Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
CUDA
Parallel computing platform and programming model

In computing, CUDA (Compute Unified Device Architecture) is a proprietary parallel computing platform and API developed by Nvidia in 2006 that enables software to utilize GPUs for accelerated general-purpose processing. CUDA provides direct access to the GPU's virtual instruction set and computational elements to execute compute kernels, accompanied by drivers, compilers, libraries, and developer tools. It supports programming languages like C, C++, Fortran, Python, and Julia, simplifying GPU programming compared to older APIs like Direct3D and OpenGL. CUDA also supports frameworks such as OpenMP, OpenACC, and OpenCL.

Related Image Collections Add Image
We don't have any YouTube videos related to CUDA yet.
We don't have any PDF documents related to CUDA yet.
We don't have any Books related to CUDA yet.

Background

Further information: Graphics processing unit

The graphics processing unit (GPU), as a specialized computer processor, addresses the demands of real-time high-resolution 3D graphics compute-intensive tasks. By 2012, GPUs had evolved into highly parallel multi-core systems allowing efficient manipulation of large blocks of data. This design is more effective than general-purpose central processing unit (CPUs) for algorithms in situations where processing large blocks of data is done in parallel, such as:

Ian Buck, while at Stanford in 2000, created an 8K gaming rig using 32 GeForce cards, then obtained a DARPA grant to perform general purpose parallel programming on GPUs. He then joined Nvidia, where since 2004 he has been overseeing CUDA development. In pushing for CUDA, Jensen Huang aimed for the Nvidia GPUs to become a general hardware for scientific computing. CUDA was released in 2007. Around 2015, the focus of CUDA changed to neural networks.9

Ontology

The following table offers a non-exact description for the ontology of CUDA framework.

The ontology of CUDA framework
memory(hardware)memory (code, or variable scoping)computation(hardware)computation(code syntax)computation(code semantics)
RAMnon-CUDA variableshostprogramone routine call
VRAM,GPU L2 cacheglobal, const, texturedevicegridsimultaneous call of the same subroutine on many processors
GPU L1 cachelocal, sharedSM ("streaming multiprocessor")blockindividual subroutine call
warp = 32 threadsSIMD instructions
GPU L0 cache,registerthread (aka. "SP", "streaming processor", "cuda core", but these names are now deprecated)analogous to individual scalar ops within a vector op

Programming abilities

The CUDA platform is accessible to software developers through CUDA-accelerated libraries, compiler directives such as OpenACC, and extensions to industry-standard programming languages including C, C++, Fortran and Python. C/C++ programmers can use 'CUDA C/C++', compiled to PTX with nvcc, Nvidia's LLVM-based C/C++ compiler, or by clang itself.10 Fortran programmers can use 'CUDA Fortran', compiled with the PGI CUDA Fortran compiler from The Portland Group.[needs update] Python programmers can use the cuNumeric library to accelerate applications on Nvidia GPUs.

In addition to libraries, compiler directives, CUDA C/C++ and CUDA Fortran, the CUDA platform supports other computational interfaces, including the Khronos Group's OpenCL,11 Microsoft's DirectCompute, OpenGL Compute Shader and C++ AMP.12 Third party wrappers are also available for Python, Perl, Fortran, Java, Ruby, Lua, Common Lisp, Haskell, R, MATLAB, IDL, Julia, and native support in Mathematica.

In the computer game industry, GPUs are used for graphics rendering, and for game physics calculations (physical effects such as debris, smoke, fire, fluids); examples include PhysX and Bullet. CUDA has also been used to accelerate non-graphical applications in computational biology, cryptography and other fields by an order of magnitude or more.1314151617

CUDA provides both a low level API (CUDA Driver API, non single-source) and a higher level API (CUDA Runtime API, single-source). The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0,18 which supersedes the beta released February 14, 2008.19 CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems.

CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order):

  • cuBLAS – CUDA Basic Linear Algebra Subroutines library
  • CUDART – CUDA Runtime library
  • cuFFT – CUDA Fast Fourier Transform library
  • cuRAND – CUDA Random Number Generation library
  • cuSOLVER – CUDA based collection of dense and sparse direct solvers
  • cuSPARSE – CUDA Sparse Matrix library
  • NPP – NVIDIA Performance Primitives library
  • nvGRAPH – NVIDIA Graph Analytics library
  • NVML – NVIDIA Management Library
  • NVRTC – NVIDIA Runtime Compilation library for CUDA C++

CUDA 8.0 comes with these other software components:

  • nView – NVIDIA nView Desktop Management Software
  • NVWMI – NVIDIA Enterprise Management Toolkit
  • GameWorks PhysX – is a multi-platform game physics engine

CUDA 9.0–9.2 comes with these other components:

  • CUTLASS 1.0 – custom linear algebra algorithms,
  • NVIDIA Video Decoder was deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK

CUDA 10 comes with these other components:

  • nvJPEG – Hybrid (CPU and GPU) JPEG processing

CUDA 11.0–11.8 comes with these other components:20212223

  • CUB is new one of more supported C++ libraries
  • MIG multi instance GPU support
  • nvJPEG2000 – JPEG 2000 encoder and decoder

Advantages

CUDA has several advantages over traditional general-purpose computation on GPUs (GPGPU) using graphics APIs:

  • Scattered reads – code can read from arbitrary addresses in memory.
  • Unified virtual memory (CUDA 4.0 and above)
  • Unified memory (CUDA 6.0 and above)
  • Shared memory – CUDA exposes a fast shared memory region that can be shared among threads. This can be used as a user-managed cache, enabling higher bandwidth than is possible using texture lookups.24
  • Faster downloads and readbacks to and from the GPU
  • Full support for integer and bitwise operations, including integer texture lookups

Limitations

  • Whether for the host computer or the GPU device, all CUDA source code is now processed according to C++ syntax rules.25 This was not always the case. Earlier versions of CUDA were based on C syntax rules.26 As with the more general case of compiling C code with a C++ compiler, it is therefore possible that old C-style CUDA source code will either fail to compile or will not behave as originally intended.
  • Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access to registered CUDA memory but CUDA not having access to OpenGL memory.
  • Copying between host and device memory may incur a performance hit due to system bus bandwidth and latency (this can be partly alleviated with asynchronous memory transfers, handled by the GPU's DMA engine).
  • Threads should be running in groups of at least 32 for best performance, with total number of threads numbering in the thousands. Branches in the program code do not affect performance significantly, provided that each of 32 threads takes the same execution path; the SIMD execution model becomes a significant limitation for any inherently divergent task (e.g. traversing a space partitioning data structure during ray tracing).
  • No emulation or fallback functionality is available for modern revisions.
  • Valid C++ may sometimes be flagged and prevent compilation due to the way the compiler approaches optimization for target GPU device limitations.
  • C++ run-time type information (RTTI) and C++-style exception handling are only supported in host code, not in device code.
  • In single-precision on first generation CUDA compute capability 1.x devices, denormal numbers are unsupported and are instead flushed to zero, and the precision of both the division and square root operations are slightly lower than IEEE 754-compliant single precision math. Devices that support compute capability 2.0 and above support denormal numbers, and the division and square root operations are IEEE 754 compliant by default. However, users can obtain the prior faster gaming-grade math of compute capability 1.x devices if desired by setting compiler flags to disable accurate divisions and accurate square roots, and enable flushing denormal numbers to zero.27
  • Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia as it is proprietary.2829 Attempts to implement CUDA on other GPUs include:
    • Project Coriander: Converts CUDA C++11 source to OpenCL 1.2 C. A fork of CUDA-on-CL intended to run TensorFlow.303132
    • CU2CL: Convert CUDA 3.2 C++ to OpenCL C.33
    • GPUOpen HIP: A thin abstraction layer on top of CUDA and ROCm intended for AMD and Nvidia GPUs. Has a conversion tool for importing CUDA C++ source. Supports CUDA 4.0 plus C++11 and float16.
    • ZLUDA is a drop-in replacement for CUDA on AMD GPUs and formerly Intel GPUs with near-native performance.34 The developer, Andrzej Janik, was separately contracted by both Intel and AMD to develop the software in 2021 and 2022, respectively. However, neither company decided to release it officially due to the lack of a business use case. AMD's contract included a clause that allowed Janik to release his code for AMD independently, allowing him to release the new version that only supports AMD GPUs.35
    • chipStar can compile and run CUDA/HIP programs on advanced OpenCL 3.0 or Level Zero platforms.36

Example

This example code in C++ loads a texture from an image into an array on the GPU:

texture<float, 2, cudaReadModeElementType> tex; void foo() { cudaArray* cu_array; // Allocate array cudaChannelFormatDesc description = cudaCreateChannelDesc<float>(); cudaMallocArray(&cu_array, &description, width, height); // Copy image data to array cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice); // Set texture parameters (default) tex.addressMode[0] = cudaAddressModeClamp; tex.addressMode[1] = cudaAddressModeClamp; tex.filterMode = cudaFilterModePoint; tex.normalized = false; // do not normalize coordinates // Bind the array to the texture cudaBindTextureToArray(tex, cu_array); // Run kernel dim3 blockDim(16, 16, 1); dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1); kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width); // Unbind the array from the texture cudaUnbindTexture(tex); } //end foo() __global__ void kernel(float* odata, int height, int width) { unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; if (x < width && y < height) { float c = tex2D(tex, x, y); odata[y*width+x] = c; } }

Below is an example given in Python that computes the product of two arrays on the GPU. The unofficial Python language bindings can be obtained from PyCUDA.37

import pycuda.compiler as comp import pycuda.driver as drv import numpy import pycuda.autoinit mod = comp.SourceModule( """ __global__ void multiply_them(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } """ ) multiply_them = mod.get_function("multiply_them") a = numpy.random.randn(400).astype(numpy.float32) b = numpy.random.randn(400).astype(numpy.float32) dest = numpy.zeros_like(a) multiply_them(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1)) print(dest - a * b)

Additional Python bindings to simplify matrix multiplication operations can be found in the program pycublas.38

import numpy from pycublas import CUBLASMatrix A = CUBLASMatrix(numpy.mat([[1, 2, 3], [4, 5, 6]], numpy.float32)) B = CUBLASMatrix(numpy.mat([[2, 3], [4, 5], [6, 7]], numpy.float32)) C = A * B print(C.np_mat())

while CuPy directly replaces NumPy:39

import cupy a = cupy.random.randn(400) b = cupy.random.randn(400) dest = cupy.zeros_like(a) print(dest - a * b)

GPUs supported

Supported CUDA compute capability versions for CUDA SDK version and microarchitecture (by code name):

Compute capability (CUDA SDK support vs. microarchitecture)
CUDA SDKversion(s)TeslaFermiKepler(early)Kepler(late)MaxwellPascalVoltaTuringAmpereAdaLovelaceHopperBlackwell
1.0401.0 – 1.1
1.11.0 – 1.1+x
2.01.0 – 1.1+x
2.1 – 2.3.1414243441.0 – 1.3
3.0 – 3.145461.02.0
3.2471.02.1
4.0 – 4.21.02.1
5.0 – 5.51.03.03.5
6.01.03.23.5
6.51.13.75.x
7.0 – 7.52.05.x
8.02.06.x
9.0 – 9.23.07.0 – 7.2
10.0 – 10.23.07.5
11.0483.58.0
11.1 – 11.4493.58.6
11.5 – 11.7.1503.58.7
11.8513.58.99.0
12.0 – 12.65.09.0
12.85.012.0
12.95.012.1

Note: CUDA SDK 10.2 is the last official release for macOS, as support will not be available for macOS in newer releases.

CUDA compute capability by version with associated GPU semiconductors and GPU card models (separated by their various application areas):

Compute capability, GPU semiconductors and Nvidia GPU board products
Computecapability(version)Micro-architectureGPUsGeForceQuadro, NVSTesla/DatacenterTegra,Jetson,DRIVE
1.0TeslaG80GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS(G80)Quadro FX 5600, Quadro FX 4600, Quadro Plex 2100 S4Tesla C870, Tesla D870, Tesla S870
1.1G92, G94, G96, G98, G84, G86GeForce GTS 250, GeForce 9800 GX2, GeForce 9800 GTX, GeForce 9800 GT, GeForce 8800 GTS(G92), GeForce 8800 GT, GeForce 9600 GT, GeForce 9500 GT, GeForce 9400 GT, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8500 GT,GeForce G110M, GeForce 9300M GS, GeForce 9200M GS, GeForce 9100M G, GeForce 8400M GT, GeForce G105MQuadro FX 4700 X2, Quadro FX 3700, Quadro FX 1800, Quadro FX 1700, Quadro FX 580, Quadro FX 570, Quadro FX 470, Quadro FX 380, Quadro FX 370, Quadro FX 370 Low Profile, Quadro NVS 450, Quadro NVS 420, Quadro NVS 290, Quadro NVS 295, Quadro Plex 2100 D4,Quadro FX 3800M, Quadro FX 3700M, Quadro FX 3600M, Quadro FX 2800M, Quadro FX 2700M, Quadro FX 1700M, Quadro FX 1600M, Quadro FX 770M, Quadro FX 570M, Quadro FX 370M, Quadro FX 360M, Quadro NVS 320M, Quadro NVS 160M, Quadro NVS 150M, Quadro NVS 140M, Quadro NVS 135M, Quadro NVS 130M, Quadro NVS 450, Quadro NVS 420,52 Quadro NVS 295
1.2GT218, GT216, GT215GeForce GT 340*, GeForce GT 330*, GeForce GT 320*, GeForce 315*, GeForce 310*, GeForce GT 240, GeForce GT 220, GeForce 210,GeForce GTS 360M, GeForce GTS 350M, GeForce GT 335M, GeForce GT 330M, GeForce GT 325M, GeForce GT 240M, GeForce G210M, GeForce 310M, GeForce 305MQuadro FX 380 Low Profile, Quadro FX 1800M, Quadro FX 880M, Quadro FX 380M,Nvidia NVS 300, NVS 5100M, NVS 3100M, NVS 2100M, ION
1.3GT200, GT200bGeForce GTX 295, GTX 285, GTX 280, GeForce GTX 275, GeForce GTX 260Quadro FX 5800, Quadro FX 4800, Quadro FX 4800 for Mac, Quadro FX 3800, Quadro CX, Quadro Plex 2200 D2Tesla C1060, Tesla S1070, Tesla M1060
2.0FermiGF100, GF110GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 480, GeForce GTX 470, GeForce GTX 465,GeForce GTX 480MQuadro 6000, Quadro 5000, Quadro 4000, Quadro 4000 for Mac, Quadro Plex 7000,Quadro 5010M, Quadro 5000MTesla C2075, Tesla C2050/C2070, Tesla M2050/M2070/M2075/M2090
2.1GF104, GF106 GF108, GF114, GF116, GF117, GF119GeForce GTX 560 Ti, GeForce GTX 550 Ti, GeForce GTX 460, GeForce GTS 450, GeForce GTS 450*, GeForce GT 640 (GDDR3), GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce GT 520, GeForce GT 440, GeForce GT 440*, GeForce GT 430, GeForce GT 430*, GeForce GT 420*,GeForce GTX 675M, GeForce GTX 670M, GeForce GT 635M, GeForce GT 630M, GeForce GT 625M, GeForce GT 720M, GeForce GT 620M, GeForce 710M, GeForce 610M, GeForce 820M, GeForce GTX 580M, GeForce GTX 570M, GeForce GTX 560M, GeForce GT 555M, GeForce GT 550M, GeForce GT 540M, GeForce GT 525M, GeForce GT 520MX, GeForce GT 520M, GeForce GTX 485M, GeForce GTX 470M, GeForce GTX 460M, GeForce GT 445M, GeForce GT 435M, GeForce GT 420M, GeForce GT 415M, GeForce 710M, GeForce 410MQuadro 2000, Quadro 2000D, Quadro 600,Quadro 4000M, Quadro 3000M, Quadro 2000M, Quadro 1000M,NVS 310, NVS 315, NVS 5400M, NVS 5200M, NVS 4200M
3.0KeplerGK104, GK106, GK107GeForce GTX 770, GeForce GTX 760, GeForce GT 740, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650,GeForce GTX 880M, GeForce GTX 870M, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730MQuadro K5000, Quadro K4200, Quadro K4000, Quadro K2000, Quadro K2000D, Quadro K600, Quadro K420,Quadro K500M, Quadro K510M, Quadro K610M, Quadro K1000M, Quadro K2000M, Quadro K1100M, Quadro K2100M, Quadro K3000M, Quadro K3100M, Quadro K4000M, Quadro K5000M, Quadro K4100M, Quadro K5100M,NVS 510, Quadro 410Tesla K10, GRID K340, GRID K520, GRID K2
3.2GK20ATegra K1,Jetson TK1
3.5GK110, GK208GeForce GTX Titan Z, GeForce GTX Titan Black, GeForce GTX Titan, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, GeForce GT 730, GeForce GT 720, GeForce GT 710, GeForce GT 740M (64-bit, DDR3), GeForce GT 920MQuadro K6000, Quadro K5200Tesla K40, Tesla K20x, Tesla K20
3.7GK210Tesla K80
5.0MaxwellGM107, GM108GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 960M, GeForce GTX 950M, GeForce 940M, GeForce 930M, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830MQuadro K1200, Quadro K2200, Quadro K620, Quadro M2000M, Quadro M1000M, Quadro M600M, Quadro K620M, NVS 810Tesla M10
5.2GM200, GM204, GM206GeForce GTX Titan X, GeForce GTX 980 Ti, GeForce GTX 980, GeForce GTX 970, GeForce GTX 960, GeForce GTX 950, GeForce GTX 750 SE,GeForce GTX 980M, GeForce GTX 970M, GeForce GTX 965MQuadro M6000 24GB, Quadro M6000, Quadro M5000, Quadro M4000, Quadro M2000, Quadro M5500,Quadro M5000M, Quadro M4000M, Quadro M3000MTesla M4, Tesla M40, Tesla M6, Tesla M60
5.3GM20BTegra X1,Jetson TX1,Jetson Nano,DRIVE CX,DRIVE PX
6.0PascalGP100Quadro GP100Tesla P100
6.1GP102, GP104, GP106, GP107, GP108Nvidia TITAN Xp, Titan X,GeForce GTX 1080 Ti, GTX 1080, GTX 1070 Ti, GTX 1070, GTX 1060, GTX 1050 Ti, GTX 1050, GT 1030, GT 1010, MX350, MX330, MX250, MX230, MX150, MX130, MX110Quadro P6000, Quadro P5000, Quadro P4000, Quadro P2200, Quadro P2000, Quadro P1000, Quadro P400, Quadro P500, Quadro P520, Quadro P600,Quadro P5000 (mobile), Quadro P4000 (mobile), Quadro P3000 (mobile)Tesla P40, Tesla P6, Tesla P4
6.2GP10B53Tegra X2, Jetson TX2, DRIVE PX 2
7.0VoltaGV100NVIDIA TITAN VQuadro GV100Tesla V100, Tesla V100S
7.2GV10B54

GV11B5556

Tegra Xavier,Jetson Xavier NX,Jetson AGX Xavier,DRIVE AGX Xavier,DRIVE AGX Pegasus,Clara AGX
7.5TuringTU102, TU104, TU106, TU116, TU117NVIDIA TITAN RTX,GeForce RTX 2080 Ti, RTX 2080 Super, RTX 2080, RTX 2070 Super, RTX 2070, RTX 2060 Super, RTX 2060 12GB, RTX 2060,GeForce GTX 1660 Ti, GTX 1660 Super, GTX 1660, GTX 1650 Super, GTX 1650, MX550, MX450Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Quadro RTX 4000, T1000, T600, T400T1200 (mobile), T600 (mobile), T500 (mobile), Quadro T2000 (mobile), Quadro T1000 (mobile)Tesla T4
8.0AmpereGA100A100 80GB, A100 40GB, A30
8.6GA102, GA103, GA104, GA106, GA107GeForce RTX 3090 Ti, RTX 3090, RTX 3080 Ti, RTX 3080 12GB, RTX 3080, RTX 3070 Ti, RTX 3070, RTX 3060 Ti, RTX 3060, RTX 3050, RTX 3050 Ti (mobile), RTX 3050 (mobile), RTX 2050 (mobile), MX570RTX A6000, RTX A5500, RTX A5000, RTX A4500, RTX A4000, RTX A2000 RTX A5000 (mobile), RTX A4000 (mobile), RTX A3000 (mobile), RTX A2000 (mobile)A40, A16, A10, A2
8.7GA10BJetson Orin Nano,Jetson Orin NX,Jetson AGX Orin,DRIVE AGX Orin,IGX Orin
8.9Ada Lovelace57AD102, AD103, AD104, AD106, AD107GeForce RTX 4090, RTX 4080 Super, RTX 4080, RTX 4070 Ti Super, RTX 4070 Ti, RTX 4070 Super, RTX 4070, RTX 4060 Ti, RTX 4060, RTX 4050 (mobile)RTX 6000 Ada, RTX 5880 Ada, RTX 5000 Ada, RTX 4500 Ada, RTX 4000 Ada, RTX 4000 SFF Ada, RTX 2000 Ada, RTX 5000 Ada (mobile), RTX 4000 Ada (mobile), RTX 3500 Ada (mobile), RTX 2000 Ada (mobile)L40S, L40, L20, L4, L2
9.0HopperGH100H200, H100, GH200
10.0BlackwellGB100B200, B100, GB200
10.1Jetson AGX Thor,DRIVE AGX Thor
10.3G10GB10
12.0GB202, GB203, GB205, GB206, GB207GeForce RTX 5090, RTX 5080, RTX 5070 Ti, RTX 5070, RTX 5060 Ti, RTX 5060RTX PRO 6000 Blackwell, RTX PRO 5000 Blackwell, RTX PRO 4500 Blackwell, RTX PRO 4000 BlackwellB40
12.1
Computecapability(version)Micro-architectureGPUsGeForceQuadro, NVSTesla/DatacenterTegra,Jetson,DRIVE

* – OEM-only products

Version features and specifications

Feature support (unlisted features are supported for all compute capabilities)Compute capability (version)
1.0, 1.11.2, 1.32.x3.03.23.5, 3.7, 5.x, 6.x, 7.0, 7.27.58.x9.0, 10.x, 12.x
Warp vote functions (__all(), __any())NoYes
Warp vote functions (__ballot())NoYes
Memory fence functions (__threadfence_system())
Synchronization functions (__syncthreads_count(), __syncthreads_and(), __syncthreads_or())
Surface functions
3D grid of thread blocks
Warp shuffle functionsNoYes
Unified memory programming
Funnel shiftNoYes
Dynamic parallelismNoYes
Uniform Datapath58NoYes
Hardware-accelerated async-copyNoYes
Hardware-accelerated split arrive/wait barrier
Warp-level support for reduction ops
L2 cache residency management
DPX instructions for accelerated dynamic programmingNoYes
Distributed shared memory
Thread block cluster
Tensor memory accelerator (TMA) unit
Feature support (unlisted features are supported for all compute capabilities)1.0, 1.11.2, 1.32.x3.03.23.5, 3.7, 5.x, 6.x, 7.0, 7.27.58.x9.0, 10.x, 12.x
Compute capability (version)

59

Data types

Floating-point types

Data typeSupported vector typesStorage Length Bits(complete vector)Used Length Bits(single value)Sign BitsExponent BitsMantissa BitsComments
E2M1 = FP4e2m1x2 / e2m1x48 / 164121
E2M3 = FP6 variante2m3x2 / e2m3x416 / 326123
E3M2 = FP6 variante3m2x2 / e3m2x416 / 326132
UE4M3ue4m387043Used for scaling (E2M1 only)
E4M3 = FP8 variante4m3 / e4m3x2 / e4m3x48 / 16 / 328143
E5M2 = FP8 variante5m2 / e5m2x2 / e5m2x48 / 16 / 328152Exponent/range of FP16, fits into 8 bits
UE8M0ue8m0x2168080Used for scaling (any FP4 or FP6 or FP8 format)
FP16f16 / f16x216 / 32161510
BF16bf16 / bf16x216 / 3216187Exponent/range of FP32, fits into 16 bits
TF32tf3232191810Exponent/range of FP32, mantissa/precision of FP16
FP32f32 / f32x232 / 64321823
FP64f64646411152

Version support

Data typeBasic OperationsSupported sinceAtomic OperationsSupported sincefor global memorySupported sincefor shared memory
8-bit integersigned/unsignedloading, storing, conversion1.0
16-bit integersigned/unsignedgeneral operations1.0atomicCAS()3.5
32-bit integersigned/unsignedgeneral operations1.0atomic functions1.11.2
64-bit integersigned/unsignedgeneral operations1.0atomic functions1.22.0
any 128-bit trivially copyable typegeneral operationsNoatomicExch, atomicCAS9.0
16-bit floating pointFP16addition, subtraction,multiplication, comparison,warp shuffle functions, conversion5.3half2 atomic addition6.0
atomic addition7.0
16-bit floating pointBF16addition, subtraction,multiplication, comparison,warp shuffle functions, conversion8.0atomic addition8.0
32-bit floating pointgeneral operations1.0atomicExch()1.11.2
atomic addition2.0
32-bit floating point float2 and float4general operationsNoatomic addition9.0
64-bit floating pointgeneral operations1.3atomic addition6.0

Note: Any missing lines or empty entries do reflect some lack of information on that exact item.60

Tensor cores

FMA per cycle per tensor core61Supported since7.07.27.5 Workstation7.5 Desktop8.08.6 Workstation8.78.6 Desktop8.9 Desktop8.9 Workstation9.010.010.112.0
Data TypeFor dense matricesFor sparse matrices1st Gen (8x/SM)1st Gen? (8x/SM)2nd Gen (8x/SM)3rd Gen (4x/SM)4th Gen (4x/SM)5th Gen (4x/SM)
1-bit values (AND)8.0 asexperimentalNoNo40962048speed tbd
1-bit values (XOR)7.5–8.9 asexperimentalNo1024Deprecated or removed?
4-bit integers8.0–8.9 asexperimental2561024512
4-bit floating point FP4 (E2M1)10.0No4096tbd512
6-bit floating point FP6 (E3M2 and E2M3)10.0No2048tbd
8-bit integers7.28.0No12812851225610242048256
8-bit floating point FP8 (E4M3 and E5M2) with FP16 accumulate8.9No256
8-bit floating point FP8 (E4M3 and E5M2) with FP32 accumulate128128
16-bit floating point FP16 with FP16 accumulate7.08.06464642561285121024128
16-bit floating point FP16 with FP32 accumulate326412864
16-bit floating point BF16 with FP32 accumulate7.5628.0No6463
32-bit (19 bits used) floating point TF32speed tbd (32?)64128326425651232
64-bit floating point8.0NoNo16speed tbd3216tbd

Note: Any missing lines or empty entries do reflect some lack of information on that exact item.6566 67 68 69 70

Tensor Core Composition7.07.2, 7.58.0, 8.68.78.99.0
Dot Product Unit Width in FP16 units (in bytes)717273744 (8)8 (16)4 (8)16 (32)
Dot Product Units per Tensor Core1632
Tensor Cores per SM partition21
Full throughput (Bytes/cycle)75 per SM partition762565122561024
FP Tensor Cores: Minimum cycles for warp-wide matrix calculation848
FP Tensor Cores: Minimum Matrix Shape for full throughput (Bytes)772048
INT Tensor Cores: Minimum cycles for warp-wide matrix calculationNo4
INT Tensor Cores: Minimum Matrix Shape for full throughput (Bytes)No102420481024

78798081

FP64 Tensor Core Composition8.08.68.78.99.0
Dot Product Unit Width in FP64 units (in bytes)4 (32)tbd4 (32)
Dot Product Units per Tensor Core4tbd8
Tensor Cores per SM partition1
Full throughput (Bytes/cycle)82 per SM partition83128tbd256
Minimum cycles for warp-wide matrix calculation16tbd
Minimum Matrix Shape for full throughput (Bytes)842048

Technical specifications

Technical specificationsCompute capability (version)
1.01.11.21.32.x3.03.23.53.75.05.25.36.06.16.27.07.27.58.08.68.78.99.010.x12.x
Maximum number of resident grids per device(concurrent kernel execution, can be lower for specific devices)11643216128321612816128
Maximum dimensionality of grid of thread blocks23
Maximum x-dimension of a grid of thread blocks65535231 − 1
Maximum y-, or z-dimension of a grid of thread blocks65535
Maximum dimensionality of thread block3
Maximum x- or y-dimension of a block5121024
Maximum z-dimension of a block64
Maximum number of threads per block5121024
Warp size32
Maximum number of resident blocks per multiprocessor816321632162432
Maximum number of resident warps per multiprocessor243248643264486448
Maximum number of resident threads per multiprocessor76810241536204810242048153620481536
Number of 32-bit regular registers per multiprocessor8 K16 K32 K64 K128 K64 K
Number of 32-bit uniform registers per multiprocessorNo2 K85

86

Maximum number of 32-bit registers per thread block8 K16 K32 K64 K32 K64 K32 K64 K32 K64 K
Maximum number of 32-bit regular registers per thread12463255
Maximum number of 32-bit uniform registers per warpNo6387

88

Amount of shared memory per multiprocessor(out of overall shared memory + L1 cache, where applicable)16 KiB16 / 48 KiB (of 64 KiB)16 / 32 / 48 KiB (of 64 KiB)80 / 96 / 112 KiB (of 128 KiB)64 KiB96 KiB64 KiB96 KiB64 KiB0 / 8 / 16 / 32 / 64 / 96 KiB (of 128 KiB)32 / 64 KiB (of 96 KiB)0 / 8 / 16 / 32 / 64 / 100 / 132 / 164 KiB (of 192 KiB)0 / 8 / 16 / 32 / 64 / 100 KiB (of 128 KiB)0 / 8 / 16 / 32 / 64 / 100 / 132 / 164 KiB (of 192 KiB)0 / 8 / 16 / 32 / 64 / 100 KiB (of 128 KiB)0 / 8 / 16 / 32 / 64 / 100 / 132 / 164 / 196 / 228 KiB (of 256 KiB)0 / 8 / 16 / 32 / 64 / 100 KiB (of 128 KiB)
Maximum amount of shared memory per thread block16 KiB48 KiB96 KiB48 KiB64 KiB163 KiB99 KiB163 KiB99 KiB227 KiB99 KiB
Number of shared memory banks1632
Amount of local memory per thread16 KiB512 KiB
Constant memory size accessible by CUDA C/C++(1 bank, PTX can access 11 banks, SASS can access 18 banks)64 KiB
Cache working set per multiprocessor for constant memory8 KiB4 KiB8 KiB
Cache working set per multiprocessor for texture memory16 KiB per TPC24 KiB per TPC12 KiB12 – 48 KiB8924 KiB48 KiB32 KiB9024 KiB48 KiB24 KiB32 – 128 KiB32 – 64 KiB28 – 192 KiB28 – 128 KiB28 – 192 KiB28 – 128 KiB28 – 256 KiB
Maximum width for 1D texture reference bound to a CUDA array819265536131072
Maximum width for 1D texture reference bound to linear memory227228227228227228
Maximum width and number of layers for a 1D layered texture reference8192 × 51216384 × 204832768 x 2048
Maximum width and height for 2D texture reference bound to a CUDA array65536 × 3276865536 × 65535131072 x 65536
Maximum width and height for 2D texture reference bound to a linear memory65000 x 6500065536 x 65536131072 x 65000
Maximum width and height for 2D texture reference bound to a CUDA array supporting texture gather16384 x 1638432768 x 32768
Maximum width, height, and number of layers for a 2D layered texture reference8192 × 8192 × 51216384 × 16384 × 204832768 x 32768 x 2048
Maximum width, height and depth for a 3D texture reference bound to linear memory or a CUDA array2048340963163843
Maximum width (and height) for a cubemap texture reference1638432768
Maximum width (and height) and number of layers for a cubemap layered texture reference16384 × 204632768 × 2046
Maximum number of textures that can be bound to a kernel128256
Maximum width for a 1D surface reference bound to a CUDA arrayNotsupported655361638432768
Maximum width and number of layers for a 1D layered surface reference65536 × 204816384 × 204832768 × 2048
Maximum width and height for a 2D surface reference bound to a CUDA array65536 × 3276816384 × 65536131072 × 65536
Maximum width, height, and number of layers for a 2D layered surface reference65536 × 32768 × 204816384 × 16384 × 204832768 × 32768 × 2048
Maximum width, height, and depth for a 3D surface reference bound to a CUDA array65536 × 32768 × 20484096 × 4096 × 409616384 × 16384 × 16384
Maximum width (and height) for a cubemap surface reference bound to a CUDA array327681638432768
Maximum width and number of layers for a cubemap layered surface reference32768 × 204616384 × 204632768 × 2046
Maximum number of surfaces that can be bound to a kernel81632
Maximum number of instructions per kernel2 million512 million
Maximum number of Thread Blocks per Thread Block Cluster91No168
Technical specifications1.01.11.21.32.x3.03.23.53.75.05.25.36.06.16.27.07.27.58.08.68.78.99.010.x12.x
Compute capability (version)
9293

Multiprocessor architecture

Architecture specificationsCompute capability (version)
1.01.11.21.32.02.13.03.23.53.75.05.25.36.06.16.27.07.27.58.08.68.78.99.010.x12.x
Number of ALU lanes for INT32 arithmetic operations832481929412812864128128646464128
Number of ALU lanes for any INT32 or FP32 arithmetic operation
Number of ALU lanes for FP32 arithmetic operations6464128128
Number of ALU lanes for FP16x2 arithmetic operationsNo112895128966497
Number of ALU lanes for FP64 arithmetic operationsNo116 by FP32984 by FP329988 / 64100644101324322322642
Number of Load/Store Units4 per 2 SM8 per 2 SM8 per 2 SM / 3 SM1028 per 3 SM163216321632
Number of special function units for single-precision floating-point transcendental functions21034832163216
Number of texture mapping units (TMU)4 per 2 SM8 per 2 SM8 per 2 / 3SM1048 per 3 SM44 / 81051681684
Number of ALU lanes for uniform INT32 arithmetic operationsNo2106
Number of tensor coresNo8 (1st gen.)1070 / 8108 (2nd gen.)4 (3rd gen.)4 (4th gen.)
Number of raytracing coresNo0 / 1109 (1st gen.)No1 (2nd gen.)No1 (3rd gen.)No
Number of SM Partitions = Processing Blocks1101424
Number of warp schedulers per SM partition1241
Max number of new instructions issued each cycle by a single scheduler11121121211321
Size of unified memory for data cache and shared memory16 KiB11416 KiB11564 KiB128 KiB64 KiB SM + 24 KiB L1 (separate)11696 KiB SM + 24 KiB L1 (separate)11764 KiB SM + 24 KiB L1 (separate)11864 KiB SM + 24 KiB L1 (separate)11996 KiB SM + 24 KiB L1 (separate)12064 KiB SM + 24 KiB L1 (separate)121128 KiB96 KiB122192 KiB128 KiB192 KiB128 KiB256 KiB
Size of L3 instruction cache per GPU32 KiB123use L2 Data Cache
Size of L2 instruction cache per Texture Processor Cluster (TPC)8 KiB
Size of L1.5 instruction cache per SM1244 KiB32 KiB32 KiB48 KiB125128 KiB32 KiB128 KiB~46 KiB126128 KiB127
Size of L1 instruction cache per SM8 KiB8 KiB
Size of L0 instruction cache per SM partitiononly 1 partition per SMNo12 KiB16 KiB?12832 KiB
Instruction Width12932 bits instructions and 64 bits instructions13064 bits instructions + 64 bits control logic every 7 instructions64 bits instructions + 64 bits control logic every 3 instructions128 bits combined instruction and control logic
Memory Bus Width per Memory Partition in bits64 ((G)DDR)32 ((G)DDR)512 (HBM)32 ((G)DDR)512 (HBM)32 ((G)DDR)512 (HBM)32 ((G)DDR)512 (HBM)32 ((G)DDR)
L2 Cache per Memory Partition16 KiB13132 KiB132128 KiB256 KiB1 MiB512 KiB128 KiB512 KiB256 KiB128 KiB768 KiB64 KiB512 KiB4 MiB512 KiB8 MiB1335 MiB6.25 MiB8 MiB134
Number of Render Output Units (ROP) per memory partition (or per GPC in later models)4848168128416281616 per GPC3 per GPC16 per GPC
Architecture specifications1.01.11.21.32.02.13.03.23.53.75.05.25.36.06.16.27.07.27.58.08.68.78.99.010.x12.x
Compute capability (version)

For more information read the Nvidia CUDA C++ Programming Guide.135

Usages of CUDA architecture

Comparison with competitors

CUDA competes with other GPU computing stacks: Intel OneAPI and AMD ROCm.

Whereas Nvidia's CUDA is closed-source, Intel's OneAPI and AMD's ROCm are open source.

Intel OneAPI

Main article: OneAPI (compute acceleration)

oneAPI is an initiative based in open standards, created to support software development for multiple hardware architectures.138 The oneAPI libraries must implement open specifications that are discussed publicly by the Special Interest Groups, offering the possibility for any developer or organization to implement their own versions of oneAPI libraries.139140

Originally made by Intel, other hardware adopters include Fujitsu and Huawei.

Unified Acceleration Foundation (UXL)

Unified Acceleration Foundation (UXL) is a new technology consortium working on the continuation of the OneAPI initiative, with the goal to create a new open standard accelerator software ecosystem, related open standards and specification projects through Working Groups and Special Interest Groups (SIGs). The goal is to offer open alternatives to Nvidia's CUDA. The main companies behind it are Intel, Google, ARM, Qualcomm, Samsung, Imagination, and VMware.141

AMD ROCm

Main article: ROCm

ROCm142 is an open source software stack for graphics processing unit (GPU) programming from Advanced Micro Devices (AMD).

See also

Further reading

References

  1. Shah, Agam. "Nvidia not totally against third parties making CUDA chips". www.theregister.com. Retrieved 2024-04-25. https://www.theregister.com/2021/11/10/nvidia_cuda_silicon/

  2. "Nvidia CUDA Home Page". 18 July 2017. https://developer.nvidia.com/cuda-zone

  3. Shimpi, Anand Lal; Wilson, Derek (November 8, 2006). "Nvidia's GeForce 8800 (G80): GPUs Re-architected for DirectX 10". AnandTech. Retrieved May 16, 2015. https://www.anandtech.com/show/2116/8

  4. "Introduction — nsight-visual-studio-edition 12.6 documentation". docs.nvidia.com. Retrieved 2024-10-10. https://docs.nvidia.com/nsight-visual-studio-edition/introduction/index.html#cuda-debugger

  5. Abi-Chahla, Fedy (June 18, 2008). "Nvidia's CUDA: The End of the CPU?". Tom's Hardware. Retrieved May 17, 2015. https://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html

  6. Zunitch, Peter (2018-01-24). "CUDA vs. OpenCL vs. OpenGL". Videomaker. Retrieved 2018-09-16. https://www.videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl

  7. "OpenCL". NVIDIA Developer. 2013-04-24. Retrieved 2019-11-04. https://developer.nvidia.com/opencl

  8. Abi-Chahla, Fedy (June 18, 2008). "Nvidia's CUDA: The End of the CPU?". Tom's Hardware. Retrieved May 17, 2015. https://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html

  9. Witt, Stephen (2023-11-27). "How Jensen Huang's Nvidia Is Powering the A.I. Revolution". The New Yorker. ISSN 0028-792X. Retrieved 2023-12-10. https://www.newyorker.com/magazine/2023/12/04/how-jensen-huangs-nvidia-is-powering-the-ai-revolution

  10. "CUDA LLVM Compiler". 7 May 2012. https://developer.nvidia.com/cuda-llvm-compiler

  11. First OpenCL demo on a GPU on YouTube https://www.youtube.com/watch?v=r1sN1ELJfNo

  12. DirectCompute Ocean Demo Running on Nvidia CUDA-enabled GPU on YouTube https://www.youtube.com/watch?v=K1I4kts5mqc

  13. Vasiliadis, Giorgos; Antonatos, Spiros; Polychronakis, Michalis; Markatos, Evangelos P.; Ioannidis, Sotiris (September 2008). "Gnort: High Performance Network Intrusion Detection Using Graphics Processors" (PDF). Recent Advances in Intrusion Detection. Lecture Notes in Computer Science. Vol. 5230. pp. 116–134. doi:10.1007/978-3-540-87403-4_7. ISBN 978-3-540-87402-7. 978-3-540-87402-7

  14. Schatz, Michael C.; Trapnell, Cole; Delcher, Arthur L.; Varshney, Amitabh (2007). "High-throughput sequence alignment using Graphics Processing Units". BMC Bioinformatics. 8: 474. doi:10.1186/1471-2105-8-474. PMC 2222658. PMID 18070356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222658

  15. Manavski, Svetlin A.; Giorgio, Valle (2008). "CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment". BMC Bioinformatics. 10 (Suppl 2): S10. doi:10.1186/1471-2105-9-S2-S10. PMC 2323659. PMID 18387198. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323659

  16. "Pyrit – Google Code". https://code.google.com/p/pyrit/

  17. "Use your Nvidia GPU for scientific computing". BOINC. 2008-12-18. Archived from the original on 2008-12-28. Retrieved 2017-08-08. https://web.archive.org/web/20081228022142/http://boinc.berkeley.edu/cuda.php

  18. "Nvidia CUDA Software Development Kit (CUDA SDK) – Release Notes Version 2.0 for MAC OS X". Archived from the original on 2009-01-06. https://web.archive.org/web/20090106020401/http://developer.download.nvidia.com/compute/cuda/sdk/website/doc/CUDA_SDK_release_notes_macosx.txt

  19. "CUDA 1.1 – Now on Mac OS X". February 14, 2008. Archived from the original on November 22, 2008. https://web.archive.org/web/20081122105633/http://news.developer.nvidia.com/2008/02/cuda-11---now-o.html

  20. "CUDA 11 Features Revealed". 14 May 2020. https://developer.nvidia.com/blog/cuda-11-features-revealed/

  21. "CUDA Toolkit 11.1 Introduces Support for GeForce RTX 30 Series and Quadro RTX Series GPUs". 23 September 2020. https://developer.nvidia.com/blog/cuda-11-1-introduces-support-rtx-30-series/

  22. "Enhancing Memory Allocation with New NVIDIA CUDA 11.2 Features". 16 December 2020. https://developer.nvidia.com/blog/enhancing-memory-allocation-with-new-cuda-11-2-features/

  23. "Exploring the New Features of CUDA 11.3". 16 April 2021. https://developer.nvidia.com/blog/exploring-the-new-features-of-cuda-11-3/

  24. Silberstein, Mark; Schuster, Assaf; Geiger, Dan; Patney, Anjul; Owens, John D. (2008). "Efficient computation of sum-products on GPUs through software-managed cache" (PDF). Proceedings of the 22nd annual international conference on Supercomputing – ICS '08 (PDF). Proceedings of the 22nd annual international conference on Supercomputing – ICS '08. pp. 309–318. doi:10.1145/1375527.1375572. ISBN 978-1-60558-158-3. 978-1-60558-158-3

  25. "CUDA C Programming Guide v8.0" (PDF). nVidia Developer Zone. January 2017. p. 19. Retrieved 22 March 2017. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

  26. "NVCC forces c++ compilation of .cu files". 29 November 2011. https://devtalk.nvidia.com/default/topic/508479/cuda-programming-and-performance/nvcc-forces-c-compilation-of-cu-files/#entry1340190

  27. Whitehead, Nathan; Fit-Florea, Alex. "Precision & Performance: Floating Point and IEEE 754 Compliance for Nvidia GPUs" (PDF). Nvidia. Retrieved November 18, 2014. https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

  28. "CUDA-Enabled Products". CUDA Zone. Nvidia Corporation. Retrieved 2008-11-03. https://www.nvidia.com/object/cuda_learn_products.html

  29. Shah, Agam. "Nvidia not totally against third parties making CUDA chips". www.theregister.com. Retrieved 2024-04-25. https://www.theregister.com/2021/11/10/nvidia_cuda_silicon/

  30. "Coriander Project: Compile CUDA Codes To OpenCL, Run Everywhere". Phoronix. http://www.phoronix.com/scan.php?page=news_item&px=CUDA-On-CL-Coriander

  31. Perkins, Hugh (2017). "cuda-on-cl" (PDF). IWOCL. Retrieved August 8, 2017. http://www.iwocl.org/wp-content/uploads/iwocl2017-hugh-perkins-cuda-cl.pdf

  32. "hughperkins/coriander: Build NVIDIA® CUDA™ code for OpenCL™ 1.2 devices". GitHub. May 6, 2019. https://github.com/hughperkins/coriander

  33. "CU2CL Documentation". chrec.cs.vt.edu. http://chrec.cs.vt.edu/cu2cl/documentation.php

  34. "GitHub – vosen/ZLUDA". GitHub. https://github.com/vosen/ZLUDA

  35. Larabel, Michael (2024-02-12), "AMD Quietly Funded A Drop-In CUDA Implementation Built On ROCm: It's Now Open-Source", Phoronix, retrieved 2024-02-12 https://www.phoronix.com/review/radeon-cuda-zluda

  36. "GitHub – chip-spv/chipStar". GitHub. https://github.com/chip-spv/chipStar

  37. "PyCUDA". http://mathema.tician.de/software/pycuda

  38. "pycublas". Archived from the original on 2009-04-20. Retrieved 2017-08-08. https://web.archive.org/web/20090420124748/http://kered.org/blog/2009-04-13/easy-python-numpy-cuda-cublas/

  39. "CuPy". Retrieved 2020-01-08. https://cupy.dev/

  40. "NVIDIA CUDA Programming Guide. Version 1.0" (PDF). June 23, 2007. http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

  41. "NVIDIA CUDA Programming Guide. Version 2.1" (PDF). December 8, 2008. http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf

  42. "NVIDIA CUDA Programming Guide. Version 2.2" (PDF). April 2, 2009. http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf

  43. "NVIDIA CUDA Programming Guide. Version 2.2.1" (PDF). May 26, 2009. http://developer.download.nvidia.com/compute/cuda/2_21/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.1.pdf

  44. "NVIDIA CUDA Programming Guide. Version 2.3.1" (PDF). August 26, 2009. http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

  45. "NVIDIA CUDA Programming Guide. Version 3.0" (PDF). February 20, 2010. http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf

  46. "NVIDIA CUDA C Programming Guide. Version 3.1.1" (PDF). July 21, 2010. http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

  47. "NVIDIA CUDA C Programming Guide. Version 3.2" (PDF). November 9, 2010. http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

  48. "CUDA 11.0 Release Notes". NVIDIA Developer. https://docs.nvidia.com/cuda/archive/11.0/cuda-toolkit-release-notes/index.html

  49. "CUDA 11.1 Release Notes". NVIDIA Developer. https://docs.nvidia.com/cuda/archive/11.1.0/cuda-toolkit-release-notes/index.html

  50. "CUDA 11.5 Release Notes". NVIDIA Developer. https://docs.nvidia.com/cuda/archive/11.5.0/cuda-toolkit-release-notes/index.html

  51. "CUDA 11.8 Release Notes". NVIDIA Developer. https://docs.nvidia.com/cuda/archive/11.8.0/cuda-toolkit-release-notes/index.html

  52. "NVIDIA Quadro NVS 420 Specs". TechPowerUp GPU Database. 25 August 2023. https://www.techpowerup.com/gpu-specs/quadro-nvs-420.c1448

  53. Larabel, Michael (March 29, 2017). "NVIDIA Rolls Out Tegra X2 GPU Support In Nouveau". Phoronix. Retrieved August 8, 2017. /wiki/Michael_Larabel

  54. Nvidia Xavier Specs on TechPowerUp (preliminary) https://www.techpowerup.com/gpudb/3232/xavier

  55. "Welcome — Jetson LinuxDeveloper Guide 34.1 documentation". https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html

  56. "NVIDIA Bringing up Open-Source Volta GPU Support for Their Xavier SoC". https://www.phoronix.com/scan.php?page=news_item&px=NVIDIA-Nouveau-GV11B-Volta-Xav

  57. "NVIDIA Ada Lovelace Architecture". https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture/

  58. Dissecting the Turing GPU Architecture through Microbenchmarking https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

  59. "H.1. Features and Technical Specifications – Table 13. Feature Support per Compute Capability". docs.nvidia.com. Retrieved 2020-09-23. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

  60. "CUDA C++ Programming Guide". https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

  61. Fused-Multiply-Add, actually executed, Dense Matrix

  62. as SASS since 7.5, as PTX since 8.0

  63. unofficial support in SASS

  64. unofficial support in SASS

  65. "Technical brief. NVIDIA Jetson AGX Orin Series" (PDF). nvidia.com. Retrieved 5 September 2023. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf

  66. "NVIDIA Ampere GA102 GPU Architecture" (PDF). nvidia.com. Retrieved 5 September 2023. https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

  67. Luo, Weile; Fan, Ruibo; Li, Zeyu; Du, Dayou; Wang, Qiang; Chu, Xiaowen (2024). "Benchmarking and Dissecting the Nvidia Hopper GPU Architecture". arXiv:2402.13499v1 [cs.AR]. /wiki/ArXiv_(identifier)

  68. "Datasheet NVIDIA A40" (PDF). nvidia.com. Retrieved 27 April 2024. https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf

  69. "NVIDIA AMPERE GA102 GPU ARCHITECTURE" (PDF). 27 April 2024. https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf

  70. "Datasheet NVIDIA L40" (PDF). 27 April 2024. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/support-guide/NVIDIA-L40-Datasheet-January-2023.pdf

  71. In the Whitepapers the Tensor Core cube diagrams represent the Dot Product Unit Width into the height (4 FP16 for Volta and Turing, 8 FP16 for A100, 4 FP16 for GA102, 16 FP16 for GH100). The other two dimensions represent the number of Dot Product Units (4x4 = 16 for Volta and Turing, 8x4 = 32 for Ampere and Hopper). The resulting gray blocks are the FP16 FMA operations per cycle. Pascal without Tensor core is only shown for speed comparison as is Volta V100 with non-FP16 datatypes.

  72. "NVIDIA Turing Architecture Whitepaper" (PDF). nvidia.com. Retrieved 5 September 2023. https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

  73. "NVIDIA Tensor Core GPU" (PDF). nvidia.com. Retrieved 5 September 2023. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

  74. "NVIDIA Hopper Architecture In-Depth". 22 March 2022. https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

  75. shape x converted operand size, e.g. 2 tensor cores x 4x4x4xFP16/cycle = 256 Bytes/cycle

  76. = product first 3 table rows

  77. = product of previous 2 table rows; shape: e.g. 8x8x4xFP16 = 512 Bytes

  78. Sun, Wei; Li, Ang; Geng, Tong; Stuijk, Sander; Corporaal, Henk (2023). "Dissecting Tensor Cores via Microbenchmarks: Latency, Throughput and Numeric Behaviors". IEEE Transactions on Parallel and Distributed Systems. 34 (1): 246–261. arXiv:2206.02874. doi:10.1109/tpds.2022.3217824. S2CID 249431357. /wiki/ArXiv_(identifier)

  79. "Parallel Thread Execution ISA Version 7.7". https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma

  80. Raihan, Md Aamir; Goli, Negar; Aamodt, Tor (2018). "Modeling Deep Learning Accelerator Enabled GPUs". arXiv:1811.08309 [cs.MS]. /wiki/ArXiv_(identifier)

  81. "NVIDIA Ada Lovelace Architecture". https://www.nvidia.com/en-gb/geforce/ada-lovelace-architecture

  82. shape x converted operand size, e.g. 2 tensor cores x 4x4x4xFP16/cycle = 256 Bytes/cycle

  83. = product first 3 table rows

  84. = product of previous 2 table rows; shape: e.g. 8x8x4xFP16 = 512 Bytes

  85. Jia, Zhe; Maggioni, Marco; Smith, Jeffrey; Daniele Paolo Scarpazza (2019). "Dissecting the NVidia Turing T4 GPU via Microbenchmarking". arXiv:1903.07486 [cs.DC]. /wiki/ArXiv_(identifier)

  86. Burgess, John (2019). "RTX ON – The NVIDIA TURING GPU". 2019 IEEE Hot Chips 31 Symposium (HCS). pp. 1–27. doi:10.1109/HOTCHIPS.2019.8875651. ISBN 978-1-7281-2089-8. S2CID 204822166. 978-1-7281-2089-8

  87. Jia, Zhe; Maggioni, Marco; Smith, Jeffrey; Daniele Paolo Scarpazza (2019). "Dissecting the NVidia Turing T4 GPU via Microbenchmarking". arXiv:1903.07486 [cs.DC]. /wiki/ArXiv_(identifier)

  88. Burgess, John (2019). "RTX ON – The NVIDIA TURING GPU". 2019 IEEE Hot Chips 31 Symposium (HCS). pp. 1–27. doi:10.1109/HOTCHIPS.2019.8875651. ISBN 978-1-7281-2089-8. S2CID 204822166. 978-1-7281-2089-8

  89. dependent on device

  90. "Tegra X1". 9 January 2015. https://developer.nvidia.com/content/tegra-x1

  91. NVIDIA H100 Tensor Core GPU Architecture https://nvdam.widen.net/s/5bx55xfnxf/gtc22-whitepaper-hopper

  92. H.1. Features and Technical Specifications – Table 14. Technical Specifications per Compute Capability https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

  93. NVIDIA Hopper Architecture In-Depth https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth

  94. can only execute 160 integer instructions according to programming guide

  95. 128 according to [1]. 64 from FP32 + 64 separate units? https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions

  96. 64 by FP32 cores and 64 by flexible FP32/INT cores.

  97. "CUDA C++ Programming Guide". https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions

  98. 32 FP32 lanes combine to 16 FP64 lanes. Maybe lower depending on model.

  99. only supported by 16 FP32 lanes, they combine to 4 FP64 lanes

  100. depending on model

  101. Effective speed, probably over FP32 ports. No description of actual FP64 cores.

  102. depending on model

  103. Can also be used for integer additions and comparisons

  104. depending on model

  105. depending on model

  106. 2 clock cycles/instruction for each SM partition Burgess, John (2019). "RTX ON – The NVIDIA TURING GPU". 2019 IEEE Hot Chips 31 Symposium (HCS). pp. 1–27. doi:10.1109/HOTCHIPS.2019.8875651. ISBN 978-1-7281-2089-8. S2CID 204822166. 978-1-7281-2089-8

  107. Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". Nvidia developer blog. https://devblogs.nvidia.com/inside-volta/

  108. depending on model

  109. depending on model

  110. The schedulers and dispatchers have dedicated execution units unlike with Fermi and Kepler.

  111. Dispatching can overlap concurrently, if it takes more than one cycle (when there are less execution units than 32/SM Partition)

  112. Can dual issue MAD pipe and SFU pipe

  113. No more than one scheduler can issue 2 instructions at once. The first scheduler is in charge of warps with odd IDs. The second scheduler is in charge of warps with even IDs.

  114. shared memory only, no data cache

  115. shared memory only, no data cache

  116. shared memory separate, but L1 includes texture cache

  117. shared memory separate, but L1 includes texture cache

  118. shared memory separate, but L1 includes texture cache

  119. shared memory separate, but L1 includes texture cache

  120. shared memory separate, but L1 includes texture cache

  121. shared memory separate, but L1 includes texture cache

  122. "H.6.1. Architecture". docs.nvidia.com. Retrieved 2019-05-13. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#architecture-7-x

  123. "Demystifying GPU Microarchitecture through Microbenchmarking" (PDF). https://www.stuffedcow.net/files/gpuarch-ispass2010.pdf

  124. Jia, Zhe; Maggioni, Marco; Staiger, Benjamin; Scarpazza, Daniele P. (2018). "Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking". arXiv:1804.06826 [cs.DC]. /wiki/ArXiv_(identifier)

  125. "Tegra X1". 9 January 2015. https://developer.nvidia.com/content/tegra-x1

  126. Jia, Zhe; Maggioni, Marco; Smith, Jeffrey; Daniele Paolo Scarpazza (2019). "Dissecting the NVidia Turing T4 GPU via Microbenchmarking". arXiv:1903.07486 [cs.DC]. /wiki/ArXiv_(identifier)

  127. "Dissecting the Ampere GPU Architecture through Microbenchmarking". https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

  128. Note that Jia, Zhe; Maggioni, Marco; Smith, Jeffrey; Daniele Paolo Scarpazza (2019). "Dissecting the NVidia Turing T4 GPU via Microbenchmarking". arXiv:1903.07486 [cs.DC]. disagrees and states 2 KiB L0 instruction cache per SM partition and 16 KiB L1 instruction cache per SM /wiki/ArXiv_(identifier)

  129. Jia, Zhe; Maggioni, Marco; Staiger, Benjamin; Scarpazza, Daniele P. (2018). "Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking". arXiv:1804.06826 [cs.DC]. /wiki/ArXiv_(identifier)

  130. "asfermi Opcode". GitHub. https://github.com/hyqneuron/asfermi/wiki/Opcode

  131. for access with texture engine only

  132. for access with texture engine only

  133. 25% disabled on RTX 4060, RTX 4070, RTX 4070 Ti and RTX 4090

  134. 25% disabled on RTX 5070 Ti and RTX 5090

  135. "CUDA C++ Programming Guide, Compute Capabilities". docs.nvidia.com. Retrieved 2025-02-06. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

  136. "nVidia CUDA Bioinformatics: BarraCUDA". BioCentric. 2019-07-19. Retrieved 2019-10-15. https://www.biocentric.nl/biocentric/nvidia-cuda-bioinformatics-barracuda/

  137. "Part V: Physics Simulation". NVIDIA Developer. Retrieved 2020-09-11. https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation

  138. "oneAPI Programming Model". oneAPI.io. Retrieved 2024-07-27. https://www.oneapi.io/

  139. "Specifications | oneAPI". oneAPI.io. Retrieved 2024-07-27. https://www.oneapi.io/spec/

  140. "oneAPI Specification — oneAPI Specification 1.3-rev-1 documentation". oneapi-spec.uxlfoundation.org. Retrieved 2024-07-27. https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/

  141. "Exclusive: Behind the plot to break Nvidia's grip on AI by targeting software". Reuters. Retrieved 2024-04-05. https://www.reuters.com/technology/behind-plot-break-nvidias-grip-ai-by-targeting-software-2024-03-25/

  142. "Question: What does ROCm stand for? · Issue #1628 · RadeonOpenCompute/ROCm". Github.com. Retrieved January 18, 2022. https://github.com/RadeonOpenCompute/ROCm/issues/1628