64 CUDA cores - giving us the 1/2 rate for FP64 - and new to the Pascal architecture is the ability to pack 2 FP16 operations inside a single FP32 CUDA core under the right circumstances http://www.anandtech.com/show/10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-hpc

  13. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 9. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/9

  14. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 9. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/9

  15. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 9. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/9

  16. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 10. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

  17. "NVIDIA GeForce GTX 1080" (PDF). International.download.nvidia.com. Retrieved September 15, 2016. http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf

  18. "GTX 1080 Graphics Card". GeForce. Retrieved September 15, 2016. http://www.geforce.com/hardware/10series/geforce-gtx-1080

  19. Carbotte, Kevin (May 17, 2016). "Nvidia GeForce GTX 1080 Simultaneous Multi-Projection & Async Compute". Tomshardware.com. Retrieved September 15, 2016. http://www.tomshardware.com/reviews/nvidia-geforce-gtx-1080-pascal,4572-3.html

  20. "Nvidia Pascal HDCP 2.2". Nvidia Hardware Page. Retrieved May 8, 2016. http://www.geforce.com/hardware/10series/geforce-gtx-1080/

  21. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 10. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

  22. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 10. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

  23. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 10. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

  24. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 10. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

  25. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 5. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5

  26. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 4. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/4

  27. Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". Parallel Forall. Nvidia. Retrieved June 3, 2016. https://devblogs.nvidia.com/parallelforall/inside-pascal/

  28. "NVIDIA TITAN Xp Graphics Card with Pascal Architecture". NVIDIA. https://www.nvidia.com/en-us/geforce/products/10series/titan-xp/

  29. "NVIDIA TITAN X Graphics Card with Pascal". GeForce. Retrieved September 15, 2016. https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

  30. "New Quadro Graphics Built on Pascal Architecture". NVIDIA. Retrieved September 15, 2016. http://www.nvidia.com/object/quadro-graphics-with-pascal.html

  31. "Accelerating Data Center Workloads with GPUs". NVIDIA. Retrieved September 15, 2016. http://www.nvidia.com/object/data-center-solutions.html

  32. Zhiye Liu (October 22, 2018). "Nvidia GeForce GTX 1060 Gets GDDR5X in Fifth Makeover". Tom's Hardware. Retrieved February 2, 2024. https://www.tomshardware.com/news/nvidia-geforce-gtx-1060-gddr5x-specs,37961.html

  33. "NVIDIA GeForce 10 Series Graphics Cards". NVIDIA. https://www.nvidia.com/en-us/geforce/10-series/

  34. "NVIDIA GeForce GTX 1060 to be released on July 7th". VideoCardz.com. June 29, 2016. Retrieved September 15, 2016. http://videocardz.com/61583/nvidia-geforce-gtx-1060-to-be-released-on-july-7th

  35. "GTX 1060 Graphics Cards". GeForce. Retrieved September 15, 2016. http://www.geforce.com/hardware/10series/geforce-gtx-1060

  36. Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech. p. 3. Retrieved July 24, 2016. http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last/3

  37. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  38. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  39. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  40. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  41. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  42. Nvidia (September 1, 2015). "CUDA C Programming Guide". Retrieved July 24, 2016. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  43. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  44. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  45. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  46. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  47. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  48. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  49. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  50. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  51. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  52. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  53. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  54. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  55. Smith, Ryan (January 26, 2015). "GeForce GTX 970: Correcting The Specs & Exploring Memory Allocation". AnandTech. p. 1. Retrieved July 24, 2016. http://www.anandtech.com/show/8935/geforce-gtx-970-correcting-the-specs-exploring-memory-allocation

  56. Smith, Ryan (January 26, 2015). "GeForce GTX 970: Correcting The Specs & Exploring Memory Allocation". AnandTech. p. 1. Retrieved July 24, 2016. http://www.anandtech.com/show/8935/geforce-gtx-970-correcting-the-specs-exploring-memory-allocation

  57. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  58. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  59. Triolet, Damien (May 24, 2016). "Nvidia GeForce GTX 1080, le premier GPU 16nm en test !". Hardware.fr (in French). p. 2. Retrieved July 24, 2016. http://www.hardware.fr/articles/948-2/gp104-7-2-milliards-transistors-16-nm.html

  60. Smith, Ryan (April 5, 2015). "NVIDIA Announces Tesla P100 Accelerator - Pascal GP100 Power for HPC". AnandTech. Retrieved May 27, 2016. Each of those SMs also contains 32 FP64 CUDA cores - giving us the 1/2 rate for FP64 - and new to the Pascal architecture is the ability to pack 2 FP16 operations inside a single FP32 CUDA core under the right circumstances http://www.anandtech.com/show/10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-hpc

  61. Smith, Ryan (July 20, 2016). "The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review: Kicking Off the FinFET Generation". AnandTech. p. 5. Retrieved July 21, 2016. http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5

  62. "NVIDIA Turing Release Date". Techradar. February 2, 2021. https://www.techradar.com/news/nvidia-turing

  63. Smith, Ryan (March 22, 2022). "NVIDIA Hopper GPU Architecture and H100 Accelerator Announced: Working Smarter and Harder". AnandTech. https://www.anandtech.com/show/17327/

  64. Smith, Ryan (May 14, 2020). "NVIDIA Ampere Unleashed: NVIDIA Announces New GPU Architecture, A100 GPU, and Accelerator". AnandTech. https://www.anandtech.com/show/15801/nvidia-announces-ampere-architecture-and-a100-products

  65. "NVIDIA Tesla V100 tested: near unbelievable GPU power". TweakTown. September 17, 2017. https://www.tweaktown.com/news/59155/nvidia-tesla-v100-tested-near-unbelievable-gpu-power/index.html