Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page

Psychedelics are a subclass of hallucinogenic drugs that induce non-ordinary mental states known as psychedelic experiences or "trips," often described as an expansion of consciousness. Classic psychedelics such as LSD, psilocybin, mescaline, and DMT primarily act via serotonin 2A receptor agonism, affecting brain circuits involved in perception and cognition. Psychedelics share similarities with mystical experiences and may lead to phenomena like ego death. Despite legal restrictions under the UN conventions, recreational use is common, and research indicates psychedelics may be safe and useful in treating conditions such as depression, anxiety, and addiction.

Related Image Collections Add Image
We don't have any YouTube videos related to Psychedelic drug yet.
We don't have any PDF documents related to Psychedelic drug yet.
We don't have any Books related to Psychedelic drug yet.

Examples

See also: List of psychedelic drugs, List of psychedelic plants, and List of designer drugs

  • LSD (lysergic acid diethylamide) is a derivative of lysergic acid, which is obtained from the hydrolysis of ergotamine. Ergotamine is an alkaloid found in the fungus Claviceps purpurea (ergot), which primarily infects rye. LSD is both the prototypical psychedelic and the prototypical lysergamide. As a lysergamide, LSD contains both a tryptamine and phenethylamine group within its structure. Uniquely among psychedelics, LSD agonises dopamine receptors as well as serotonin receptors.3738
  • Psilocin (4-HO-DMT) is the dephosphorylated active metabolite of the indole alkaloid psilocybin and a substituted tryptamine, which is produced by hundreds of species of psilocybin-containing mushrooms. Of the classical psychedelics, psilocybin has attracted the greatest academic interest regarding its ability to manifest mystical experiences,39 although all psychedelics are capable of doing so to variable degrees. 4-AcO-DMT (O-acetylpsilocin or psilacetin) is a synthetic acetylated analogue of psilocin and is a prodrug of psilocin similarly to psilocybin.
  • Mescaline (3,4,5-trimethoxyphenethylamine) is a phenethylamine alkaloid found in various species of cacti, the best-known of these being peyote (Lophophora williamsii) and the San Pedro cactus (Trichocereus macrogonus var. pachanoi, syn. Echinopsis pachanoi). Mescaline has effects comparable to those of LSD and psilocybin.40 Ceremonial San Pedro use seems to be characterized by relatively strong spiritual experiences, and low incidence of challenging experiences.41
  • DMT (N,N-dimethyltryptamine) is an indole alkaloid found in various species of plants. Traditionally, it is consumed by tribes in South America in the form of ayahuasca. A brew is used that consists of DMT-containing plants as well as plants containing MAOIs, specifically harmaline, which allows DMT to be consumed orally without being rendered inactive by monoamine oxidase enzymes in the digestive system.42 A pharmaceutical version of ayahuasca is called pharmahuasca.43 In the Western world, DMT is more commonly consumed via the vaporisation of freebase DMT. Whereas ayahuasca typically lasts for several hours, inhalation has an onset measured in seconds and has effects measured in minutes, being much more intense.44 Particularly in vaporised form, DMT has the ability to cause users to enter a hallucinatory realm fully detached from reality, being typically characterised by hyperbolic geometry, and described as defying visual or verbal description.45 Users have also reported encountering and communicating with entities within this hallucinatory state.46 DMT is the archetypal substituted tryptamine, being the structural scaffold of psilocybin and, to a lesser extent, the lysergamides.
  • 2C-B (2,5-dimethoxy-4-bromophenethylamine) is a substituted phenethylamine first synthesized in 1974 by Alexander Shulgin.47 2C-B is both a psychedelic and a mild entactogen, with its psychedelic effects increasing and its entactogenic effects decreasing with dosage.484950 2C-B is the most well-known compound in the 2C family, their general structure being discovered as a result of modifying the structure of mescaline.51 It is also the most widely used synthetic phenethylamine psychedelic.

MDMA ("ecstasy") is sometimes said to also have weak psychedelic effects, but it acts and is classified mainly as an entactogen rather than as a hallucinogen.52 Certain related drugs like MDA and MMDA have greater psychedelic effects however.53

Uses

Recreational

Further information: Recreational drug use § Hallucinogens

Recreational use of psychedelics has been common since the psychedelic era of the mid-1960s and continues to play a role in various festivals and events, including Burning Man.5455 A survey published in 2013 found that 13.4% of American adults had used a psychedelic.56

A June 2024 report by the RAND Corporation suggests psilocybin mushrooms may be the most prevalent psychedelic drug among adults in the United States. The RAND national survey indicated that 3.1% of U.S. adults reported using psilocybin in the past year. Roughly 12% of respondents acknowledged lifetime use of psilocybin, while a similar percentage reported having used LSD at some point in their lives. MDMA, also known as ecstasy, showed a lower prevalence of use at 7.6%. Notably, less than 1% of U.S. adults reported using any psychedelic drugs within the past month.57

Traditional

A number of frequently mentioned or traditional psychedelics such as Ayahuasca (which contains DMT), San Pedro, Peyote, and Peruvian torch (which all contain mescaline), Psilocybe mushrooms (which contain psilocin/psilocybin) and Tabernanthe iboga (which contains the unique psychedelic ibogaine) all have a long and extensive history of spiritual, shamanic and traditional usage by indigenous peoples in various world regions, particularly in Latin America, but also Gabon, Africa in the case of iboga.58 Different countries and/or regions have come to be associated with traditional or spiritual use of particular psychedelics, such as the ancient and entheogenic use of psilocybe mushrooms by the native Mazatec people of Oaxaca, Mexico59 or the use of the ayahuasca brew in the Amazon basin, particularly in Peru for spiritual and physical healing as well as for religious festivals.60 Peyote has also been used for several thousand years in the Rio Grande Valley in North America by native tribes as an entheogen.61 In the Andean region of South America, the San Pedro cactus (Trichocereus macrogonus var. pachanoi, syn. Echinopsis pachanoi) has a long history of use, possibly as a traditional medicine. Archaeological studies have found evidence of use going back two thousand years, to Moche culture,62 Nazca culture,63 and Chavín culture. Although authorities of the Roman Catholic church attempted to suppress its use after the Spanish conquest,64 this failed, as shown by the Christian element in the common name "San Pedro cactus" – Saint Peter cactus. The name has its origin in the belief that just as St Peter holds the keys to heaven, the effects of the cactus allow users "to reach heaven while still on earth."65 In 2022, the Peruvian Ministry of Culture declared the traditional use of San Pedro cactus in northern Peru as cultural heritage.66

Although people of Western culture have tended to use psychedelics for either psychotherapeutic or recreational reasons, most indigenous cultures, particularly in South America, have seemingly tended to use psychedelics for more supernatural reasons such as divination. This can often be related to "healing" or health as well but typically in the context of finding out what is wrong with the individual, such as using psychedelic states to "identify" a disease and/or its cause, locate lost objects, and identify a victim or even perpetrator of sorcery.67 In some cultures and regions, even psychedelics themselves, such as ayahuasca and the psychedelic lichen of eastern Ecuador (Dictyonema huaorani) that supposedly contains both 5-MeO-DMT and psilocybin, have also been used by witches and sorcerers to conduct their malicious magic, similarly to nightshade deliriants like brugmansia and latua.68

Medical

Main article: Psychedelic therapy

Psychedelic therapy (or psychedelic-assisted therapy) is the proposed use of psychedelic drugs to treat mental disorders.69 As of 2021, psychedelic drugs are controlled substances in most countries and psychedelic therapy is not legally available outside clinical trials, with some exceptions.7071

The procedure for psychedelic therapy differs from that of therapies using conventional psychiatric medications. While conventional medications are usually taken without supervision at least once daily, in contemporary psychedelic therapy the drug is administered in a single session (or sometimes up to three sessions) in a therapeutic context.72 The therapeutic team prepares the patient for the experience beforehand and helps them integrate insights from the drug experience afterwards.737475 After ingesting the drug, the patient normally wears eyeshades and listens to music to facilitate focus on the psychedelic experience, with the therapeutic team interrupting only to provide reassurance if adverse effects such as anxiety or disorientation arise.7677

As of 2022, the body of high-quality evidence on psychedelic therapy remains relatively small and more, larger studies are needed to reliably show the effectiveness and safety of psychedelic therapy's various forms and applications.7879 On the basis of favorable early results, ongoing research is examining proposed psychedelic therapies for conditions including major depressive disorder,8081 and anxiety and depression linked to terminal illness.8283 The United States Food and Drug Administration has granted breakthrough therapy status, which expedites the assessment of promising drug therapies for potential approval, to psilocybin therapy for treatment-resistant depression and major depressive disorder.84

It has been proposed that psychedelics used for therapeutic purposes may act as active "super placebos".8586

Microdosing

Main article: Psychedelic microdosing

Psychedelic microdosing is the practice of using sub-threshold doses (microdoses) of psychedelics in an attempt to improve creativity, boost physical energy level, emotional balance, increase performance on problems-solving tasks and to treat anxiety, depression and addiction.8788 The practice of microdosing has become more widespread in the 21st century with more people claiming long-term benefits from the practice.8990

A 2022 study recognized signatures of psilocybin microdosing in natural language and concluded that low amount of psychedelics have potential for application, and ecological observation of microdosing schedules.9192

Dosage

The table below provides doses of major serotonergic psychedelics as well as the entactogen and mild psychedelic MDMA ("ecstasy") that have been determined on the basis of clinical studies.93949596979899 Other dosage schemes have also been reported.100

Doses of major serotonergic psychedelics and MDMA101102103104105106
PsychedelicLSDaPsilocybinMescalinebDMT (i.v.)cMDMAd
Subthreshold or microdoses<10 μg<2.5 mg<75 mgN/AN/A
Low dose/minidose20–50 μg5–10 mg100–200 mg0.6 mg/min25–50 mg
Intermediate/good effect dose100 μg20 mg500 mg1.2 mg/min125–200 mg
High/ego-dissolution dose200 μg30–40 mg1,000 mg1.8 mg/minN/A
Notes: (1) All doses are for oral administration unless otherwise indicated. (2) For the psychedelics, doses are considered to be roughly equivalent in terms of peak or overall response. Footnotes: a = As LSD free base (100 μg LSD base = 146 μg LSD tartrate). b = As mescaline hydrochloride. c = As DMT fumarate given as constant infusions for >30 minutes. d = As MDMA hydrochloride.

See also: Psilocybin mushroom § Dosage

In the case of dried psilocybin-containing mushrooms, microdoses are 0.1 g to 0.3 g and psychedelic doses are 1.0 g to 3.5–5.0 g.107108109 The preceding 1.0 to 5.0 g range corresponds to psilocybin doses of about 10 to 50 mg.110 Psilocybin-containing mushrooms vary in their psilocybin and psilocin content, but are typically around 1% of the dried weight of the mushrooms (in terms of total or combined psilocybin and psilocin content).111112113114115116117118 Psilocybin and psilocin are similar in potency and dose but psilocin is about 1.4-fold more active, this being related to the difference in molecular weight between the two compounds.119120121

Some psychedelics, such as 2C-B, 2C-E, and 4-HO-DiPT, have been said to have steep dose–response curves, meaning that the difference in dose between a light experience and an overwhelming disconnection from reality can be small.122: 506, 518 123: 467 

Effects

Psychedelic effects

Main article: Psychedelic experience

Although several attempts have been made, starting in the 19th and 20th centuries, to define common phenomenological structures of the effects produced by classic psychedelics, a universally accepted taxonomy does not yet exist.124125 At lower doses, features of psychedelic experiences include sensory alterations, such as the warping of surfaces, shape suggestibility, pareidolia, and color variations. Users often report intense colors that they have not previously experienced, and repetitive geometric shapes or form constants are common as well. Higher doses often cause intense and fundamental alterations of sensory (notably visual) perception, such as synesthesia or the experience of additional spatial or temporal dimensions.126 Tryptamines are well documented to cause classic psychedelic states, such as increased empathy, visual distortions (drifting, morphing, breathing, melting of various surfaces and objects), auditory hallucinations, ego dissolution or ego death with high enough dose, mystical, transpersonal and spiritual experiences, autonomous "entity" encounters, time distortion, closed eye hallucinations and complete detachment from reality with a high enough dose.127 Luis Luna describes psychedelic experiences as having a distinctly gnosis-like quality, and says that they offer "learning experiences that elevate consciousness and can make a profound contribution to personal development."128 Czech psychiatrist Stanislav Grof studied the effects of psychedelics like LSD early in his career and said of the experience, that it commonly includes "complex revelatory insights into the nature of existence… typically accompanied by a sense of certainty that this knowledge is ultimately more relevant and 'real' than the perceptions and beliefs we share in everyday life." Traditionally, the standard model for the subjective phenomenological effects of psychedelics has typically been based on LSD, with anything that is considered "psychedelic" evidently being compared to it and its specific effects.129

Good trips are reportedly deeply pleasurable, and typically involve intense joy or euphoria, a greater appreciation for life, reduced anxiety, a sense of spiritual enlightenment, and a sense of belonging or interconnectedness with the universe.130131 Negative experiences, colloquially known as "bad trips," evoke an array of dark emotions, such as irrational fear, anxiety, panic, paranoia, dread, distrustfulness, hopelessness, and even suicidal ideation.132 While it is impossible to predict when a bad trip will occur, one's mood, surroundings, sleep, hydration, social setting, and other factors can be controlled (colloquially referred to as "set and setting") to minimize the risk of a bad trip.133134 The concept of "set and setting" also generally appears to be more applicable to psychedelics than to other types of hallucinogens such as deliriants, hypnotics and dissociative anesthetics.135

Psychedelics include naturally occurring tryptamines like psilocybin and DMT, the naturally occurring phenethylamine mescaline, and naturally occurring lysergamides like ergine (lysergic acid amide; LSA), as well as synthetic analogues and derivatives like LSD and 2C-B. Many of these psychedelics cause remarkably similar effects, despite their different chemical structures. However, many users anecdotally report that the three major families have subjectively different qualities in the "feel" of the experience, which are difficult to describe. There can also be very substantial differences between the drugs; for instance, 5-MeO-DMT rarely produces the visual effects typical of other psychedelics.136137 As additional examples, DiPT is said to primarily affect the auditory sense,138139 2C-T-17140 and ASR-3001 (5-MeO-iPALT)141142143 are said to produce psychedelic effects on thinkng or "head space" with few or no visuals, and N-methyltryptamine (NMT) has been said to be a primarily spatial psychedelic.144145

The visuals of psychedelics have been reproduced in video and image form using artificial intelligence.146147148149150

Some rare individuals do not experience hallucinogenic effects with serotonergic psychedelics.151

Other psychoactive effects

Some psychedelics have been associated with other psychoactive effects in addition to their hallucinogenic effects.152153154 For example, psychedelics like LSD and DOM have been described as having mild stimulant and/or "psychic-energizing" (i.e., acute antidepressant) effects.155156 Some psychedelics and related drugs, like DOET (low doses), Ariadne, and ASR-2001 (2CB-5PrO), have been investigated specifically for such effects.157158159160161 2C-B has been said to have mild entactogenic effects at low doses.162163164

Some drugs, such as MDxx compounds like MDMA and MDA as well as α-alkyltryptamines like α-methyltryptamine (AMT), are entactogens and/or stimulants acting at monoamine transporters in addition to having varying degrees of psychedelic effects.165166167

Psychedelic afterglows

Psychedelics are associated with an afterglow, also known as positive subacute or post-experience effects, which may last days or even weeks after the psychedelic experience.168169170171 These effects include reduction in psychopathology and increased well-being, mood, mindfulness, social functioning, spirituality, and executive functioning, and positive behavioral changes.172 They also include mixed changes in personality, values, attitudes, creativity, and flexibility, as well as adverse effects like headaches, sleep disturbances, and sometimes increased psychological distress.173 The afterglow period has been associated with changes in brain function, neuroplasticity, and immune system function.174175176177 Both psychological and pharmacological effects may be involved in the afterglow phenomenon.178

In 1898, the English writer and intellectual Havelock Ellis reported a heightened perceptual sensitivity to "the more delicate phenomena of light and shade and color" for a prolonged period of time after his exposure to mescaline.179 The term "psychedelic afterglow" was first formally coined in the 1960s.180 Albert Hofmann, the discoverer of LSD, said the following about the aftermath of his first full LSD experience in his 1980 book LSD: My Problem Child:181

Exhausted, I then slept, to awake next morning refreshed, with a clear head, though still somewhat tired physically. A sensation of well-being and renewed life flowed through me. Breakfast tasted delicious and gave me extraordinary pleasure. When I later walked out into the garden, in which the sun shone now after a spring rain, everything glistened and sparkled in a fresh light. The world was as if newly created. All my senses vibrated in a condition of highest sensitivity, which persisted for the entire day.

During a speech on his 100th birthday in 2006, Hofmann additionally said of LSD:182

It gave me an inner joy, an open mindedness, a gratefulness, open eyes and an internal sensitivity for the miracles of creation... I think that in human evolution it has never been as necessary to have this substance LSD. It is just a tool to turn us into what we are supposed to be.

Adverse effects

See also: Bad trip, Trip sitter, and Psychedelic microdosing § Long-term toxicity

Despite the contrary perception of much of the public, psychedelic drugs are not addictive and are physiologically safe.183184185

Risks do exist during an unsupervised psychedelic experience, however; Ira Byock wrote in 2018 in the Journal of Palliative Medicine that psilocybin is safe when administered to a properly screened patient and supervised by a qualified professional with appropriate set and setting. However, he called for an "abundance of caution" because in the absence of these conditions a range of negative reactions is possible, including "fear, a prolonged sense of dread, or full panic." He notes that driving or even walking in public can be dangerous during a psychedelic experience because of impaired hand-eye coordination and fine motor control.186 In some cases, individuals taking psychedelics have performed dangerous or fatal acts because they believed they possessed superhuman powers.187

Psilocybin-induced states of mind share features with states experienced in psychosis, and while a causal relationship between psilocybin and the onset of psychosis has not been established as of 2011, researchers have called for investigation of the relationship.188 Many of the persistent negative perceptions of psychological risks are unsupported by the currently available scientific evidence, with the majority of reported adverse effects not being observed in a regulated and/or medical context.189 A population study on associations between psychedelic use and mental illness published in 2013 found no evidence that psychedelic use was associated with increased prevalence of any mental illness.190 In any case, induction of psychosis has been associated with psychedelics in small percentages of individuals, and the rates appear to be higher in people with schizophrenia.191

Using psychedelics poses certain risks of re-experiencing of the drug's effects, including flashbacks and hallucinogen persisting perception disorder (HPPD).192 These non-psychotic effects are poorly studied, but the permanent symptoms (also called "endless trip") are considered to be rare.193

Serotonergic psychedelics are agonists not only of the serotonin 5-HT2A receptor but also of the serotonin 5-HT2B receptor and other serotonin receptors.194195 A potential risk of frequent repeated use of serotonergic psychedelics is cardiac fibrosis and valvulopathy caused by serotonin 5-HT2B receptor activation.196197 However, single high doses or widely spaced doses (e.g., months) are widely thought to be safe and concerns about cardiac toxicity apply more to chronic psychedelic microdosing or very frequent use (e.g., weekly).198199 Selective serotonin 5-HT2A receptor agonists that do not activate the serotonin 5-HT2B receptor or other serotonin receptors, such as 25CN-NBOH, DMBMPP, and LPH-5, have been developed and are being studied.200201202 Selective serotonin 5-HT2A receptor agonists are expected to avoid the cardiac risks of serotonin 5-HT2B receptor activation.203

Overdose

There have been a handful of cases of fatal overdose with LSD, psilocybin, and mescaline.204205 There have also been cases of death with dimethyltryptamine (DMT), 5-MeO-DMT, 2C-B, Bromo-DragonFLY, NBOMes like 25I-NBOMe, and other psychedelics.206207 LSD and psilocybin appear to have very wide margins of safety with overdose, whereas mescaline and 2C-B have much narrower margins, and NBOMes appear to be especially toxic and uniquely linked to serotonin syndrome-type symptoms.208 In terms of extrapolated human lethal doses based on animal studies and human case reports, lethal doses of psychedelics relative to typical recreational doses are estimated to be 1,000-fold for LSD, 200-fold for psilocybin, 50-fold for oral DMT (as ayahuasca), and 24-fold for mescaline.209 Estimates for other psychedelics, like 5-MeO-DMT and 2C-B, could not be made.210

Interactions

See also: Trip killer § Serotonergic psychedelic antidotes, and Head-twitch response § Modulators of the head-twitch response

Serotonin 5-HT2A receptor antagonists can block the hallucinogenic effects of serotonergic psychedelics.211 Numerous drugs act as serotonin 5-HT2A receptor antagonists, for instance antidepressants like trazodone and mirtazapine, antipsychotics like quetiapine, olanzapine, and risperidone, and other agents like ketanserin, pimavanserin, cyproheptadine, and pizotifen.212213 Such drugs are sometimes referred to as "trip killers" due to their ability to prevent or abort the hallucinogenic effects of psychedelics.214215216 Besides serotonin 5-HT2A receptor antagonists, non-hallucinogenic serotonin 5-HT2A receptor partial agonists, such as lisuride, may also block the hallucinogenic effects of serotonergic psychedelics.217218

The serotonin 5-HT1A receptor partial agonist buspirone has been found to markedly reduce the hallucinogenic effects of psilocybin in humans.219220221 Conversely, the serotonin 5-HT1A receptor antagonist pindolol has been found to potentiate the hallucinogenic effects of DMT by 2- to 3-fold in humans.222223 Serotonin 5-HT1A receptor agonism may modify and self-inhibit the effects of psychedelics that possess this property.224225226227228229 A particularly notable example is 5-methoxytryptamine derivatives such as 5-MeO-DMT, which are more potent serotonin 5-HT1A receptor agonists than other psychedelics and have qualitatively unique and differing hallucinogenic effects.230231232

Benzodiazepines, for example diazepam, alprazolam, clonazepam, and lorazepam, as well as alcohol, which act as GABAA receptor positive allosteric modulators, have been limitedly studied in combination with psychedelics and are not currently known to directly interact with them.233234 However, these GABAergic drugs produce effects such as anxiolysis, sedation, and amnesia, and in relation to this, may diminish or otherwise oppose the effects of psychedelics.235236237238239 As a result of this, benzodiazepines and alcohol are often used by recreational users as "trip killers" to manage difficult hallucinogenic experiences with psychedelics, for instance experiences with prominent anxiety.240241242 The safety of this strategy is not entirely clear and might have risks.243244245246 However, benzodiazepines have been used clinically to manage the adverse psychological effects of psychedelics, for instance in clinical studies and in the emergency department.247248249250251 A clinical trial of psilocybin and midazolam coadministration found that midazolam clouded the effects of psilocybin and impaired memory of the experience.252253 Benzodiazepines might interfere with the therapeutic effects of psychedelics, such as sustained antidepressant effects.254255

Some serotonergic psychedelics, for instance dimethyltryptamine (DMT) and 5-MeO-DMT, are highly susceptible substrates for monoamine oxidase (MAO), specifically MAO-A, and hence can be greatly potentiated by monoamine oxidase inhibitors (MAOIs).256257258 An example of this is ayahuasca, in which plants containing both DMT and harmala alkaloids acting as MAOIs such as harmine and harmaline are combined.259 This allows DMT to become orally active and to have a much longer duration of action than usual.260 The 2C psychedelics, such as 2C-B, 2C-I, and 2C-E, are also substrates of both MAO-A and MAO-B, and may likewise be greatly potentiated by MAOIs.261262 Examples of MAOIs that may potentiate psychedelics behaving as MAO-A and/or MAO-B substrates include phenelzine, tranylcypromine, isocarboxazid, moclobemide, and selegiline.263 Combination of MAO-substrate psychedelics with MAOIs can result in overdose and serious toxicity, including death.264265 Other psychedelics, such as LSD, are not substrates of MAO and are not potentiated by MAOIs.266 The extent to which psilocin (and by extension psilocybin) is metabolized by MAO, specifically MAO-A, is not fully clear, but has ranged from 4% to 33% in different studies based on metabolite excretion.267268269 However, circulating levels of the deaminated metabolite of psilocin are far higher than those of free unmetabolized psilocin with psilocybin administration.270271 An early clinical study of psilocybin in combination with short-term tranylcypromine pretreatment found that tranylcypromine marginally potentiated the peripheral effects of psilocybin, including pressor effects and mydriasis, but overall did not significantly modify the psychoactive and hallucinogenic effects of the psilocybin, although some of its emotional effects were said to be reduced and some of its perceptual effects were said to be amplified.272273274

Some psychedelics are substrates of cytochrome P450 (CYP450) enzymes, for instance LSD being a substrate of CYP2D6 as well as of several other CYP450 enzymes.275276 As such, CYP450 inhibitors may increase exposure to CYP450-substrate psychedelics such as LSD and thereby potentiate their effects as well as risks.277278 A clinical study found that administration of LSD to people taking paroxetine, a selective serotonin reuptake inhibitor (SSRI) and strong CYP2D6 inhibitor, increased LSD exposure by about 1.5-fold.279 The combination was well-tolerated and did not modify the pleasant subjective effects or physiological effects of LSD, whereas negative effects of LSD, including "bad drug effect", anxiety, and nausea, were reduced.280 Similarly to the findings with a strong CYP2D6 inhibitor, a pharmacogenomic clinical study with LSD found that LSD levels were 75% higher in people with non-functional CYP2D6 (poor metabolizers) compared to those with functional CYP2D6.281282

Serotonin syndrome can be caused by combining psychedelics with other serotonergic drugs, including certain antidepressants, opioids, psychostimulants (e.g. MDMA), serotonin 5-HT1 agonists (e.g. triptans), herbs or supplements, and others.283284285286

A high rate of seizures has been reported when people on lithium have taken serotonergic psychedelics.287288289 In an analysis of online reports, 47% of 62 accounts reported seizures when a psychedelic was taken while on lithium.290291292 The mechanism underlying this apparent interaction is unclear.293294

Pharmacology

Mechanism of action

See also: Serotonin § Psychedelics, and Empathogen § Mechanism of action

Most serotonergic psychedelics act as non-selective agonists of serotonin receptors, including of the serotonin 5-HT2 receptors, but often also of other serotonin receptors, such as the serotonin 5-HT1 receptors.295296 They are thought to mediate their hallucinogenic effects specifically by activation of serotonin 5-HT2A receptors.297298 Psychedelics (including tryptamines like psilocin, DMT, and 5-MeO-DMT; phenethylamines like mescaline, DOM, and 2C-B; and ergolines and lysergamides like LSD) all act as agonists of the serotonin 5-HT2A receptors.299300301 Some psychedelics, such as phenethylamines like DOM and 2C-B, show high selectivity for the serotonin 5-HT2 receptors over other serotonin receptors.302303 There is a very strong correlation between 5-HT2A receptor affinity and human hallucinogenic potency.304 In addition, the intensity of hallucinogenic effects in humans is directly correlated with the level of serotonin 5-HT2A receptor occupancy as measured with positron emission tomography (PET) imaging.305306 Serotonin 5-HT2A receptor blockade with drugs like the semi-selective ketanserin and the non-selective risperidone can abolish the hallucinogenic effects of psychedelics in humans.307308 However, studies with more selective serotonin 5-HT2A receptor antagonists, like pimavanserin, are still needed.309

In animals, potency for stimulus generalization to the psychedelic DOM in drug discrimination tests is strongly correlated with serotonin 5-HT2A receptor affinity.310311 Non-selective serotonin 5-HT2A receptor antagonists, like ketanserin and pirenperone, and selective serotonin 5-HT2A receptor antagonists, like volinanserin (MDL-100907), abolish the stimulus generalization of psychedelics in drug discrimination tests.312 Conversely, serotonin 5-HT2B and 5-HT2C receptor antagonists are ineffective.313 The potencies of serotonin 5-HT2 receptor antagonists in blocking psychedelic substitution are strongly correlated with their serotonin 5-HT2A receptor affinities.314 Highly selective serotonin 5-HT2A receptor agonists have recently been developed and show stimulus generalization to psychedelics, whereas selective serotonin 5-HT2C receptor agonists do not do so.315 The head-twitch response (HTR) is induced by serotonergic psychedelics and is a behavioral proxy of psychedelic-like effects in animals.316317 The HTR is invariably induced by serotonergic psychedelics, is blocked by selective serotonin 5-HT2A receptor antagonists, and is abolished in serotonin 5-HT2A receptor knockout mice.318319 In addition, there is a strong correlation between hallucinogenic potency in humans and potency in the HTR assay.320321 Moreover, the HTR paradigm is one of the only animal tests that can distinguish between hallucinogenic serotonin 5-HT2A receptor agonists and non-hallucinogenic serotonin 5-HT2A receptor agonists, such as lisuride.322 In accordance with the preceding animal and human findings, it has been said that the evidence that the serotonin 5-HT2A receptor mediates the hallucinogenic effects of serotonergic psychedelics is overwhelming.323

The serotonin 5-HT2A receptor activates several downstream signaling pathways.324325326 These include the Gq, β-arrestin2, and other pathways.327328 Activation of both the Gq and β-arrestin2 pathways have been implicated in mediating the hallucinogenic effects of serotonergic psychedelics.329330331 However, subsequently, activation of the Gq pathway and not β-arrestin2 has been implicated.332333334335336 Interestingly, Gq signaling appeared to mediate hallucinogenic-like effects, whereas β-arrestin2 mediated receptor downregulation and tachyphylaxis.337338 The lack of psychedelic effects with non-hallucinogenic serotonin 5-HT2A receptor agonists may be due to partial agonism of the serotonin 5-HT2A receptor with efficacy insufficient to produce psychedelic effects or may be due to biased agonism of the serotonin 5-HT2A receptor.339 There appears to be a threshold level of Gq activation (in terms of intrinsic activity, with EmaxTooltip maximal efficacy >70%) required for production of hallucinogenic effects.340341342 Full agonists and partial agonists above this threshold are psychedelic 5-HT2A receptor agonists, whereas partial agonists below this threshold, such as lisuride, 2-bromo-LSD, 6-fluoro-DET, 6-MeO-DMT, and Ariadne, are non-hallucinogenic 5-HT2A receptor agonists.343344345346347 In addition, biased agonists that activate β-arrestin2 signaling but not Gq signaling, such as ITI-1549, IHCH-7086, and 25N-N1-Nap, are non-hallucinogenic serotonin 5-HT2A receptor agonists.348349350

The hallucinogenic effects of serotonergic psychedelics may be critically mediated by serotonin 5-HT2A receptor activation in the medial prefrontal cortex (mPFC).351 Layer V pyramidal neurons in this area are especially discussed.352353 Activation of serotonin 5-HT2A receptors in the mPFC results in marked excitatory and inhibitory effects as well as increased release of glutamate and GABA.354 Direct injection of serotonin 5-HT2A receptor agonists into the mPFC produces the HTR.355 Drugs that suppress glutamatergic activity in the mPFC, including AMPA receptor antagonists, metabotropic glutamate mGlu2/3 receptor agonists, μ-opioid receptor agonists, and adenosine A1 receptor agonists, block or suppress many of the neurochemical and behavioral effects of serotonergic psychedelics, including the HTR.356357 Metabotropic glutamate mGlu2 receptors are primarily expressed as presynaptic autoreceptors and have inhibitory effects on glutamate release.358359 Serotonergic psychedelics have been found to produce frontal cortex hyperactivity in humans in PET and single-photon emission computed tomography (SPECT) imaging studies.360 The PFC projects to many other cortical and subcortical brain areas, such as the locus coeruleus, nucleus accumbens, and amygdala, among others, and activation of the PFC by serotonergic psychedelics may thereby indirectly modulate these areas.361 In addition to the PFC, there is moderate to high expression of serotonin 5-HT2A receptors in the primary visual cortex (V1), as well as expression of the serotonin 5-HT2A receptor in other visual areas, and activation of these receptors may contribute to or mediate the visual effects of serotonergic psychedelics.362363364365366 Serotonergic psychedelics also directly or indirectly modulate a variety of other brain areas, like the claustrum, and this may be involved in their effects as well.367368369

Serotonin, as well as drugs that increase serotonin levels, like the serotonin precursor 5-hydroxytryptophan (5-HTP), serotonin reuptake inhibitors, and serotonin releasing agents, are non-hallucinogenic in humans despite increasing activation of serotonin 5-HT2A receptors.370371372373 Serotonin is a hydrophilic molecule which cannot easily cross biological membranes without active transport, and the serotonin 5-HT2A receptor is usually expressed as a cell surface receptor that is readily accessible to extracellular serotonin.374375 The HTR, a behavioral proxy of psychedelic-like effects, appears to be mediated by activation of intracellularly expressed serotonin 5-HT2A receptors in a population of mPFC neurons that do not also express the serotonin transporter (SERT) and hence cannot be activated by serotonin.376377 In contrast to serotonin, serotonergic psychedelics are more lipophilic than serotonin and are able to readily enter these neurons and activate the serotonin 5-HT2A receptors within them.378379 Artificial expression of the SERT in this population of neurons in animals resulted in a serotonin releasing agent that doesn't normally produce the HTR being able to do so.380 Although serotonin itself is non-hallucinogenic, at very high concentrations achieved pharmacologically (e.g., injected into the brain or with massive doses of 5-HTP) it can produce psychedelic-like effects in animals by being metabolized by indolethylamine N-methyltransferase (INMT) into more lipophilic N-methylated tryptamines like N-methylserotonin and bufotenin (N,N-dimethylserotonin).381382383384385386

In addition to their hallucinogenic effects, serotonergic psychedelics may also produce a variety of other effects, including psychoplastogenic (i.e., neuroplasticity-enhancing),387388389390 antidepressant,391392393 anxiolytic,394395 empathy-enhancing or prosocial effects,396397398 anti-obsessional,399400401402403 anti-addictive,404405406407 anti-inflammatory and immunomodulatory effects,408409410411412 analgesic effects,413414415 and/or antimigraine effects.416417418 While psychedelics themselves are also being clinically evaluated for these potential therapeutic benefits, non-hallucinogenic serotonin 5-HT2A receptor agonists, which are often analogues of serotonergic psychedelics, have been developed and are being studied for potential use in medicine in an attempt to provide some such benefits without hallucinogenic effects.419420421

Although the hallucinogenic effects of serotonergic psychedelics are thought to be mediated by serotonin 5-HT2A receptor activation, interactions with other receptors, such as the serotonin 5-HT1A, 5-HT1B, 5-HT2B, and 5-HT2C receptors among many others, may additionally contribute to and modulate their effects.422423 Interestingly, some psychedelics, such as LSD and psilocybin, have been claimed to act as positive allosteric modulators of the tropomyosin receptor kinase B (TrkB), one of the signaling receptors of brain-derived neurotrophic factor (BDNF).424425426 However, this finding has yet to be replicated.427 Moreover, despite the apparent TrkB potentiation, the psychoplastogenic effects of serotonergic psychedelics, including dendritogenesis, spinogenesis, and synaptogenesis, appear to be mediated by activation of serotonin 5-HT2A receptors, whereas psychedelics do not generally stimulate neurogenesis.428429430

The factors responsible for differences in psychoactive and hallucinogenic effects between different psychedelics are incompletely understood but may include (1) differences in selectivity for the serotonin 5-HT2A receptor or off-target activity; (2) differences in functional selectivity for different serotonin 5-HT2A receptor downstream signaling pathways; and (3) differences in patterns or balances of distribution to different brain areas.431432433434

Chemistry

The three major chemical groups of serotonergic psychedelics include the tryptamines, phenethylamines, and lysergamides, which each have different profiles of pharmacological activity.435436

Tryptamines

Main article: Substituted tryptamine

Tryptamines are derivatives of tryptamine and are structurally related to the monoamine neurotransmitter serotonin (also known as 5-hydroxytryptamine or 5-HT). Many tryptamines act as non-selective serotonin receptor agonists, including of the serotonin 5-HT2A receptor. Some tryptamines also act as monoamine releasing agents, including of serotonin, norepinephrine, and/or dopamine. Examples of psychedelic tryptamines include psilocin and psilocybin, dimethyltryptamine (DMT), 5-MeO-DMT, bufotenin, α-methyltryptamine (αMT), 4-AcO-DMT (psilacetin), 4-HO-MET, 5-MeO-MiPT, and 5-MeO-DiPT, among others.437438 Harmala alkaloids like harmaline and iboga-type alkaloids like ibogaine are cyclized tryptamines and may also be considered hallucinogenic tryptamines.439440

Phenethylamines

Main articles: Substituted phenethylamine, Scaline, 2C (psychedelics), DOx, and 25-NB

Phenethylamines, as well as amphetamines (α-methylphenethylamines), are derivatives of β-phenethylamine and are structurally related to the monoamine neurotransmitters dopamine, norepinephrine, and epinephrine. Some phenethylamines and amphetamines, particularly those with methoxy and other substitions on the phenyl ring, are potent serotonin 5-HT2 receptor agonists, including of the serotonin 5-HT2A receptor, and can produce psychedelic effects. In contrast to phenethylamines and amphetamines generally, most psychedelic phenethylamines are not monoamine releasing agents.441442 Examples of psychedelic phenethylamines and amphetamines include mescaline and other scalines like trimethoxyamphetamine (TMA) and escaline, the 2C drugs like 2C-B, 2C-E, and 2C-I, the DOx drugs like DOB, DOI, and DOM, certain MDxx drugs like MDA and MDMA (weak psychedelics), and the NBOMe (25x-NBx) drugs like 25I-NBOMe, among others.443

Lysergamides

Main article: Substituted lysergamide

Lysergamides are ergoline derivatives related to the ergot alkaloids. They are notable in containing both tryptamine and phenethylamine within their chemical structures. As such, ergolines and lysergamides may be considered structurally related to the monoamine neurotransmitters. Many ergolines and lysergamides act as highly promiscuous ligands of monoamine receptors, including of serotonin, dopamine, and adrenergic receptors. Some lysergamides are efficacious serotonin 5-HT2A receptor agonists and thereby produce psychedelic effects. Examples of psychedelic lysergamides include lysergic acid diethylamide (LSD), ergine (lysergic acid amide; LSA), isoergine (isolysergic acid amide; iso-LSA), ETH-LAD, AL-LAD, 1P-LSD, 1S-LSD, ALD-52 (1A-LSD), LA-SS-Az (LSZ), ergonovine (ergometrine; lysergic acid propanolamide), methylergometrine (methylergonovine), and methysergide (methylmethylergonovine), among others.444 Ergine, isoergine, and ergonovine occur naturally in morning glories and certain fungi like ergot and Periglandula species, while others like LSD are synthetic. LSD is among the most potent psychedelics, as well as psychoactive drugs in general, that are known.445

Others

Main articles: List of miscellaneous 5-HT2A receptor agonists, Substituted piperazine, and Partial lysergamide

Other psychedelics not belonging to any of the above three structural families have been discovered, for instance certain arylpiperazine derivatives like quipazine,446447 the antiretroviral drug efavirenz,448449450451452 and simplified or partial lysergamides (which are also rigid tryptamines and/or phenethylamines) like NDTDI and DEMPDHPCA.453454455

History

Early history

See also: Entheogenic drugs and the archaeological record, Aztec use of entheogens, and Entheogenics and the Maya

Psychedelics occurring in plants, fungi, and animals have been used by indigenous peoples throughout the world for thousands of years.456457458459 These psychedelics and their sources include psilocybin and psilocin in psilocybin-containing mushrooms (teonanacatl), dimethyltryptamine (DMT) in ayahuasca (a combination typically of Psychotria viridis and Banisteriopsis caapi), bufotenin in Anadenanthera trees, 5-MeO-DMT in the Colorado River Toad, mescaline in peyote (peyotl) and San Pedro cacti, and ergine and isoergine in morning glories (ololiuqui, tlitliltzin) and ergot, among others.460461462463 The kykeon of the Eleusinian Mysteries in Ancient Greece might have been a psychedelic, for instance ergot or psilocybin-containing mushrooms.464465466 The earliest archeological evidence of the use of psychedelic plants and fungi by humans dates back roughly 10,000 years.467468

Western characterization

See also: History of entheogenic drugs and History of LSD

Psychedelics were discovered by the Western world and the scientific community relatively late.469 The use of hallucinogenic snuffs by indigenous South American people was first observed by Western explorers like Christopher Columbus as early as 1496.470471472 The first written description of an observed psychedelic experience, with cohoba, was published by Ramon Pane in 1511.473 Spanish explorers observed the use of psilocybin-containing mushrooms (teonanacatl) in Mexico as early as 1519 with the arrival of Hernán Cortés.474475 Spanish ethnographer Bernardino de Sahagún traveled to Mexico in 1529 and described the use of these mushrooms in his books.476 The botanists Richard Spruce and Alfred Russel Wallace observed and described the use of ayahuasca in the Amazon in the 1850s.477478

The phenethylamine psychedelic mescaline

Mescaline is sometimes described as the "first psychedelic", as it was the first to be discovered and characterized by the Western world.479 American physician John Raleigh Briggs, living in Texas, learned of peyote from Native Americans and Mexicans, who told him that it produced "beautiful visions" and made them journey into the "spirit world".480481482 He obtained mescal buttons from Mexico and published a journal article about trying a very low dose of them in May 1887.483484485 This article is said to have brought peyote into North American pharmacology.486487 Briggs described the physiological effects of his experience, such as increased heart rate, and of experiencing "intoxication".488489 The article was read by George Davis, of Parke, Davis and Company, who then obtained the buttons from Briggs in June 1887.490491 Parke-Davis attempted to market peyote as a cardiac stimulant and for other uses, but met with little success.492493 The German pharmacologist Louis Lewin obtained mescal buttons from Parke-Davis during a trip to the United States in 1887 and began studying them and sharing his findings.494495

The first known published description of a hallucinogenic peyote experience was by American neurologist Silas Weir Mitchell in December 1896.496497 After reading Mitchell's article, others, including psychologist and sexologist Havelock Ellis, American psychologist William James, and German pharmacologist, chemist, and Lewin rival Arthur Heffter, among others, tried peyote and described their experiences.498499500501502 Heffter isolated and ingested mescaline from peyote, experiencing psychedelic effects with the pure compound, in 1897, and published his findings in 1898.503504505506507

Austrian chemist Ernst Späth synthesized mescaline for the first time in 1919.508 The German pharmaceutical company Merck then began distributing pharmaceutical mescaline in 1920.509 The German psychiatrist Kurt Beringer, a student of Lewin and an acquaintance of Hermann Hesse and Carl Jung, became the father of psychedelic psychiatry and conducted experiments with mescaline in more than 60 people starting in 1921.510511 He published his monograph on the subject, Der Meskalinrausch (Mescaline Intoxication), in 1927.512513514 German–American psychologist Heinrich Klüver published his monograph, Mescal: The Divine Plant and Its Psychological Effects, in English in 1928.515516517 He is said to have been the first to attempt to provide a phenomenological description of the psychedelic experience.518

Tryptamine and lysergamide psychedelics

Austrian anthropologist and ethnobotanist Blas Pablo Reko, traveling through Central and South America, wrote of the use of teonanacatl by native Mexican people in Oaxaca in 1919.519 Reko subsequently sent samples of teonanacatl (Psilocybe mexicana) as well as Ipomoea violacea (morning glory) seeds to Swedish anthropologist Henry Wassén in 1937.520 Reko had obtained the mushroom sample from Austrian engineer Robert Weitlaner who was working in Mexico.521 Eventually, Wassén forwarded Reko and Weitlaner's mushroom sample to Harvard University, where the mushrooms came to the attention of American ethnobotanist Richard Evans Schultes.522523 However, they had decomposed so badly that they could not be identified.524525 Prior to Wassén obtaining specimens around 1936, the existence of teonanacatl was very controversial and was debated and even denied by some.526 In 1938, a small group of Westerners, which included Weitlaner's daughter and American anthropologist Jean Basset Johnson, attended a mushroom ceremony.527528 They were the first Westerners known to do so and described the event.529530 Schultes published reviews of teonanacatl being a hallucinogenic mushroom in the late 1930s.531532 Schultes obtained specimens of three of the hallucinogenic mushrooms used in ceremonies, including Psilocybe caerulescens, Panaeolus campanulatus, and Stropharia cubensis, but further investigations of the mushrooms were interrupted by World War II.533

Ergine (lysergic acid amide; LSA) and isoergine (isolysergic acid amide; iso-LSA) were first identified from hydrolysis of ergot alkaloids in 1932 and 1936, respectively.534535536 In 1938, Swiss chemist Albert Hofmann, working at Sandoz Laboratories, synthesized lysergic acid diethylamide (LSD), a synthetic derivative of ergine, while developing new oxytocic drugs derived from ergot.537 LSD was not further investigated and was placed in storage for 5 years.538 In 1943 however, Hofmann worked with LSD again and accidentally discovered its hallucinogenic effects when minute amounts of the potent psychedelic absorbed through his skin.539540 His subsequent self-experiment with LSD three days later on April 19 is the psychedelic holiday Bicycle Day.541 Hofmann and his colleague, psychiatrist Werner Stoll, first described LSD in 1943 and first described its psychedelic effects in 1947.542543544545546 LSD began being distributed by Sandoz Laboratories for research purposes under the brand name Delysid in 1949.547548

Schultes described the indigenous and shamanic use of dimethyltryptamine (DMT)-containing psychedelic plants in 1954 and also described the use of hallucinogenic morning glories in the 1950s.549 The psychedelic effects of synthesized DMT were described by Hungarian chemist and psychiatrist Stephen Szára in 1956.550551552553554 Osmond described the hallucinogenic and other effects of morning glory seeds in clinical studies in 1955.555 Hofmann identified and described ergine and isoergine as the active constituents of morning glory seeds in 1960.556557558559 Their hallucinogenic effects were first described by Hofmann in 1963.560561

In 1952, couple and amateur ethnomycologists R. Gordon Wasson and Valentina Wasson learned of the ritual use of hallucinogenic mushrooms in the 16th century in Mexico from the published work of Schultes.562563 They made several trips to Mexico in search of the mushrooms.564565 In mid-1955, the Wassons participated in a mushroom ceremony with Mazatec curandera Maria Sabina in Huautla de Jiménez, Oaxaca, Mexico.566567 Gordon Wasson published his experience in an article for Life magazine titled "Seeking the Magic Mushroom" in 1957, while Valentina Wasson published her experience as "I Ate the Sacred Mushroom" in This Week magazine the same year.568569 Later in 1957, a second expedition was made by the Wassons to Mexico with French mycologist Roger Heim.570 Heim identified several of the mushrooms as belonging to the genus Psilocybe.571 They collected samples of the mushrooms and Heim sent a sample to Hofmann.572 Hofmann identified psilocybin as the active constituent in 1958 and developed a chemical synthesis for it.573574575 Sandoz Pharmaceuticals began distributing tablets of psilocybin under the brand name Indocybin in 1960.576

French scientists Césaire Phisalix and Gabriel Bertrand isolated bufotenin from Bufo toads in 1893 and named it.577578579 The compound was first isolated to purity by Austrian chemist Hans Handovsky in 1920.580 Clinical studies assessed the effects of bufotenin and were published starting in 1956.581582583 However, the findings of these studies were conflicting, and bufotenin developed a long-standing reputation of being inactive and toxic.584585586 American ethnobotanist Jonathan Ott and colleagues subsequently showed in 2001 that bufotenin is in fact a psychedelic and does not necessarily produce major adverse effects, although marked nausea and vomiting are prominent.587588589 The related psychedelic 5-MeO-DMT was first synthesized by Japanese chemists Toshio Hoshino and Kenya Shimodaira in 1935.590591 It was later isolated from Dictyoloma incanescens in 1959.592 Subsequently, 5-MeO-DMT was isolated from numerous other plants and fungi.593594 The compound was isolated from the skin of toads, specifically the Colorado River toad (Incilius alvarius, formerly Bufo alvarius), by Italian chemist and pharmacologist Vittorio Erspamer in 1967.595596597 A 1984 pamphlet by Albert Most (real name Ken Nelson), titled Bufo Alvarius: the Psychedelic Toad of the Sonoran Desert, described how to obtain and use Colorado River toad secretions as a psychedelic drug, and this started its recreational use.598599600

Mid-20th-century research, popularization, and prohibition

See also: Psychedelic era and Counterculture of the 1960s § Marijuana, LSD, and other recreational drugs

Extensive clinical research on almost exclusively LSD, mescaline, and psilocybin was conducted in the 1950s and 1960s.601 However, the amount of research done on psilocybin was nowhere near that of LSD.602 Psychedelics like LSD started to become more visible in the mainstream sphere in the 1950s.603 English writer Aldous Huxley tried mescaline, which he had obtained from English psychiatrist Humphry Osmond, in 1953, and described its effects in his 1954 book The Doors of Perception.604605606 British politician Christopher Mayhew tried mescaline in 1955 and this was reported on in the media.607 Osmond, in correspondence with Huxley, coined the term "psychedelic", meaning "mind-manifesting", in 1956.608609

Psychedelics became widely recreationally used by the public, for instance by the hippies, during the counterculture of the 1960s.610 Harvard psychologists Timothy Leary and Richard Alpert began studying LSD and psilocybin in the early 1960s and ended up being fired from the university in 1963.611 Sandoz Laboratories ceased distribution of Delysid in 1965.612 Psychedelics became controlled substances in the United States and internationally in the 1960s and 1970s.613614 By the end of the 1960s, psychedelic clinical research throughout the world had largely ceased.615

Besides public research, it was eventually learned that the United States government had also conducted research into psychedelics, as possible mind-control and truth-serum drugs, in the 1940s through the 1970s, for instance Project MKUltra by the Central Intelligence Agency (CIA) and the Edgewood Arsenal research by the U.S. Army.616617

Creation of other synthetic psychedelics

The psychedelic effects of 3,4-methylenedioxyamphetamine (MDA), a synthetic analogue of mescaline that had been derived from amphetamine in 1910, were discovered by American chemist and pharmacologist Gordon Alles in 1930, but weren't subsequently described by him until 1959.618619620621 3,4,5-Trimethoxyamphetamine (TMA), another synthetic mescaline analogue, was first described in 1947 and its psychedelic effects were described in 1955.622623624625 2,4,5-Trimethoxyphenethylamine (2C-O), a synthetic positional isomer of mescaline, was synthesized and claimed to be psychedelic similarly to mescaline in 1931, but later trials found it to be inactive.626627 Various synthetic tryptamine psychedelics, such as diethyltryptamine (DET), 4-PO-DET (CEY-19), and 4-HO-DET (CZ-74), were developed in the late 1950s.628629630 In addition, the synthetic α-alkyltryptamine analogues α-methyltryptamine (AMT; Indopan) and α-ethyltryptamine (AET; Monase), which are psychedelics and/or entactogens, were marketed and clinically used at non-hallucinogenic doses as antidepressants in the early 1960s, but were quickly withdrawn due to physical toxicity.631632633

Alexander Shulgin, an American chemist working at Dow Chemical Company, tried mescaline by 1960.634635 This experience has been described as "the most consequential mescaline trip of the sixties", as it caused Shulgin to redirect his focus and life's work to psychedelic chemistry.636637 Starting in the 1960s, Shulgin synthesized and gradually described hundreds of novel synthetic psychedelics as well as entactogens in scientific publications and published books such as PiHKAL (1991) and TiHKAL (1997).638639640 Notable major examples of these drugs have included the DOx psychedelic DOM, the 2C psychedelic 2C-B, and the MDxx entactogen MDMA, among others.641642643 However, MDMA was not an original creation of Shulgin's but had previously been first synthesized in 1912 and had surfaced as a recreational drug related to MDA by the mid- to late-1960s.644645646 Instead, Shulgin had merely served to help popularize and spread awareness about MDMA and its unique effects.647648649

MDMA became outlawed in the mid-1980s.650651 In response to this, the Multidisciplinary Association for Psychedelic Studies (MAPS) was founded by Rick Doblin in 1986 and began efforts to develop MDMA and other psychedelics as medicines.652 American chemist David E. Nichols has developed numerous novel psychedelics and entactogens from the 1970s to present.653654655 Swiss chemist Daniel Trachsel, sometimes referred to as the "German Shulgin", has also developed and published numerous novel psychedelics as well as entactogens since the 1990s.656657

NBOMe psychedelics such as 25I-NBOMe, derived from structural modification of 2C psychedelics, were first described by Ralf Heim and colleagues by 2000.658659660 The NBOMe drugs were subsequently encountered as novel recreational drugs by 2010, and by 2012 had eclipsed other psychedelics like LSD and psilocybin-containing mushrooms in popularity, at least for a time.661662663

Psychedelics, serotonin, and their actions

Serotonin, also known as 5-hydroxytryptamine (5-HT) and originally called enteramine, was discovered by Vittorio Erspamer in the 1930s664 and its structural identity was fully characterized in the late 1940s and early 1950s.665666667 Serotonin was discovered in the brain by Betty Twarog and Irvine Page in 1953.668669670 It was quickly noticed that LSD contains the serotonin-like tryptamine scaffold within its chemical structure.671672 Shortly thereafter, it was found that LSD showed serotonin-like effects and could antagonize serotonin in certain assays.673674 Studies in the 1960s and 1970s showed that various serotonin antagonists could block the behavioral effects of psychedelics in animals.675676677678679 The serotonin receptors, including the serotonin 5-HT2 receptors, were elucidated by the late 1970s.680681682 Mediation of the hallucinogenic effects of psychedelics by serotonin 5-HT2 receptor agonism was proposed by Richard Glennon and other researchers by the early 1980s.683684685686687 The human serotonin 5-HT2A receptor was first cloned in 1990.688689 The hallucinogenic effects of psilocybin in humans were shown to be blocked by the selective serotonin 5-HT2A receptor antagonist ketanserin by Franz Vollenweider and colleagues in 1998, solidifying theoretical notions that agonism of the serotonin 5-HT2A receptor mediates the hallucinogenic effects of serotonergic psychedelics.690691

Psychedelic renaissance

See also: List of investigational hallucinogens and entactogens

Since the prohibition of the 1960s and 1970s, clinical research into psychedelics started to resume by the 1990s, for instance the studies of DMT by Rick Strassman, and they have once again started to be developed as pharmaceutical drugs for potential medical use.692693694695 A so-called "psychedelic renaissance", in which interest in psychedelics has resurged, began in the late 2010s and early 2020s.696697698 Michael Pollan's 2018 book How to Change Your Mind, which was also adapted into a Netflix series in 2022, was especially impactful in terms of increasing mainstream awareness and interest in psychedelics.699700701 More than 100 clinical trials of four major psychedelics, including psilocybin, LSD, ayahuasca, and MDMA, were identified as being underway in 2024.702703

Society and culture

Etymology and nomenclature

The term psychedelic was coined by the psychiatrist Humphrey Osmond during written correspondence with author Aldous Huxley (written in a rhyme: “To fathom Hell or soar angelic/Just take a pinch of psychedelic.”704) and presented to the New York Academy of Sciences by Osmond in 1957.705 It is irregularly706 derived from the Greek words ψυχή (psychḗ, meaning 'mind, soul') and δηλείν (dēleín, meaning 'to manifest'), with the intended meaning "mind manifesting" or alternatively "soul manifesting", and the implication that psychedelics can reveal unused potentials of the human mind.707 The term was loathed by American ethnobotanist Richard Schultes but championed by American psychologist Timothy Leary.708

Aldous Huxley had suggested his own coinage phanerothyme (Greek phaneroein- "to make manifest or visible" and Greek thymos "soul", thus "to reveal the soul") to Osmond in 1956.709 Recently, the term entheogen (meaning "that which produces the divine within") has come into use to denote the use of psychedelic drugs, as well as various other types of psychoactive substances, in a religious, spiritual, and mystical context.710

In 2004, David E. Nichols wrote the following about the nomenclature used for psychedelic drugs:711

Many different names have been proposed over the years for this drug class. The famous German toxicologist Louis Lewin used the name phantastica earlier in this century, and as we shall see later, such a descriptor is not so farfetched. The most popular names—hallucinogen, psychotomimetic, and psychedelic ("mind manifesting")—have often been used interchangeably. Hallucinogen is now, however, the most common designation in the scientific literature, although it is an inaccurate descriptor of the actual effects of these drugs. In the lay press, the term psychedelic is still the most popular and has held sway for nearly four decades. Most recently, there has been a movement in nonscientific circles to recognize the ability of these substances to provoke mystical experiences and evoke feelings of spiritual significance. Thus, the term entheogen, derived from the Greek word entheos, which means "god within", was introduced by Ruck et al. and has seen increasing use. This term suggests that these substances reveal or allow a connection to the "divine within". Although it seems unlikely that this name will ever be accepted in formal scientific circles, its use has dramatically increased in the popular media and on internet sites. Indeed, in much of the counterculture that uses these substances, entheogen has replaced psychedelic as the name of choice and we may expect to see this trend continue.

Robin Carhart-Harris and Guy Goodwin write that the term psychedelic is preferable to hallucinogen for describing classical psychedelics because of the term hallucinogen's "arguably misleading emphasis on these compounds' hallucinogenic properties."712

While the term psychedelic is most commonly used to refer only to serotonergic hallucinogens,713714715716 it is sometimes used for a much broader range of drugs, including empathogen–entactogens, dissociatives, and atypical hallucinogens/psychoactives such as Amanita muscaria, Cannabis sativa, Nymphaea nouchali and Salvia divinorum.717718 Thus, the term serotonergic psychedelic is sometimes used for the narrower class.719720 It is important to check the definition of a given source.721 This article uses the more common, narrower definition of psychedelic.

Surrounding culture

Main article: Psychedelia

Psychedelic culture includes manifestations such as psychedelic music,722 psychedelic art,723 psychedelic literature,724 psychedelic film,725 and psychedelic festivals.726 Examples of psychedelic music are found in the work of 1960s rock bands like the Grateful Dead, Jefferson Airplane, The 13th Floor Elevators, and Syd Barrett-era Pink Floyd. Many psychedelic bands and elements of the psychedelic subculture originated in San Francisco during the mid to late 1960s.727

Legal status

See also: Legal status of psilocybin mushrooms, Psilocybin decriminalization in the United States, and Legal status of ayahuasca by country

Many psychedelics are classified under Schedule I of the United Nations Convention on Psychotropic Substances of 1971 as drugs with the greatest potential to cause harm and no acceptable medical uses.728 In addition, many countries have analogue laws; for example, in the United States, the Federal Analogue Act of 1986 automatically forbids any drugs sharing similar chemical structures or chemical formulas to prohibited substances if sold for human consumption.729

In July 2022, though, under the United States Food and Drug Administration, the drug psilocybin was on track to be approved of as a treatment for depression, and MDMA as a treatment for post-traumatic stress disorder.730

U.S. states such as Oregon and Colorado have also instituted decriminalization and legalization measures for accessing psychedelics731 and states like New Hampshire are attempting to do the same.732 J.D. Tuccille argues that increasing rates of use of psychedelics in defiance of the law are likely to result in more widespread legalization and decriminalization of access to the substances in the United States (as has happened with alcohol and cannabis).733

Research

Therapeutic effects

See also: Psychedelic therapy, Psilocybin § Depression, and 5-HT2A receptor § Anti-inflammatory effects

Psychedelic substances which may have therapeutic uses include psilocybin, LSD, and mescaline.734 During the 1950s and 1960s, lack of informed consent in some scientific trials on psychedelics led to significant, long-lasting harm to some participants.735 Since then, research regarding the effectiveness of psychedelic therapy has been conducted under strict ethical guidelines, with fully informed consent and a pre-screening to avoid people with psychosis taking part.736 Although the history behind these substances has hindered research into their potential medicinal value, scientists are now able to conduct studies and renew research that was halted in the 1970s. Some research has shown that these substances have helped people with such mental disorders as obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), alcoholism, depression, and cluster headaches.737

It has long been known that psychedelics promote neurite growth and neuroplasticity and are potent psychoplastogens.738739740 There is evidence that psychedelics induce molecular and cellular adaptations related to neuroplasticity and that these could potentially underlie therapeutic benefits.741742 Psychedelics have also been shown to have potent anti-inflammatory activity and therapeutic effects in animal models of inflammatory diseases including asthma,743 cardiovascular disease, and diabetes.744 They might also be useful for the treatment of neuroinflammation745 as well as post-COVID-19 syndrome (long COVID).746

See also

Further reading

Wikimedia Commons has media related to Psychedelics. Look up psychedelic in Wiktionary, the free dictionary.

References

  1. Aghajanian, G (August 1999). "Serotonin and Hallucinogens". Neuropsychopharmacology. 21 (2): 16S – 23S. doi:10.1016/S0893-133X(98)00135-3. PMID 10432484. https://doi.org/10.1016%2FS0893-133X%2898%2900135-3

  2. Millière R, Carhart-Harris RL, Roseman L, Trautwein FM, Berkovich-Ohana A (2018). "Psychedelics, Meditation, and Self-Consciousness". Frontiers in Psychology. 9: 1475. doi:10.3389/fpsyg.2018.01475. PMC 6137697. PMID 30245648. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137697

  3. McClure-Begley TD, Roth BL (2022). "The promises and perils of psychedelic pharmacology for psychiatry". Nature Reviews Drug Discovery. 21 (6): 463–473. doi:10.1038/s41573-022-00421-7. PMID 35301459. S2CID 247521633. Retrieved 2024-02-08. https://www.nature.com/articles/s41573-022-00421-7

  4. Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, et al. (2018). "DMT Models the Near-Death Experience". Frontiers in Psychology. 9: 1424. doi:10.3389/fpsyg.2018.01424. PMC 6107838. PMID 30174629. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107838

  5. R. R. Griffiths, W. A. Richards, U. McCann, R. Jesse (7 July 2006). "Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance". Psychopharmacology. 187 (3): 268–283. doi:10.1007/s00213-006-0457-5. PMID 16826400. S2CID 7845214. /wiki/Doi_(identifier)

  6. McKenna, Terence (1992). Food of the Gods: The Search for the Original Tree of Knowledge A Radical History of Plants, Drugs, and Human Evolution

  7. W. Davis (1996), One River: Explorations and Discoveries in the Amazon Rain Forest. New York, Simon and Schuster, Inc. p. 120.

  8. Kelmendi B, Kaye AP, Pittenger C, Kwan AC (January 2022). "Psychedelics". Curr Biol. 32 (2): R63 – R67. Bibcode:2022CBio...32..R63K. doi:10.1016/j.cub.2021.12.009. PMC 8830367. PMID 35077687. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830367

  9. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  10. Aghajanian, G (August 1999). "Serotonin and Hallucinogens". Neuropsychopharmacology. 21 (2): 16S – 23S. doi:10.1016/S0893-133X(98)00135-3. PMID 10432484. https://doi.org/10.1016%2FS0893-133X%2898%2900135-3

  11. "Crystal Structure of LSD and 5-HT2AR Part 2: Binding Details and Future Psychedelic Research Paths". Psychedelic Science Review. 2020-10-05. Retrieved 2021-02-12. https://psychedelicreview.com/crystal-structure-of-lsd-and-5-ht2ar-part-2-binding-details-and-future-psychedelic-research-paths/

  12. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  13. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  14. McClure-Begley TD, Roth BL (2022). "The promises and perils of psychedelic pharmacology for psychiatry". Nature Reviews Drug Discovery. 21 (6): 463–473. doi:10.1038/s41573-022-00421-7. PMID 35301459. S2CID 247521633. Retrieved 2024-02-08. https://www.nature.com/articles/s41573-022-00421-7

  15. Siegel GJ (11 November 2005). Basic neurochemistry: Molecular, cellular and medical aspects (7th ed.). Amsterdam: Elsevier Science. ISBN 978-0-08-047207-2. OCLC 123438340. 978-0-08-047207-2

  16. Smigielski L, Scheidegger M, Kometer M, Vollenweider FX (August 2019). "Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects". NeuroImage. 196: 207–215. doi:10.1016/j.neuroimage.2019.04.009. PMID 30965131. S2CID 102487343. https://linkinghub.elsevier.com/retrieve/pii/S1053811919302952

  17. Letheby C, Gerrans P (2017). "Self unbound: ego dissolution in psychedelic experience". Neuroscience of Consciousness. 3 (1): nix016. doi:10.1093/nc/nix016. PMC 6007152. PMID 30042848. The connection with findings about PCC deactivation in 'effortless awareness' meditation is obvious, and bolstered by the finding that acute ayahuasca intoxication increases mindfulness-related capacities. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007152

  18. Millière R, Carhart-Harris RL, Roseman L, Trautwein FM, Berkovich-Ohana A (2018). "Psychedelics, Meditation, and Self-Consciousness". Frontiers in Psychology. 9: 1475. doi:10.3389/fpsyg.2018.01475. PMC 6137697. PMID 30245648. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137697

  19. R. R. Griffiths, W. A. Richards, U. McCann, R. Jesse (7 July 2006). "Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance". Psychopharmacology. 187 (3): 268–283. doi:10.1007/s00213-006-0457-5. PMID 16826400. S2CID 7845214. /wiki/Doi_(identifier)

  20. Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, et al. (2018). "DMT Models the Near-Death Experience". Frontiers in Psychology. 9: 1424. doi:10.3389/fpsyg.2018.01424. PMC 6107838. PMID 30174629. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107838

  21. Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, et al. (2018). "DMT Models the Near-Death Experience". Frontiers in Psychology. 9: 1424. doi:10.3389/fpsyg.2018.01424. PMC 6107838. PMID 30174629. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107838

  22. Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H (2011-12-13). "Meditation experience is associated with differences in default mode network activity and connectivity". Proceedings of the National Academy of Sciences. 108 (50): 20254–20259. Bibcode:2011PNAS..10820254B. doi:10.1073/pnas.1112029108. PMC 3250176. PMID 22114193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250176

  23. Letheby C, Gerrans P (2017). "Self unbound: ego dissolution in psychedelic experience". Neuroscience of Consciousness. 3 (1): nix016. doi:10.1093/nc/nix016. PMC 6007152. PMID 30042848. The connection with findings about PCC deactivation in 'effortless awareness' meditation is obvious, and bolstered by the finding that acute ayahuasca intoxication increases mindfulness-related capacities. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007152

  24. Millière R, Carhart-Harris RL, Roseman L, Trautwein FM, Berkovich-Ohana A (2018). "Psychedelics, Meditation, and Self-Consciousness". Frontiers in Psychology. 9: 1475. doi:10.3389/fpsyg.2018.01475. PMC 6137697. PMID 30245648. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137697

  25. Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, et al. (2018). "DMT Models the Near-Death Experience". Frontiers in Psychology. 9: 1424. doi:10.3389/fpsyg.2018.01424. PMC 6107838. PMID 30174629. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107838

  26. Krebs, Teri S, Johansen, Pål-Ørjan (28 March 2013). "Over 30 million psychedelic users in the United States". F1000Research. 2: 98. doi:10.12688/f1000research.2-98.v1. PMC 3917651. PMID 24627778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917651

  27. Garcia-Romeu, Albert, Kersgaard, Brennan, Addy, Peter H. (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  28. Le Dain G (1971). The Non-medical Use of Drugs: Interim Report of the Canadian Government's Commission of Inquiry. p. 106. Physical dependence does not develop to LSD

  29. Lüscher, Christian, Ungless, Mark A. (14 November 2006). "The Mechanistic Classification of Addictive Drugs". PLOS Medicine. 3 (11): e437. doi:10.1371/journal.pmed.0030437. PMC 1635740. PMID 17105338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635740

  30. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  31. Rich Haridy (24 October 2018). "Psychedelic psilocybin therapy for depression granted Breakthrough Therapy status by FDA". newatlas.com. Retrieved 2019-09-27. https://newatlas.com/psilocybin-magic-mushrooms-depression-fda-breakthrough-therapy/56928/

  32. Bender D, Hellerstein DJ (2022). "Assessing the risk–benefit profile of classical psychedelics: a clinical review of second-wave psychedelic research". Psychopharmacology. 239 (6): 1907–1932. doi:10.1007/s00213-021-06049-6. PMID 35022823. S2CID 245906937. /wiki/Doi_(identifier)

  33. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. (May 2020). "Psychedelics and Psychedelic-Assisted Psychotherapy". The American Journal of Psychiatry. 177 (5): 391–410. doi:10.1176/appi.ajp.2019.19010035. PMID 32098487. S2CID 211524704. /wiki/Doi_(identifier)

  34. Tupper KW, Wood E, Yensen R, Johnson MW (2015-10-06). "Psychedelic medicine: a re-emerging therapeutic paradigm". CMAJ: Canadian Medical Association Journal. 187 (14): 1054–1059. doi:10.1503/cmaj.141124. ISSN 0820-3946. PMC 4592297. PMID 26350908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592297

  35. Garcia-Romeu, Albert, Kersgaard, Brennan, Addy, Peter H. (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  36. Orth T (July 28, 2022). "One in four Americans say they've tried at least one psychedelic drug". YouGov. https://today.yougov.com/topics/lifestyle/articles-reports/2022/07/28/one-in-four-americans-have-tried-psychedelic-drugs

  37. Creese I, Burt DR, Snyder SH (1975-12-01). "The dopamine receptor: Differential binding of d-LSD and related agents to agonist and antagonist states". Life Sciences. 17 (11): 1715–1719. doi:10.1016/0024-3205(75)90118-6. ISSN 0024-3205. PMID 1207384. https://www.sciencedirect.com/science/article/abs/pii/0024320575901186

  38. Passie T, Seifert J, Schneider U, Emrich HM (October 2002). "The pharmacology of psilocybin". Addiction Biology. 7 (4): 357–364. doi:10.1080/1355621021000005937. PMID 14578010. S2CID 12656091. http://doi.wiley.com/10.1080/1355621021000005937

  39. Griffiths RR, Richards WA, McCann U, Jesse R (August 2006). "Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance". Psychopharmacology. 187 (3): 268–283. doi:10.1007/s00213-006-0457-5. ISSN 0033-3158. PMID 16826400. S2CID 7845214. http://link.springer.com/10.1007/s00213-006-0457-5

  40. Freye E (2009). Pharmacology and abuse of cocaine, amphetamines, ecstasy and related designer drugs : a comprehensive review on their mode of action, treatment of abuse and intoxication. Dordrecht: Springer. ISBN 978-90-481-2448-0. OCLC 489218895. 978-90-481-2448-0

  41. Bohn A, Kiggen MH, Uthaug MV, van Oorsouw KI, Ramaekers JG, van Schie HT (2022-12-05). "Altered States of Consciousness During Ceremonial San Pedro Use". The International Journal for the Psychology of Religion. 33 (4): 309–331. doi:10.1080/10508619.2022.2139502. hdl:2066/285968. ISSN 1050-8619. https://www.tandfonline.com/doi/full/10.1080/10508619.2022.2139502

  42. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ (July 2003). "Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion, and Pharmacokinetics". Journal of Pharmacology and Experimental Therapeutics. 306 (1): 73–83. doi:10.1124/jpet.103.049882. ISSN 0022-3565. PMID 12660312. S2CID 6147566. http://jpet.aspetjournals.org/lookup/doi/10.1124/jpet.103.049882

  43. Mueller MJ, Aicher HD, Dornbierer DA, Marten L, Suay D, Meling D, et al. (2024-12-28). "Pharmacokinetics and pharmacodynamics of an innovative psychedelic N,N-dimethyltryptamine/harmine formulation in healthy participants: a randomized controlled trial". The International Journal of Neuropsychopharmacology. 28 (1): pyaf001. doi:10.1093/ijnp/pyaf001. ISSN 1469-5111. PMC 11770821. PMID 39774840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770821

  44. Haroz R, Greenberg MI (November 2005). "Emerging drugs of abuse". The Medical Clinics of North America. 89 (6): 1259–1276. doi:10.1016/j.mcna.2005.06.008. ISSN 0025-7125. PMID 16227062. https://pubmed.ncbi.nlm.nih.gov/16227062

  45. Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994-02-01). "Dose-Response Study of N,N-Dimethyltryptamine in Humans: II. Subjective Effects and Preliminary Results of a New Rating Scale". Archives of General Psychiatry. 51 (2): 98–108. doi:10.1001/archpsyc.1994.03950020022002. ISSN 0003-990X. PMID 8297217. https://doi.org/10.1001/archpsyc.1994.03950020022002

  46. Davis AK, Clifton JM, Weaver EG, Hurwitz ES, Johnson MW, Griffiths RR (September 2020). "Survey of entity encounter experiences occasioned by inhaled N,N -dimethyltryptamine: Phenomenology, interpretation, and enduring effects". Journal of Psychopharmacology. 34 (9): 1008–1020. doi:10.1177/0269881120916143. ISSN 0269-8811. PMID 32345112. https://doi.org/10.1177%2F0269881120916143

  47. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  48. Luethi D, Liechti ME (April 2020). "Designer drugs: mechanism of action and adverse effects". Arch Toxicol. 94 (4): 1085–1133. Bibcode:2020ArTox..94.1085L. doi:10.1007/s00204-020-02693-7. PMC 7225206. PMID 32249347. In one of the few clinical studies of a designer drug, 4-bromo-2,5-dimethoxyphenylethylamine (2C-B) was shown to induce euphoria, well-being, and changes in perception, and to have mild stimulant properties (Gonzalez et al. 2015). 2C-B may thus be classified as a psychedelic with entactogenic properties, an effect profile that is similar to various other phenethylamine psychedelics (Shulgin and Shulgin 1995). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225206

  49. Wills B, Erickson T (9 March 2012). "Psychoactive Phenethylamine, Piperazine, and Pyrrolidinophenone Derivatives". In Barceloux DG (ed.). Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. Wiley. pp. 156–192. doi:10.1002/9781118105955.ch10. ISBN 978-0-471-72760-6. DOSE EFFECT: Anecdotal data suggests that recreational doses of 2C-B range from 4—30 mg with lower doses (4—10 mg) producing entactogenic effects, whereas high doses (10— 20 mg) cause psychedelic and sympathomimetic effects. 978-0-471-72760-6

  50. González D, Torrens M, Farré M (2015-10-12). "Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions". BioMed Research International. 2015: 643878. doi:10.1155/2015/643878. PMC 4620274. PMID 26543863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620274

  51. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  52. Dunlap LE, Andrews AM, Olson DE (October 2018). "Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine". ACS Chem Neurosci. 9 (10): 2408–2427. doi:10.1021/acschemneuro.8b00155. PMC 6197894. PMID 30001118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197894

  53. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  54. Krebs, Teri S, Johansen, Pål-Ørjan (28 March 2013). "Over 30 million psychedelic users in the United States". F1000Research. 2: 98. doi:10.12688/f1000research.2-98.v1. PMC 3917651. PMID 24627778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917651

  55. Garcia-Romeu, Albert, Kersgaard, Brennan, Addy, Peter H. (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  56. Krebs, Teri S., Johansen, Pål-Ørjan (August 19, 2013). "Psychedelics and Mental Health: A Population Study". PLOS ONE. 8 (8): e63972. Bibcode:2013PLoSO...863972K. doi:10.1371/journal.pone.0063972. PMC 3747247. PMID 23976938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747247

  57. Goldman M (2024-06-27). "Mushrooms are the most commonly used psychedelic, study finds". Axios. Retrieved 2024-06-28. https://www.axios.com/2024/06/27/psychedelics-mushrooms-rand

  58. Carlini EA, Maia LO (2020). "Plant and Fungal Hallucinogens as Toxic and Therapeutic Agents". Plant Toxins. Toxinology. Springer Netherlands. pp. 1–44. doi:10.1007/978-94-007-6728-7_6-2. ISBN 978-94-007-6728-7. S2CID 239438352. Retrieved 23 February 2022. 978-94-007-6728-7

  59. "History of Psychedelics: How the Mazatec Tribe Brought Entheogens to the World". Psychedelic Times. 28 October 2015. Retrieved 23 February 2022. https://psychedelictimes.com/history-of-psychedelics-how-the-mazatec-tribe-brought-entheogens-to-the-world/

  60. Ismael Eduardo Apud Peláez. (2020). Ayahuasca: Between Cognition and Culture. Publicacions Universitat Rovira i Virgili. ISBN 978-84-8424-834-7. OCLC 1229544084. 978-84-8424-834-7

  61. Prince MA, O'Donnell MB, Stanley LR, Swaim RC (May 2019). "Examination of Recreational and Spiritual Peyote Use Among American Indian Youth". Journal of Studies on Alcohol and Drugs. 80 (3): 366–370. doi:10.15288/jsad.2019.80.366. PMC 6614926. PMID 31250802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614926

  62. Bussmann RW, Sharon D (2006). "Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture". J Ethnobiol Ethnomed. 2 (1): 47. doi:10.1186/1746-4269-2-47. PMC 1637095. PMID 17090303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637095

  63. Socha DM, Sykutera M, Orefici G (2022-12-01). "Use of psychoactive and stimulant plants on the south coast of Peru from the Early Intermediate to Late Intermediate Period". Journal of Archaeological Science. 148: 105688. Bibcode:2022JArSc.148j5688S. doi:10.1016/j.jas.2022.105688. ISSN 0305-4403. S2CID 252954052. https://doi.org/10.1016%2Fj.jas.2022.105688

  64. Larco L (2008). "Archivo Arquidiocesano de Trujillo Sección Idolatrías. (Años 1768–1771)". Más allá de los encantos – Documentos sobre extirpación de idolatrías, Trujillo. Travaux de l'IFEA. Lima: IFEA Instituto Francés de Estudios Andinos, Fondo Editorial de la Universidad Nacional Mayor de San Marcos. pp. 67–87. ISBN 978-2-8218-4453-7. Retrieved April 9, 2020. 978-2-8218-4453-7

  65. Anderson EF (2001). The Cactus Family. Pentland, Oregon: Timber Press. ISBN 978-0-88192-498-5. pp. 45–49. 978-0-88192-498-5

  66. "Declaran Patrimonio Cultural de la Nación a los conocimientos, saberes y usos del cactus San Pedro". elperuano.pe (in Spanish). 2022-11-17. Retrieved 2022-12-10. https://elperuano.pe/noticia/197142-declaran-patrimonio-cultural-de-la-nacion-a-los-conocimientos-saberes-y-usos-del-cactus-san-pedro

  67. "Psychedelics Weren't As Common in Ancient Cultures As We Think". Vice Media. Vice. December 10, 2020. Retrieved January 14, 2023. https://www.vice.com/en/article/psychedelic-drug-use-in-ancient-indigenous-cultures/

  68. "Psychedelics Weren't As Common in Ancient Cultures As We Think". Vice Media. Vice. December 10, 2020. Retrieved January 14, 2023. https://www.vice.com/en/article/psychedelic-drug-use-in-ancient-indigenous-cultures/

  69. Nutt D, Spriggs M, Erritzoe D (2023-02-01). "Psychedelics therapeutics: What we know, what we think, and what we need to research". Neuropharmacology. 223: 109257. doi:10.1016/j.neuropharm.2022.109257. ISSN 0028-3908. PMID 36179919. https://doi.org/10.1016%2Fj.neuropharm.2022.109257

  70. Marks M, Cohen IG (October 2021). "Psychedelic therapy: a roadmap for wider acceptance and utilization". Nature Medicine. 27 (10): 1669–1671. doi:10.1038/s41591-021-01530-3. PMID 34608331. S2CID 238355863. https://doi.org/10.1038%2Fs41591-021-01530-3

  71. Pilecki B, Luoma JB, Bathje GJ, Rhea J, Narloch VF (2021). "Ethical and legal issues in psychedelic harm reduction and integration therapy". Harm Reduction Journal. 18 (1): 40. doi:10.1186/s12954-021-00489-1. PMC 8028769. PMID 33827588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028769

  72. Nutt D, Erritzoe D, Carhart-Harris R (2020). "Psychedelic Psychiatry's Brave New World". Cell. 181 (1): 24–28. doi:10.1016/j.cell.2020.03.020. PMID 32243793. S2CID 214753833. https://doi.org/10.1016%2Fj.cell.2020.03.020

  73. Johnson MW, Richards WA, Griffiths RR (2008). "Human hallucinogen research: guidelines for safety". Journal of Psychopharmacology. 22 (6): 603–620. doi:10.1177/0269881108093587. PMC 3056407. PMID 18593734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056407

  74. Garcia-Romeu A, Richards WA (2018). "Current perspectives on psychedelic therapy: use of serotonergic hallucinogens in clinical interventions". International Review of Psychiatry. 30 (4): 291–316. doi:10.1080/09540261.2018.1486289. ISSN 0954-0261. PMID 30422079. S2CID 53291327. /wiki/Doi_(identifier)

  75. Bathje GJ, Majeski E, Kudowor M (2022-08-04). "Psychedelic integration: An analysis of the concept and its practice". Frontiers in Psychology. 13. doi:10.3389/fpsyg.2022.824077. ISSN 1664-1078. PMC 9386447. PMID 35992410. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386447

  76. Johnson MW, Richards WA, Griffiths RR (2008). "Human hallucinogen research: guidelines for safety". Journal of Psychopharmacology. 22 (6): 603–620. doi:10.1177/0269881108093587. PMC 3056407. PMID 18593734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056407

  77. Garcia-Romeu A, Richards WA (2018). "Current perspectives on psychedelic therapy: use of serotonergic hallucinogens in clinical interventions". International Review of Psychiatry. 30 (4): 291–316. doi:10.1080/09540261.2018.1486289. ISSN 0954-0261. PMID 30422079. S2CID 53291327. /wiki/Doi_(identifier)

  78. Bender D, Hellerstein DJ (2022). "Assessing the risk–benefit profile of classical psychedelics: a clinical review of second-wave psychedelic research". Psychopharmacology. 239 (6): 1907–1932. doi:10.1007/s00213-021-06049-6. PMID 35022823. S2CID 245906937. /wiki/Doi_(identifier)

  79. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. (May 2020). "Psychedelics and Psychedelic-Assisted Psychotherapy". The American Journal of Psychiatry. 177 (5): 391–410. doi:10.1176/appi.ajp.2019.19010035. PMID 32098487. S2CID 211524704. /wiki/Doi_(identifier)

  80. Bender D, Hellerstein DJ (2022). "Assessing the risk–benefit profile of classical psychedelics: a clinical review of second-wave psychedelic research". Psychopharmacology. 239 (6): 1907–1932. doi:10.1007/s00213-021-06049-6. PMID 35022823. S2CID 245906937. /wiki/Doi_(identifier)

  81. Romeo B, Karila L, Martelli C, Benyamina A (2020). "Efficacy of psychedelic treatments on depressive symptoms: A meta-analysis". Journal of Psychopharmacology. 34 (10): 1079–1085. doi:10.1177/0269881120919957. PMID 32448048. S2CID 218873949. /wiki/Doi_(identifier)

  82. Bender D, Hellerstein DJ (2022). "Assessing the risk–benefit profile of classical psychedelics: a clinical review of second-wave psychedelic research". Psychopharmacology. 239 (6): 1907–1932. doi:10.1007/s00213-021-06049-6. PMID 35022823. S2CID 245906937. /wiki/Doi_(identifier)

  83. Schimmel N, Breeksema JJ, Smith-Apeldoorn SY, Veraart J, van den Brink W, Schoevers RA (2022). "Psychedelics for the treatment of depression, anxiety, and existential distress in patients with a terminal illness: a systematic review". Psychopharmacology. 239 (15–33): 15–33. doi:10.1007/s00213-021-06027-y. PMID 34812901. S2CID 244490236. https://research.rug.nl/en/publications/d86d811c-a066-4d34-bc83-df904e91a765

  84. Marks M, Cohen IG (October 2021). "Psychedelic therapy: a roadmap for wider acceptance and utilization". Nature Medicine. 27 (10): 1669–1671. doi:10.1038/s41591-021-01530-3. PMID 34608331. S2CID 238355863. https://doi.org/10.1038%2Fs41591-021-01530-3

  85. Dupuis D, Veissière S (October 2022). "Culture, context, and ethics in the therapeutic use of hallucinogens: Psychedelics as active super-placebos?". Transcult Psychiatry. 59 (5): 571–578. doi:10.1177/13634615221131465. PMID 36263513. /wiki/Doi_(identifier)

  86. van Elk M, Yaden DB (September 2022). "Pharmacological, neural, and psychological mechanisms underlying psychedelics: A critical review". Neurosci Biobehav Rev. 140: 104793. doi:10.1016/j.neubiorev.2022.104793. hdl:1887/3515020. PMID 35878791. In addition, the strong prior expectations that many people have about psychedelics directly contribute to the psychedelic experience and as a consequence it has been suggested that psychedelics may act as a 'super-placebo' (Hartogsohn, 2016). Specifically, strong prior expectations (e.g., that a specific intervention will likely trigger a mystical experience) will increase the likelihood of having e.g., a mystical-type experience (Maij et al., 2019), and this placebo-effect is further boosted by the psychedelic-induced suggestibility. /wiki/Doi_(identifier)

  87. Fadiman J (2016-01-01). "Microdose research: without approvals, control groups, double blinds, staff or funding". Psychedelic Press. XV. https://www.researchgate.net/publication/308138461

  88. Brodwin E (30 January 2017). "The truth about 'microdosing,' which involves taking tiny amounts of psychedelics like LSD". Business Insider. Retrieved 19 April 2017. http://www.businessinsider.com/microdosing-lsd-effects-risks-2017-1

  89. Dahl H (7 July 2015). "A Brief History of LSD in the Twenty-First Century". Psychedelic Press UK. Retrieved 19 April 2017. http://psypressuk.com/2015/07/07/a-brief-history-of-lsd-in-the-twenty-first-century/

  90. Webb M, Copes H, Hendricks PS (August 2019). "Narrative identity, rationality, and microdosing classic psychedelics". The International Journal on Drug Policy. 70: 33–39. doi:10.1016/j.drugpo.2019.04.013. PMID 31071597. S2CID 149445841. /wiki/Doi_(identifier)

  91. Chemistry Uo, Prague T. "Recognizing signatures of psilocybin microdosing in natural language". medicalxpress.com. Retrieved 2022-10-03. https://medicalxpress.com/news/2022-09-signatures-psilocybin-microdosing-natural-language.html

  92. Sanz C, Cavanna F, Muller S, de la Fuente L, Zamberlan F, Palmucci M, et al. (2022-09-01). "Natural language signatures of psilocybin microdosing". Psychopharmacology. 239 (9): 2841–2852. doi:10.1007/s00213-022-06170-0. ISSN 1432-2072. PMID 35676541. S2CID 247067976. https://doi.org/10.1007/s00213-022-06170-0

  93. Holze F, Singh N, Liechti ME, D'Souza DC (May 2024). "Serotonergic Psychedelics: A Comparative Review of Efficacy, Safety, Pharmacokinetics, and Binding Profile". Biol Psychiatry Cogn Neurosci Neuroimaging. 9 (5): 472–489. doi:10.1016/j.bpsc.2024.01.007. PMID 38301886. https://doi.org/10.1016%2Fj.bpsc.2024.01.007

  94. Liechti ME, Holze F (2022). "Dosing Psychedelics and MDMA". Disruptive Psychopharmacology. Curr Top Behav Neurosci. Vol. 56. pp. 3–21. doi:10.1007/7854_2021_270. ISBN 978-3-031-12183-8. PMID 34734392. 978-3-031-12183-8

  95. Engel LB, Thal S, Bright SJ, Low M (17 July 2024). "Psychedelic trip sitting, dosages and intensities: Supplementing clinical studies with anecdotal reports" (PDF). Journal of Psychedelic Studies. doi:10.1556/2054.2024.00377. ISSN 2559-9283. Retrieved 15 March 2025. https://akjournals.com/downloadpdf/view/journals/2054/aop/article-10.1556-2054.2024.00377/article-10.1556-2054.2024.00377.pdf

  96. Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, et al. (October 2023). "Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants". Neuropsychopharmacology. 48 (11): 1659–1667. doi:10.1038/s41386-023-01607-2. PMC 10517157. PMID 37231080. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517157

  97. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. (February 2021). "Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects". Neuropsychopharmacology. 46 (3): 537–544. doi:10.1038/s41386-020-00883-6. PMC 8027607. PMID 33059356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027607

  98. Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME (April 2023). "Pharmacokinetics and Pharmacodynamics of Oral Psilocybin Administration in Healthy Participants". Clin Pharmacol Ther. 113 (4): 822–831. doi:10.1002/cpt.2821. PMID 36507738. https://www.researchgate.net/publication/366214647

  99. Holze F, Vizeli P, Müller F, Ley L, Duerig R, Varghese N, et al. (February 2020). "Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects". Neuropsychopharmacology. 45 (3): 462–471. doi:10.1038/s41386-019-0569-3. PMC 6969135. PMID 31733631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969135

  100. Engel LB, Thal S, Bright SJ, Low M (17 July 2024). "Psychedelic trip sitting, dosages and intensities: Supplementing clinical studies with anecdotal reports" (PDF). Journal of Psychedelic Studies. doi:10.1556/2054.2024.00377. ISSN 2559-9283. Retrieved 15 March 2025. https://akjournals.com/downloadpdf/view/journals/2054/aop/article-10.1556-2054.2024.00377/article-10.1556-2054.2024.00377.pdf

  101. Holze F, Singh N, Liechti ME, D'Souza DC (May 2024). "Serotonergic Psychedelics: A Comparative Review of Efficacy, Safety, Pharmacokinetics, and Binding Profile". Biol Psychiatry Cogn Neurosci Neuroimaging. 9 (5): 472–489. doi:10.1016/j.bpsc.2024.01.007. PMID 38301886. https://doi.org/10.1016%2Fj.bpsc.2024.01.007

  102. Liechti ME, Holze F (2022). "Dosing Psychedelics and MDMA". Disruptive Psychopharmacology. Curr Top Behav Neurosci. Vol. 56. pp. 3–21. doi:10.1007/7854_2021_270. ISBN 978-3-031-12183-8. PMID 34734392. 978-3-031-12183-8

  103. Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, et al. (October 2023). "Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants". Neuropsychopharmacology. 48 (11): 1659–1667. doi:10.1038/s41386-023-01607-2. PMC 10517157. PMID 37231080. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517157

  104. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. (February 2021). "Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects". Neuropsychopharmacology. 46 (3): 537–544. doi:10.1038/s41386-020-00883-6. PMC 8027607. PMID 33059356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027607

  105. Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME (April 2023). "Pharmacokinetics and Pharmacodynamics of Oral Psilocybin Administration in Healthy Participants". Clin Pharmacol Ther. 113 (4): 822–831. doi:10.1002/cpt.2821. PMID 36507738. https://www.researchgate.net/publication/366214647

  106. Holze F, Vizeli P, Müller F, Ley L, Duerig R, Varghese N, et al. (February 2020). "Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects". Neuropsychopharmacology. 45 (3): 462–471. doi:10.1038/s41386-019-0569-3. PMC 6969135. PMID 31733631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969135

  107. Kozlowska U, Nichols C, Wiatr K, Figiel M (July 2022). "From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders". J Neurochem. 162 (1): 89–108. doi:10.1111/jnc.15509. PMID 34519052. One dosing method of psychedelics is the use of so called "microdoses"—very low concentrations of various psychedelics that do not reach the threshold of perceivable behavioral effects. This is usually 10% of active recreational doses (e.g., 10–15 µg of LSD, or 0.1–0.3 g of dry "magic mushrooms") taken up to three times per week. /wiki/Doi_(identifier)

  108. van Amsterdam J, Opperhuizen A, van den Brink W (April 2011). "Harm potential of magic mushroom use: a review" (PDF). Regul Toxicol Pharmacol. 59 (3): 423–429. doi:10.1016/j.yrtph.2011.01.006. PMID 21256914. https://psilosybiini.info/paperit/Harm%20potential%20of%20magic%20mushroom%20use,%20A%20review%20(van%20Amsterdam%20et%20al.,%202011).pdf

  109. Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. (May 2021). "The Therapeutic Potential of Psilocybin". Molecules. 26 (10): 2948. doi:10.3390/molecules26102948. PMC 8156539. PMID 34063505. S2CID 235227972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156539

  110. Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. (May 2021). "The Therapeutic Potential of Psilocybin". Molecules. 26 (10): 2948. doi:10.3390/molecules26102948. PMC 8156539. PMID 34063505. S2CID 235227972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156539

  111. van Amsterdam J, Opperhuizen A, van den Brink W (April 2011). "Harm potential of magic mushroom use: a review" (PDF). Regul Toxicol Pharmacol. 59 (3): 423–429. doi:10.1016/j.yrtph.2011.01.006. PMID 21256914. https://psilosybiini.info/paperit/Harm%20potential%20of%20magic%20mushroom%20use,%20A%20review%20(van%20Amsterdam%20et%20al.,%202011).pdf

  112. Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AM (December 2023). "A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond". Biotechnol Adv. 69: 108247. doi:10.1016/j.biotechadv.2023.108247. PMID 37659744. /wiki/Doi_(identifier)

  113. Tylš F, Páleníček T, Horáček J (March 2014). "Psilocybin - summary of knowledge and new perspectives". Eur Neuropsychopharmacol. 24 (3): 342–356. doi:10.1016/j.euroneuro.2013.12.006. PMID 24444771. https://www.researchgate.net/publication/259517753

  114. Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. (May 2021). "The Therapeutic Potential of Psilocybin". Molecules. 26 (10): 2948. doi:10.3390/molecules26102948. PMC 8156539. PMID 34063505. S2CID 235227972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156539

  115. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  116. Kurzbaum E, Páleníček T, Shrchaton A, Azerrad S, Dekel Y (28 January 2025). "Exploring Psilocybe cubensis Strains: Cultivation Techniques, Psychoactive Compounds, Genetics and Research Gaps". Journal of Fungi. 11 (2): 99. doi:10.3390/jof11020099. ISSN 2309-608X. PMC 11856550. PMID 39997393. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856550

  117. Goff R, Smith M, Islam S, Sisley S, Ferguson J, Kuzdzal S, et al. (February 2024). "Determination of psilocybin and psilocin content in multiple Psilocybe cubensis mushroom strains using liquid chromatography - tandem mass spectrometry". Anal Chim Acta. 1288: 342161. Bibcode:2024AcAC.128842161G. doi:10.1016/j.aca.2023.342161. PMID 38220293. A method for clinical potency determination of psilocybin and psilocin in hallucinogenic mushroom species Psilocybe cubensis was developed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Five strains of dried, intact mushrooms were obtained and analyzed: Blue Meanie, Creeper, B-Plus, Texas Yellow, and Thai Cubensis. [...] From most to least potent, the study found that the average total psilocybin and psilocin concentrations for the Creeper, Blue Meanie, B+, Texas Yellow, and Thai Cubensis strains were 1.36, 1.221, 1.134, 1.103, and 0.879 % (w/w), respectively. /wiki/Bibcode_(identifier)

  118. Gotvaldová K, Borovička J, Hájková K, Cihlářová P, Rockefeller A, Kuchař M (November 2022). "Extensive Collection of Psychotropic Mushrooms with Determination of Their Tryptamine Alkaloids". Int J Mol Sci. 23 (22): 14068. doi:10.3390/ijms232214068. PMC 9693126. PMID 36430546. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693126

  119. Tylš F, Páleníček T, Horáček J (March 2014). "Psilocybin - summary of knowledge and new perspectives". Eur Neuropsychopharmacol. 24 (3): 342–356. doi:10.1016/j.euroneuro.2013.12.006. PMID 24444771. https://www.researchgate.net/publication/259517753

  120. Albert Hofmann (1968). "Psychotomimetic Agents". In Burger A (ed.). Drugs Affecting the Central Nervous System. Vol. 2. New York: M. Dekker. pp. 169–235. OCLC 245452885. OL 13539506M. Psilocin is approximately 1.4 times as potent as psilocybin. This ratio is the same as that of the molecular weights of the two drugs. /wiki/Albert_Hofmann

  121. Wolbach AB, Miner EJ, Isbell H (1962). "Comparison of psilocin with psilocybin, mescaline and LSD-25". Psychopharmacologia. 3 (3): 219–223. doi:10.1007/BF00412109. PMID 14007905. Psilocin is approximately 1.4 times as potent as psilocybin. This ratio is the same as that of the molecular weights of the two drugs. /wiki/Doi_(identifier)

  122. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  123. Alexander T. Shulgin, Ann Shulgin (1997). TiHKAL: The Continuation (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-9-2. OCLC 38503252. 978-0-9630096-9-2

  124. Preller KH, Vollenweider FX (2016). "Phenomenology, Structure, and Dynamic of Psychedelic States". In Adam L. Halberstadt, Franz X. Vollenweider, David E. Nichols (eds.). Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 221–256. doi:10.1007/7854_2016_459. ISBN 978-3-662-55878-2. PMID 28025814. 978-3-662-55878-2

  125. Swanson LR (2018-03-02). "Unifying Theories of Psychedelic Drug Effects". Frontiers in Pharmacology. 9: 172. doi:10.3389/fphar.2018.00172. ISSN 1663-9812. PMC 5853825. PMID 29568270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853825

  126. Luke, David (28 November 2013). "Rock Art or Rorschach: Is there More to Entoptics than Meets the Eye?". Time and Mind. 3 (1): 9–28. doi:10.2752/175169710x12549020810371. S2CID 144948636. /wiki/Doi_(identifier)

  127. Berry MD (July 2004). "Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators". Journal of Neurochemistry. 90 (2): 257–271. doi:10.1111/j.1471-4159.2004.02501.x. ISSN 0022-3042. PMID 15228583. S2CID 12126296. https://doi.org/10.1111%2Fj.1471-4159.2004.02501.x

  128. Luna LE (1984). "The concept of plants as teachers among four mestizo shamans of Iquitos, northeastern Peru" (PDF). Journal of Ethnopharmacology. 11 (2): 135–156. doi:10.1016/0378-8741(84)90036-9. PMID 6492831. Retrieved 10 July 2020. http://home.iscte-iul.pt/~fgvs/Luna_plants.pdf

  129. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  130. Honig D. "Frequently Asked Questions". Erowid. Archived from the original on 12 February 2016. https://web.archive.org/web/20160212232436/https://www.erowid.org/chemicals/lsd/lsd_faq.shtml

  131. McGlothlin W, Cohen S, McGlothlin MS (November 1967). "Long lasting effects of LSD on normals" (PDF). Archives of General Psychiatry. 17 (5): 521–32. doi:10.1001/archpsyc.1967.01730290009002. PMID 6054248. Archived from the original (PDF) on April 30, 2011. https://web.archive.org/web/20110430020912/http://www.maps.org/w3pb/new/1967/1967_mcglothlin_4655_1.pdf

  132. Canadian government (1996). "Controlled Drugs and Substances Act". Justice Laws. Canadian Department of Justice. Archived from the original on December 15, 2013. Retrieved December 15, 2013. https://web.archive.org/web/20131215170432/http://laws-lois.justice.gc.ca/eng/acts/C-38.8/page-26.html

  133. Rogge T (May 21, 2014), Substance use – LSD, MedlinePlus, U.S. National Library of Medicine, archived from the original on July 28, 2016, retrieved July 14, 2016 https://medlineplus.gov/ency/patientinstructions/000795.htm

  134. CESAR (29 October 2013), LSD, Center for Substance Abuse Research, University of Maryland, archived from the original on July 15, 2016, retrieved 14 July 2016 https://web.archive.org/web/20160715071823/http://www.cesar.umd.edu/cesar/drugs/lsd.asp

  135. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  136. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  137. Dourron HM, Nichols CD, Simonsson O, Bradley M, Carhart-Harris R, Hendricks PS (December 2023). "5-MeO-DMT: An atypical psychedelic with unique pharmacology, phenomenology & risk?". Psychopharmacology (Berl). doi:10.1007/s00213-023-06517-1. PMID 38072874. /wiki/Doi_(identifier)

  138. Tittarelli R, Mannocchi G, Pantano F, Romolo FS (January 2015). "Recreational use, analysis and toxicity of tryptamines". Curr Neuropharmacol. 13 (1): 26–46. doi:10.2174/1570159X13666141210222409. PMC 4462041. PMID 26074742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462041

  139. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  140. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  141. Goldstein L (10 July 2023). "Pioneering Psychedelics Scientist Alexander "Sasha" Shulgin's Legacy Lives On Via New Compounds And Research". Benzinga. Retrieved 19 April 2025. https://www.benzinga.com/markets/cannabis/23/07/33171977/pioneering-psychedelics-scientist-alexander-sasha-shulgins-legacy-lives-on-via-new-compounds-and

  142. Busby M (2 November 2023). "The Heirs to a Vault of Novel Psychedelics Take a Trip Into the Unknown". DoubleBlind Mag. Retrieved 19 April 2025. https://doubleblindmag.com/sasha-shulgin-legacy/

  143. Busby M (30 March 2025). "What Happens When You Inherit 500 Psychedelic Compounds?". DoubleBlind Mag. Retrieved 19 April 2025. https://doubleblindmag.com/what-happens-when-you-inherit-500-psychedelic-compounds/

  144. Nen (4 December 2011). Entheogenic effects of NMT from Acacia. Entheogenesis Australis (EGA) Conference, Victoria, Australia, 2–5 December 2011 (PDF). Archived from the original on 2025-04-05. https://archive.today/20250405014754/https://www.dmt-nexus.me/forum/default.aspx?g=posts&m=300323&%23post300323

  145. Nen (13 July 2013). NMT: A Spatial Hallucinogen With Therapeutic Applications. Breaking Convention: The Second Multidisciplinary Conference on Psychedelic Consciousness, University of Greenwich, London, 12–14 July 2013. https://www.youtube.com/watch?v=98WXxyb2u4A

  146. Friedler D (15 June 2022). "AI Can Now Generate DMT Visuals, Thanks To This Online Community". DoubleBlind Mag. Retrieved 15 March 2025. https://doubleblindmag.com/ai-can-now-generate-dmt-visuals/

  147. Magee T (24 April 2023). "DMT Users Are Using AI to Draw the Strange Beings They Meet While Tripping". VICE. Retrieved 15 March 2025. https://www.vice.com/en/article/dmt-users-are-using-ai-to-draw-the-strange-beings-they-meet-while-tripping/

  148. Bilderbeck P (23 November 2022). "Video shows 'most accurate' representation of what psychedelic visuals look like". UNILAD. Retrieved 15 March 2025. https://www.unilad.com/news/most-accurate-representation-psychedelic-visuals-20221123

  149. French K (2 June 2023). "What Hallucinogens Will Make You See". Nautilus. Retrieved 15 March 2025. https://nautil.us/what-hallucinogens-will-make-you-see-308247/

  150. Rosa T (25 November 2022). "Jak člověk vidí svět pod vlivem halucinogenů? Vědkyně vytvořila přesná videa" [How does one see the world under the influence of hallucinogens? A scientist created accurate video]. Deník.cz (in Czech). Retrieved 15 March 2025. https://www.denik.cz/veda/halucinogeny-drogy-uzivani-video.html?utm_source=www.seznam.cz&utm_medium=sekce-z-internetu#dop_ab_variant=0&dop_source_zone_name=hpfeed.sznhp.box

  151. Spangemacher M, Colmenero AS, Scharf D, Brand M, Rohrmoser B, Kärtner L, et al. (2024). "Absence of psychedelic effects: case series and systematic literature review". Neuroscience Applied. 3: 104769. doi:10.1016/j.nsa.2024.104769. https://doi.org/10.1016%2Fj.nsa.2024.104769

  152. Kuypers KP (2024). "Microdosing Psychedelics as a Promising New Pharmacotherapeutic". Modern CNS Drug Discovery. Cham: Springer Nature Switzerland. p. 407–436. doi:10.1007/978-3-031-61992-2_26. ISBN 978-3-031-61991-5. Retrieved 28 May 2025. Interestingly, users sometimes attribute other effects to different psychedelics, in which LSD is more associated with cognitive and/or stimulant effects and psilocybin with emotional or well-being effects (Anderson et al. 2019b; Johnstad 2018). This stronger stimulant character of LSD compared to psilocybin was seen by some as an advantage while others experienced it as uncomfortable (Johnstad 2018). [...] Additionally, McGlothlin et al. (1967) showed that LSD (25 mcg) indeed induces stimulant effects, as the effects were similar to those of amphetamine (20 mg) (McGlothlin et al. 1967). Notwithstanding this does not confirm that psilocybin and LSD would have dissimilar effects; it rather supports the claims by users that LSD in low doses has stimulant effects (Johnstad 2018; Anderson et al. 2019a). [...] Decades earlier, Albert Hofmann, the "discoverer" of LSD and its hallucinogenic effects, mentioned that "very small doses, perhaps 25 micrograms," could be useful as an antidepressant (Ghose 2015; Horowitz 1976) or as a substitute for Ritalin (Fadiman 2017; Horowitz 1976). 978-3-031-61991-5

  153. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  154. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  155. Kuypers KP (2024). "Microdosing Psychedelics as a Promising New Pharmacotherapeutic". Modern CNS Drug Discovery. Cham: Springer Nature Switzerland. p. 407–436. doi:10.1007/978-3-031-61992-2_26. ISBN 978-3-031-61991-5. Retrieved 28 May 2025. Interestingly, users sometimes attribute other effects to different psychedelics, in which LSD is more associated with cognitive and/or stimulant effects and psilocybin with emotional or well-being effects (Anderson et al. 2019b; Johnstad 2018). This stronger stimulant character of LSD compared to psilocybin was seen by some as an advantage while others experienced it as uncomfortable (Johnstad 2018). [...] Additionally, McGlothlin et al. (1967) showed that LSD (25 mcg) indeed induces stimulant effects, as the effects were similar to those of amphetamine (20 mg) (McGlothlin et al. 1967). Notwithstanding this does not confirm that psilocybin and LSD would have dissimilar effects; it rather supports the claims by users that LSD in low doses has stimulant effects (Johnstad 2018; Anderson et al. 2019a). [...] Decades earlier, Albert Hofmann, the "discoverer" of LSD and its hallucinogenic effects, mentioned that "very small doses, perhaps 25 micrograms," could be useful as an antidepressant (Ghose 2015; Horowitz 1976) or as a substitute for Ritalin (Fadiman 2017; Horowitz 1976). 978-3-031-61991-5

  156. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  157. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  158. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  159. Shulgin A, Manning T, Daley PF (2011). "#7. ARIADNE". The Shulgin Index, Volume One: Psychedelic Phenethylamines and Related Compounds. Vol. 1. Berkeley, CA: Transform Press. pp. 7–9. ISBN 978-0-9630096-3-0. OCLC 709667010. 978-0-9630096-3-0

  160. Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ, Bonniwell EM, et al. (January 2023). "Pharmacological Mechanism of the Non-hallucinogenic 5-HT2A Agonist Ariadne and Analogs". ACS Chemical Neuroscience. 14 (1): 119–135. doi:10.1021/acschemneuro.2c00597. PMC 10147382. PMID 36521179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147382

  161. Busby M (2 November 2023). "The Heirs to a Vault of Novel Psychedelics Take a Trip Into the Unknown". DoubleBlind Mag. Retrieved 19 April 2025. https://doubleblindmag.com/sasha-shulgin-legacy/

  162. Luethi D, Liechti ME (April 2020). "Designer drugs: mechanism of action and adverse effects". Arch Toxicol. 94 (4): 1085–1133. Bibcode:2020ArTox..94.1085L. doi:10.1007/s00204-020-02693-7. PMC 7225206. PMID 32249347. In one of the few clinical studies of a designer drug, 4-bromo-2,5-dimethoxyphenylethylamine (2C-B) was shown to induce euphoria, well-being, and changes in perception, and to have mild stimulant properties (Gonzalez et al. 2015). 2C-B may thus be classified as a psychedelic with entactogenic properties, an effect profile that is similar to various other phenethylamine psychedelics (Shulgin and Shulgin 1995). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225206

  163. Wills B, Erickson T (9 March 2012). "Psychoactive Phenethylamine, Piperazine, and Pyrrolidinophenone Derivatives". In Barceloux DG (ed.). Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. Wiley. pp. 156–192. doi:10.1002/9781118105955.ch10. ISBN 978-0-471-72760-6. DOSE EFFECT: Anecdotal data suggests that recreational doses of 2C-B range from 4—30 mg with lower doses (4—10 mg) producing entactogenic effects, whereas high doses (10— 20 mg) cause psychedelic and sympathomimetic effects. 978-0-471-72760-6

  164. González D, Torrens M, Farré M (2015-10-12). "Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions". BioMed Research International. 2015: 643878. doi:10.1155/2015/643878. PMC 4620274. PMID 26543863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620274

  165. Oeri HE (May 2021). "Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy". Journal of Psychopharmacology. 35 (5): 512–536. doi:10.1177/0269881120920420. PMC 8155739. PMID 32909493. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155739

  166. Dunlap LE, Andrews AM, Olson DE (October 2018). "Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine". ACS Chem Neurosci. 9 (10): 2408–2427. doi:10.1021/acschemneuro.8b00155. PMC 6197894. PMID 30001118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197894

  167. Alexander T. Shulgin, Ann Shulgin (1991). PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 978-0-9630096-0-9. OCLC 25627628. 978-0-9630096-0-9

  168. Evens R, Schmidt ME, Majić T, Schmidt TT (2023). "The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics". Ther Adv Psychopharmacol. 13: 20451253231172254. doi:10.1177/20451253231172254. PMC 10240558. PMID 37284524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240558

  169. Majić T, Schmidt TT, Gallinat J (March 2015). "Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences?". J Psychopharmacol. 29 (3): 241–253. doi:10.1177/0269881114568040. PMID 25670401. /wiki/Doi_(identifier)

  170. Basedow LA, Majić T, Hafiz NJ, Algharably EA, Kreutz R, Riemer TG (June 2024). "Cognitive functioning associated with acute and subacute effects of classic psychedelics and MDMA - a systematic review and meta-analysis". Sci Rep. 14 (1): 14782. Bibcode:2024NatSR..1414782B. doi:10.1038/s41598-024-65391-9. PMC 11208433. PMID 38926480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208433

  171. Majić T, Schmidt TT, Gröticke A, Gasser P, Richards WA, Riemer TG, et al. (March 2025). "The Afterglow Inventory (AGI): Validation of a new instrument for measuring subacute effects of classic serotonergic psychedelics". J Psychopharmacol: 2698811251326937. doi:10.1177/02698811251326937. PMID 40165350. /wiki/Doi_(identifier)

  172. Evens R, Schmidt ME, Majić T, Schmidt TT (2023). "The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics". Ther Adv Psychopharmacol. 13: 20451253231172254. doi:10.1177/20451253231172254. PMC 10240558. PMID 37284524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240558

  173. Evens R, Schmidt ME, Majić T, Schmidt TT (2023). "The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics". Ther Adv Psychopharmacol. 13: 20451253231172254. doi:10.1177/20451253231172254. PMC 10240558. PMID 37284524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240558

  174. Basedow LA, Majić T, Hafiz NJ, Algharably EA, Kreutz R, Riemer TG (June 2024). "Cognitive functioning associated with acute and subacute effects of classic psychedelics and MDMA - a systematic review and meta-analysis". Sci Rep. 14 (1): 14782. Bibcode:2024NatSR..1414782B. doi:10.1038/s41598-024-65391-9. PMC 11208433. PMID 38926480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208433

  175. Chisamore N, Kaczmarek E, Le GH, Wong S, Orsini DK, Mansur R, et al. (26 April 2024). "Neurobiology of the Antidepressant Effects of Serotonergic Psychedelics: A Narrative Review". Current Treatment Options in Psychiatry. 11 (2). Springer Science and Business Media LLC: 90–105. doi:10.1007/s40501-024-00319-8. ISSN 2196-3061. /wiki/Doi_(identifier)

  176. Kinderlehrer DA (2025). "Mushrooms, Microdosing, and Mental Illness: The Effect of Psilocybin on Neurotransmitters, Neuroinflammation, and Neuroplasticity". Neuropsychiatr Dis Treat. 21: 141–155. doi:10.2147/NDT.S500337. PMC 11787777. PMID 39897712. Mason et al studied the immune status of healthy humans after administration of oral psilocybin compared with placebo, and found an immediate reduction in the plasma concentration of TNF-α in the treatment group.Citation106 Although there was no immediate change in IL-6 and CRP, at seven days these levels were reduced while TNF-α concentrations had returned to baseline. They also documented an association between the degree of reduction of IL-6 and CRP and the positive effect on the participants' mood and social activity. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787777

  177. Mason NL, Szabo A, Kuypers KP, Mallaroni PA, de la Torre Fornell R, Reckweg JT, et al. (November 2023). "Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study". Brain Behav Immun. 114: 299–310. doi:10.1016/j.bbi.2023.09.004. PMID 37689275. https://doi.org/10.1016%2Fj.bbi.2023.09.004

  178. Majić T, Schmidt TT, Gallinat J (March 2015). "Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences?". J Psychopharmacol. 29 (3): 241–253. doi:10.1177/0269881114568040. PMID 25670401. /wiki/Doi_(identifier)

  179. Hanson D (29 April 2013). "When the Trip Never Ends". Dana Foundation. https://dana.org/article/when-the-trip-never-ends/

  180. Evens R, Schmidt ME, Majić T, Schmidt TT (2023). "The psychedelic afterglow phenomenon: a systematic review of subacute effects of classic serotonergic psychedelics". Ther Adv Psychopharmacol. 13: 20451253231172254. doi:10.1177/20451253231172254. PMC 10240558. PMID 37284524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240558

  181. Hofmann A (2013) [1980]. LSD: My Problem Child. OUP Oxford. p. 22. ISBN 978-0-19-963941-0. 978-0-19-963941-0

  182. "LSD: The Geek's Wonder Drug?". Wired. 16 January 2006. Retrieved 29 April 2008. https://www.wired.com/science/discoveries/news/2006/01/70015?currentPage=2

  183. Le Dain G (1971). The Non-medical Use of Drugs: Interim Report of the Canadian Government's Commission of Inquiry. p. 106. Physical dependence does not develop to LSD

  184. Lüscher, Christian, Ungless, Mark A. (14 November 2006). "The Mechanistic Classification of Addictive Drugs". PLOS Medicine. 3 (11): e437. doi:10.1371/journal.pmed.0030437. PMC 1635740. PMID 17105338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635740

  185. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  186. Byock I (2018). "Taking Psychedelics Seriously". Journal of Palliative Medicine. 21 (4): 417–421. doi:10.1089/jpm.2017.0684. PMC 5867510. PMID 29356590. /wiki/Ira_Byock

  187. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  188. van Amsterdam J, Opperhuizen A, van den Brink W (2011). "Harm potential of magic mushroom use: A review". Regulatory Toxicology and Pharmacology. 59 (3): 423–429. doi:10.1016/j.yrtph.2011.01.006. PMID 21256914. /wiki/Doi_(identifier)

  189. Schlag AK, Aday J, Salam I, Neill JC, Nutt DJ (2022-02-02). "Adverse effects of psychedelics: From anecdotes and misinformation to systematic science". Journal of Psychopharmacology. 36 (3): 258–272. doi:10.1177/02698811211069100. ISSN 0269-8811. PMC 8905125. PMID 35107059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905125

  190. Krebs, Teri S., Johansen, Pål-Ørjan, Lu, Lin (19 August 2013). "Psychedelics and Mental Health: A Population Study". PLOS ONE. 8 (8): e63972. Bibcode:2013PLoSO...863972K. doi:10.1371/journal.pone.0063972. PMC 3747247. PMID 23976938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747247

  191. Sabé M, Sulstarova A, Glangetas A, De Pieri M, Mallet L, Curtis L, et al. (November 2024). "Reconsidering evidence for psychedelic-induced psychosis: an overview of reviews, a systematic review, and meta-analysis of human studies". Mol Psychiatry. 30 (3): 1223–1255. doi:10.1038/s41380-024-02800-5. PMC 11835720. PMID 39592825. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835720

  192. van Amsterdam J, Opperhuizen A, van den Brink W (2011). "Harm potential of magic mushroom use: A review". Regulatory Toxicology and Pharmacology. 59 (3): 423–429. doi:10.1016/j.yrtph.2011.01.006. PMID 21256914. /wiki/Doi_(identifier)

  193. Baggott MJ, Coyle JR, Erowid E, Erowid F, Robertson LC (1 March 2011). "Abnormal visual experiences in individuals with histories of hallucinogen use: A web-based questionnaire". Drug and Alcohol Dependence. 114 (1): 61–67. doi:10.1016/j.drugalcdep.2010.09.006. PMID 21035275. /wiki/Doi_(identifier)

  194. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R (September 2023). "The risk of chronic psychedelic and MDMA microdosing for valvular heart disease". J Psychopharmacol. 37 (9): 876–890. doi:10.1177/02698811231190865. PMID 37572027. /wiki/Doi_(identifier)

  195. Rouaud A, Calder AE, Hasler G (March 2024). "Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins". J Psychopharmacol. 38 (3): 217–224. doi:10.1177/02698811231225609. PMC 10944580. PMID 38214279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944580

  196. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R (September 2023). "The risk of chronic psychedelic and MDMA microdosing for valvular heart disease". J Psychopharmacol. 37 (9): 876–890. doi:10.1177/02698811231190865. PMID 37572027. /wiki/Doi_(identifier)

  197. Rouaud A, Calder AE, Hasler G (March 2024). "Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins". J Psychopharmacol. 38 (3): 217–224. doi:10.1177/02698811231225609. PMC 10944580. PMID 38214279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944580

  198. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R (September 2023). "The risk of chronic psychedelic and MDMA microdosing for valvular heart disease". J Psychopharmacol. 37 (9): 876–890. doi:10.1177/02698811231190865. PMID 37572027. /wiki/Doi_(identifier)

  199. Rouaud A, Calder AE, Hasler G (March 2024). "Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins". J Psychopharmacol. 38 (3): 217–224. doi:10.1177/02698811231225609. PMC 10944580. PMID 38214279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944580

  200. Märcher Rørsted E, Jensen AA, Kristensen JL (November 2021). "25CN-NBOH: A Selective Agonist for in vitro and in vivo Investigations of the Serotonin 2A Receptor". ChemMedChem. 16 (21): 3263–3270. doi:10.1002/cmdc.202100395. PMID 34288515. /wiki/Doi_(identifier)

  201. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  202. Peplow M (2024). "Next-generation psychedelics: should new agents skip the trip?". Nature Biotechnology. 42 (6): 827–830. doi:10.1038/s41587-024-02285-1. ISSN 1087-0156. PMID 38831049. Another problem is that some classical psychedelics are also agonists of the 5-HT2B receptor, which is expressed in heart tissue and can cause long-term cardiac problems. Kristensen's company Lophora aims to solve that with its lead compound LPH-5, a phenylethylamine derivative with an extra molecular ring that makes it less flexible. LPH-5 has a 60-fold higher selectivity for 5-HT2A over 5-HT2B. /wiki/Doi_(identifier)

  203. Peplow M (2024). "Next-generation psychedelics: should new agents skip the trip?". Nature Biotechnology. 42 (6): 827–830. doi:10.1038/s41587-024-02285-1. ISSN 1087-0156. PMID 38831049. Another problem is that some classical psychedelics are also agonists of the 5-HT2B receptor, which is expressed in heart tissue and can cause long-term cardiac problems. Kristensen's company Lophora aims to solve that with its lead compound LPH-5, a phenylethylamine derivative with an extra molecular ring that makes it less flexible. LPH-5 has a 60-fold higher selectivity for 5-HT2A over 5-HT2B. /wiki/Doi_(identifier)

  204. Thomas K (2024). Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/7854_2024_508. PMID 39042251. Retrieved 14 May 2025. https://link.springer.com/10.1007/7854_2024_508

  205. Henríquez-Hernández LA, Rojas-Hernández J, Quintana-Hernández DJ, Borkel LF (February 2023). "Hofmann vs. Paracelsus: Do Psychedelics Defy the Basics of Toxicology?-A Systematic Review of the Main Ergolamines, Simple Tryptamines, and Phenylethylamines". Toxics. 11 (2): 148. Bibcode:2023Toxic..11..148H. doi:10.3390/toxics11020148. PMC 9963058. PMID 36851023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963058

  206. Thomas K (2024). Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/7854_2024_508. PMID 39042251. Retrieved 14 May 2025. https://link.springer.com/10.1007/7854_2024_508

  207. Hill SL, Thomas SH (October 2011). "Clinical toxicology of newer recreational drugs". Clin Toxicol (Phila). 49 (8): 705–719. doi:10.3109/15563650.2011.615318. PMID 21970769. /wiki/Doi_(identifier)

  208. Thomas K (2024). Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/7854_2024_508. PMID 39042251. Retrieved 14 May 2025. https://link.springer.com/10.1007/7854_2024_508

  209. Thomas K (2024). Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/7854_2024_508. PMID 39042251. Retrieved 14 May 2025. https://link.springer.com/10.1007/7854_2024_508

  210. Thomas K (2024). Toxicology and Pharmacological Interactions of Classic Psychedelics. Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/7854_2024_508. PMID 39042251. Retrieved 14 May 2025. https://link.springer.com/10.1007/7854_2024_508

  211. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  212. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  213. Yates G, Melon E (January 2024). "Trip-killers: a concerning practice associated with psychedelic drug use" (PDF). Emerg Med J. 41 (2): 112–113. doi:10.1136/emermed-2023-213377. PMID 38123961. Archived from the original (PDF) on 2025-05-11. https://web.archive.org/web/20250511111827/https://s3.amazonaws.com/crawl.prod.proquest.com/fpcache/71f445805bfb61341cbc438c8ae23bd3.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJIMEYCIQDETX7YpaG5THA%2FNbKR0d92wr6h%2Bgg9preNcKjAsEqo%2BQIhAIlPGGWOeUc23LqhBzRYbxvSXB9aqSe2vVonl4nacAhhKp0CCLz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNTE4MzQ2ODQ4MzQxIgy9ji58Qtbi%2BavuKeYq8QEDL1U5KZDQ0bXFyVapeqJgE%2FX6x8DcJfFU8DAXYZPSQEwrIdfPbZWcYsH340deru%2FUHnNaGGpuHFoVzui%2FMbqBz7MANcowj%2FL1%2BQZzQ5hXh5KM3BW8E6NRzrQyuPRmBy7kQUkx8%2BjTN%2BXSMgF%2FCAs6Dn9fScgBGz3ddkwRZXDkjasqMP65RCPKhagK68cyMbf3oX%2BKS8a4Kltc2rk3CnWEhOKrZU4mIxq07DikLAXQbl8YRZJIkeOhN5TgBaLWJqyn1td2VWCMymAaFsqtPWHwXnEfsolRlfDooe6QXfE2YwX5PxBVJU7GPXRgrAqPjwtJMOCHgsEGOpwBYif%2BaDMBdz3IEghuvCvorAS0mkHzdcOz%2Fi7AzuN9nch%2FIm8llhMsN41aAWHuSG25pnhhftauFsg7rbGsrW2nl2kq2upi9zP7y%2Fnqk93jcP0kr0jM8zU12bYoSTsToQJsshH4N%2BTQUMwlzRQfeVv8MXdq%2BgSTTzJrWNwT1yNzye3rSHjvOumbNl6sgBISw7QqRzhB6hZTuf8AcI%2B7&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250511T111826Z&X-Amz-SignedHeaders=host&X-Amz-Credential=ASIAXRL7BHBKRAKCQVVB%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Expires=3600&X-Amz-Signature=20bb1b90e4c8dbaa4115c954387617ebe2f55269bdd517692f1380193ed3f769

  214. Bellanavidanalage Gothami Ayanthie Vis Jayasinha (8 February 2024). Towards Safer Trips: Exploring Harm Reduction Strategies for Recreational Psychedelic Use in Aotearoa New Zealand (Thesis). University of Otago. Retrieved 3 October 2024. https://ourarchive.otago.ac.nz/esploro/outputs/graduate/Towards-Safer-Trips-Exploring-Harm-Reduction/9926550679501891

  215. Yates G, Melon E (January 2024). "Trip-killers: a concerning practice associated with psychedelic drug use" (PDF). Emerg Med J. 41 (2): 112–113. doi:10.1136/emermed-2023-213377. PMID 38123961. Archived from the original (PDF) on 2025-05-11. https://web.archive.org/web/20250511111827/https://s3.amazonaws.com/crawl.prod.proquest.com/fpcache/71f445805bfb61341cbc438c8ae23bd3.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJIMEYCIQDETX7YpaG5THA%2FNbKR0d92wr6h%2Bgg9preNcKjAsEqo%2BQIhAIlPGGWOeUc23LqhBzRYbxvSXB9aqSe2vVonl4nacAhhKp0CCLz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNTE4MzQ2ODQ4MzQxIgy9ji58Qtbi%2BavuKeYq8QEDL1U5KZDQ0bXFyVapeqJgE%2FX6x8DcJfFU8DAXYZPSQEwrIdfPbZWcYsH340deru%2FUHnNaGGpuHFoVzui%2FMbqBz7MANcowj%2FL1%2BQZzQ5hXh5KM3BW8E6NRzrQyuPRmBy7kQUkx8%2BjTN%2BXSMgF%2FCAs6Dn9fScgBGz3ddkwRZXDkjasqMP65RCPKhagK68cyMbf3oX%2BKS8a4Kltc2rk3CnWEhOKrZU4mIxq07DikLAXQbl8YRZJIkeOhN5TgBaLWJqyn1td2VWCMymAaFsqtPWHwXnEfsolRlfDooe6QXfE2YwX5PxBVJU7GPXRgrAqPjwtJMOCHgsEGOpwBYif%2BaDMBdz3IEghuvCvorAS0mkHzdcOz%2Fi7AzuN9nch%2FIm8llhMsN41aAWHuSG25pnhhftauFsg7rbGsrW2nl2kq2upi9zP7y%2Fnqk93jcP0kr0jM8zU12bYoSTsToQJsshH4N%2BTQUMwlzRQfeVv8MXdq%2BgSTTzJrWNwT1yNzye3rSHjvOumbNl6sgBISw7QqRzhB6hZTuf8AcI%2B7&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250511T111826Z&X-Amz-SignedHeaders=host&X-Amz-Credential=ASIAXRL7BHBKRAKCQVVB%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Expires=3600&X-Amz-Signature=20bb1b90e4c8dbaa4115c954387617ebe2f55269bdd517692f1380193ed3f769

  216. Suran M (February 2024). "Study Finds Hundreds of Reddit Posts on "Trip-Killers" for Psychedelic Drugs". JAMA. 331 (8): 632–634. doi:10.1001/jama.2023.28257. PMID 38294772. /wiki/Doi_(identifier)

  217. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. (March 2023). "A non-hallucinogenic LSD analog with therapeutic potential for mood disorders". Cell Rep. 42 (3): 112203. doi:10.1016/j.celrep.2023.112203. PMC 10112881. PMID 36884348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112881

  218. Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH (March 2024). "Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited". ACS Pharmacol Transl Sci. 7 (3): 641–653. doi:10.1021/acsptsci.3c00192. PMC 10928901. PMID 38481684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928901

  219. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  220. Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, et al. (February 2018). "Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775)". Drug Test Anal. 10 (2): 310–322. doi:10.1002/dta.2222. PMC 6230476. PMID 28585392. Additionally, pretreatment with the 5‐HT1A agonist buspirone (20 mg p.o.) markedly attenuates the visual effects of psilocybin in human volunteers.59 Although buspirone failed to completely block the hallucinogenic effects of psilocybin, the limited inhibition is not necessarily surprising because buspirone is a low efficacy 5‐HT1A partial agonist.60 The level of 5‐HT1A activation produced by buspirone may not be sufficient to completely counteract the stimulation of 5‐HT2A receptors by psilocin (the active metabolite of psilocybin). Another consideration is that psilocin acts as a 5‐HT1A agonist.30 If 5‐HT1A activation by psilocin buffers its hallucinogenic effects similar to DMT58 then competition between psilocin and a weaker partial agonist such as buspirone would limit attenuation of the hallucinogenic response. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230476

  221. Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX (April 2016). "Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience". Eur Neuropsychopharmacol. 26 (4): 756–766. doi:10.1016/j.euroneuro.2016.01.005. PMID 26875114. /wiki/Doi_(identifier)

  222. Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX (April 2016). "Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience". Eur Neuropsychopharmacol. 26 (4): 756–766. doi:10.1016/j.euroneuro.2016.01.005. PMID 26875114. /wiki/Doi_(identifier)

  223. Strassman RJ (1996). "Human psychopharmacology of N,N-dimethyltryptamine". Behav Brain Res. 73 (1–2): 121–124. doi:10.1016/0166-4328(96)00081-2. PMID 8788488. /wiki/Doi_(identifier)

  224. Dourron HM, Nichols CD, Simonsson O, Bradley M, Carhart-Harris R, Hendricks PS (December 2023). "5-MeO-DMT: An atypical psychedelic with unique pharmacology, phenomenology & risk?". Psychopharmacology (Berl). doi:10.1007/s00213-023-06517-1. PMID 38072874. /wiki/Doi_(identifier)

  225. Halberstadt AL, Nichols DE (2020). "Serotonin and serotonin receptors in hallucinogen action". Handbook of Behavioral Neuroscience. Vol. 31. Elsevier. pp. 843–863. doi:10.1016/b978-0-444-64125-0.00043-8. ISBN 978-0-444-64125-0. ISSN 1569-7339. 978-0-444-64125-0

  226. Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, et al. (February 2018). "Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775)". Drug Test Anal. 10 (2): 310–322. doi:10.1002/dta.2222. PMC 6230476. PMID 28585392. Additionally, pretreatment with the 5‐HT1A agonist buspirone (20 mg p.o.) markedly attenuates the visual effects of psilocybin in human volunteers.59 Although buspirone failed to completely block the hallucinogenic effects of psilocybin, the limited inhibition is not necessarily surprising because buspirone is a low efficacy 5‐HT1A partial agonist.60 The level of 5‐HT1A activation produced by buspirone may not be sufficient to completely counteract the stimulation of 5‐HT2A receptors by psilocin (the active metabolite of psilocybin). Another consideration is that psilocin acts as a 5‐HT1A agonist.30 If 5‐HT1A activation by psilocin buffers its hallucinogenic effects similar to DMT58 then competition between psilocin and a weaker partial agonist such as buspirone would limit attenuation of the hallucinogenic response. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230476

  227. Shahar O, Botvinnik A, Esh-Zuntz N, Brownstien M, Wolf R, Lotan A, et al. (November 2022). "Role of 5-HT2A, 5-HT2C, 5-HT1A and TAAR1 Receptors in the Head Twitch Response Induced by 5-Hydroxytryptophan and Psilocybin: Translational Implications". Int J Mol Sci. 23 (22): 14148. doi:10.3390/ijms232214148. PMC 9698447. PMID 36430623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698447

  228. Zhu H, Wang L, Wang X, Yao Y, Zhou P, Su R (November 2024). "5-hydroxytryptamine 2C/1A receptors modulate the biphasic dose response of the head twitch response and locomotor activity induced by DOM in mice". Psychopharmacology (Berl). 241 (11): 2315–2330. doi:10.1007/s00213-024-06635-4. PMID 38916640. /wiki/Doi_(identifier)

  229. Glatfelter GC, Clark AA, Cavalco NG, Landavazo A, Partilla JS, Naeem M, et al. (December 2024). "Serotonin 1A Receptors Modulate Serotonin 2A Receptor-Mediated Behavioral Effects of 5-Methoxy-N,N-dimethyltryptamine Analogs in Mice". ACS Chem Neurosci. 15 (24): 4458–4477. doi:10.1021/acschemneuro.4c00513. PMID 39636099. /wiki/Doi_(identifier)

  230. Dourron HM, Nichols CD, Simonsson O, Bradley M, Carhart-Harris R, Hendricks PS (December 2023). "5-MeO-DMT: An atypical psychedelic with unique pharmacology, phenomenology & risk?". Psychopharmacology (Berl). doi:10.1007/s00213-023-06517-1. PMID 38072874. /wiki/Doi_(identifier)

  231. Glatfelter GC, Clark AA, Cavalco NG, Landavazo A, Partilla JS, Naeem M, et al. (December 2024). "Serotonin 1A Receptors Modulate Serotonin 2A Receptor-Mediated Behavioral Effects of 5-Methoxy-N,N-dimethyltryptamine Analogs in Mice". ACS Chem Neurosci. 15 (24): 4458–4477. doi:10.1021/acschemneuro.4c00513. PMID 39636099. /wiki/Doi_(identifier)

  232. Puigseslloses P, Nadal-Gratacós N, Ketsela G, Weiss N, Berzosa X, Estrada-Tejedor R, et al. (August 2024). "Structure-activity relationships of serotonergic 5-MeO-DMT derivatives: insights into psychoactive and thermoregulatory properties". Mol Psychiatry. 29 (8): 2346–2358. doi:10.1038/s41380-024-02506-8. PMC 11412900. PMID 38486047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412900

  233. Sarparast A, Thomas K, Malcolm B, Stauffer CS (June 2022). "Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review". Psychopharmacology (Berl). 239 (6): 1945–1976. doi:10.1007/s00213-022-06083-y. PMC 9177763. PMID 35253070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177763

  234. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  235. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  236. Bellanavidanalage Gothami Ayanthie Vis Jayasinha (8 February 2024). Towards Safer Trips: Exploring Harm Reduction Strategies for Recreational Psychedelic Use in Aotearoa New Zealand (Thesis). University of Otago. Retrieved 3 October 2024. https://ourarchive.otago.ac.nz/esploro/outputs/graduate/Towards-Safer-Trips-Exploring-Harm-Reduction/9926550679501891

  237. Yates G, Melon E (January 2024). "Trip-killers: a concerning practice associated with psychedelic drug use" (PDF). Emerg Med J. 41 (2): 112–113. doi:10.1136/emermed-2023-213377. PMID 38123961. Archived from the original (PDF) on 2025-05-11. https://web.archive.org/web/20250511111827/https://s3.amazonaws.com/crawl.prod.proquest.com/fpcache/71f445805bfb61341cbc438c8ae23bd3.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJIMEYCIQDETX7YpaG5THA%2FNbKR0d92wr6h%2Bgg9preNcKjAsEqo%2BQIhAIlPGGWOeUc23LqhBzRYbxvSXB9aqSe2vVonl4nacAhhKp0CCLz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNTE4MzQ2ODQ4MzQxIgy9ji58Qtbi%2BavuKeYq8QEDL1U5KZDQ0bXFyVapeqJgE%2FX6x8DcJfFU8DAXYZPSQEwrIdfPbZWcYsH340deru%2FUHnNaGGpuHFoVzui%2FMbqBz7MANcowj%2FL1%2BQZzQ5hXh5KM3BW8E6NRzrQyuPRmBy7kQUkx8%2BjTN%2BXSMgF%2FCAs6Dn9fScgBGz3ddkwRZXDkjasqMP65RCPKhagK68cyMbf3oX%2BKS8a4Kltc2rk3CnWEhOKrZU4mIxq07DikLAXQbl8YRZJIkeOhN5TgBaLWJqyn1td2VWCMymAaFsqtPWHwXnEfsolRlfDooe6QXfE2YwX5PxBVJU7GPXRgrAqPjwtJMOCHgsEGOpwBYif%2BaDMBdz3IEghuvCvorAS0mkHzdcOz%2Fi7AzuN9nch%2FIm8llhMsN41aAWHuSG25pnhhftauFsg7rbGsrW2nl2kq2upi9zP7y%2Fnqk93jcP0kr0jM8zU12bYoSTsToQJsshH4N%2BTQUMwlzRQfeVv8MXdq%2BgSTTzJrWNwT1yNzye3rSHjvOumbNl6sgBISw7QqRzhB6hZTuf8AcI%2B7&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250511T111826Z&X-Amz-SignedHeaders=host&X-Amz-Credential=ASIAXRL7BHBKRAKCQVVB%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Expires=3600&X-Amz-Signature=20bb1b90e4c8dbaa4115c954387617ebe2f55269bdd517692f1380193ed3f769

  238. Suran M (February 2024). "Study Finds Hundreds of Reddit Posts on "Trip-Killers" for Psychedelic Drugs". JAMA. 331 (8): 632–634. doi:10.1001/jama.2023.28257. PMID 38294772. /wiki/Doi_(identifier)

  239. Olsen RW (July 2018). "GABAA receptor: Positive and negative allosteric modulators". Neuropharmacology. 136 (Pt A): 10–22. doi:10.1016/j.neuropharm.2018.01.036. PMC 6027637. PMID 29407219. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027637

  240. Bellanavidanalage Gothami Ayanthie Vis Jayasinha (8 February 2024). Towards Safer Trips: Exploring Harm Reduction Strategies for Recreational Psychedelic Use in Aotearoa New Zealand (Thesis). University of Otago. Retrieved 3 October 2024. https://ourarchive.otago.ac.nz/esploro/outputs/graduate/Towards-Safer-Trips-Exploring-Harm-Reduction/9926550679501891

  241. Yates G, Melon E (January 2024). "Trip-killers: a concerning practice associated with psychedelic drug use" (PDF). Emerg Med J. 41 (2): 112–113. doi:10.1136/emermed-2023-213377. PMID 38123961. Archived from the original (PDF) on 2025-05-11. https://web.archive.org/web/20250511111827/https://s3.amazonaws.com/crawl.prod.proquest.com/fpcache/71f445805bfb61341cbc438c8ae23bd3.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJIMEYCIQDETX7YpaG5THA%2FNbKR0d92wr6h%2Bgg9preNcKjAsEqo%2BQIhAIlPGGWOeUc23LqhBzRYbxvSXB9aqSe2vVonl4nacAhhKp0CCLz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNTE4MzQ2ODQ4MzQxIgy9ji58Qtbi%2BavuKeYq8QEDL1U5KZDQ0bXFyVapeqJgE%2FX6x8DcJfFU8DAXYZPSQEwrIdfPbZWcYsH340deru%2FUHnNaGGpuHFoVzui%2FMbqBz7MANcowj%2FL1%2BQZzQ5hXh5KM3BW8E6NRzrQyuPRmBy7kQUkx8%2BjTN%2BXSMgF%2FCAs6Dn9fScgBGz3ddkwRZXDkjasqMP65RCPKhagK68cyMbf3oX%2BKS8a4Kltc2rk3CnWEhOKrZU4mIxq07DikLAXQbl8YRZJIkeOhN5TgBaLWJqyn1td2VWCMymAaFsqtPWHwXnEfsolRlfDooe6QXfE2YwX5PxBVJU7GPXRgrAqPjwtJMOCHgsEGOpwBYif%2BaDMBdz3IEghuvCvorAS0mkHzdcOz%2Fi7AzuN9nch%2FIm8llhMsN41aAWHuSG25pnhhftauFsg7rbGsrW2nl2kq2upi9zP7y%2Fnqk93jcP0kr0jM8zU12bYoSTsToQJsshH4N%2BTQUMwlzRQfeVv8MXdq%2BgSTTzJrWNwT1yNzye3rSHjvOumbNl6sgBISw7QqRzhB6hZTuf8AcI%2B7&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250511T111826Z&X-Amz-SignedHeaders=host&X-Amz-Credential=ASIAXRL7BHBKRAKCQVVB%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Expires=3600&X-Amz-Signature=20bb1b90e4c8dbaa4115c954387617ebe2f55269bdd517692f1380193ed3f769

  242. Suran M (February 2024). "Study Finds Hundreds of Reddit Posts on "Trip-Killers" for Psychedelic Drugs". JAMA. 331 (8): 632–634. doi:10.1001/jama.2023.28257. PMID 38294772. /wiki/Doi_(identifier)

  243. Bellanavidanalage Gothami Ayanthie Vis Jayasinha (8 February 2024). Towards Safer Trips: Exploring Harm Reduction Strategies for Recreational Psychedelic Use in Aotearoa New Zealand (Thesis). University of Otago. Retrieved 3 October 2024. https://ourarchive.otago.ac.nz/esploro/outputs/graduate/Towards-Safer-Trips-Exploring-Harm-Reduction/9926550679501891

  244. Sarparast A, Thomas K, Malcolm B, Stauffer CS (June 2022). "Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review". Psychopharmacology (Berl). 239 (6): 1945–1976. doi:10.1007/s00213-022-06083-y. PMC 9177763. PMID 35253070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177763

  245. Yates G, Melon E (January 2024). "Trip-killers: a concerning practice associated with psychedelic drug use" (PDF). Emerg Med J. 41 (2): 112–113. doi:10.1136/emermed-2023-213377. PMID 38123961. Archived from the original (PDF) on 2025-05-11. https://web.archive.org/web/20250511111827/https://s3.amazonaws.com/crawl.prod.proquest.com/fpcache/71f445805bfb61341cbc438c8ae23bd3.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJIMEYCIQDETX7YpaG5THA%2FNbKR0d92wr6h%2Bgg9preNcKjAsEqo%2BQIhAIlPGGWOeUc23LqhBzRYbxvSXB9aqSe2vVonl4nacAhhKp0CCLz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQABoMNTE4MzQ2ODQ4MzQxIgy9ji58Qtbi%2BavuKeYq8QEDL1U5KZDQ0bXFyVapeqJgE%2FX6x8DcJfFU8DAXYZPSQEwrIdfPbZWcYsH340deru%2FUHnNaGGpuHFoVzui%2FMbqBz7MANcowj%2FL1%2BQZzQ5hXh5KM3BW8E6NRzrQyuPRmBy7kQUkx8%2BjTN%2BXSMgF%2FCAs6Dn9fScgBGz3ddkwRZXDkjasqMP65RCPKhagK68cyMbf3oX%2BKS8a4Kltc2rk3CnWEhOKrZU4mIxq07DikLAXQbl8YRZJIkeOhN5TgBaLWJqyn1td2VWCMymAaFsqtPWHwXnEfsolRlfDooe6QXfE2YwX5PxBVJU7GPXRgrAqPjwtJMOCHgsEGOpwBYif%2BaDMBdz3IEghuvCvorAS0mkHzdcOz%2Fi7AzuN9nch%2FIm8llhMsN41aAWHuSG25pnhhftauFsg7rbGsrW2nl2kq2upi9zP7y%2Fnqk93jcP0kr0jM8zU12bYoSTsToQJsshH4N%2BTQUMwlzRQfeVv8MXdq%2BgSTTzJrWNwT1yNzye3rSHjvOumbNl6sgBISw7QqRzhB6hZTuf8AcI%2B7&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250511T111826Z&X-Amz-SignedHeaders=host&X-Amz-Credential=ASIAXRL7BHBKRAKCQVVB%2F20250511%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Expires=3600&X-Amz-Signature=20bb1b90e4c8dbaa4115c954387617ebe2f55269bdd517692f1380193ed3f769

  246. Suran M (February 2024). "Study Finds Hundreds of Reddit Posts on "Trip-Killers" for Psychedelic Drugs". JAMA. 331 (8): 632–634. doi:10.1001/jama.2023.28257. PMID 38294772. /wiki/Doi_(identifier)

  247. Sarparast A, Thomas K, Malcolm B, Stauffer CS (June 2022). "Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review". Psychopharmacology (Berl). 239 (6): 1945–1976. doi:10.1007/s00213-022-06083-y. PMC 9177763. PMID 35253070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177763

  248. Kaminski D, Reinert JP (August 2024). "The Tolerability and Safety of Psilocybin in Psychiatric and Substance-Dependence Conditions: A Systematic Review". Ann Pharmacother. 58 (8): 811–826. doi:10.1177/10600280231205645. PMID 37902038. /wiki/Doi_(identifier)

  249. Leikin JB, Krantz AJ, Zell-Kanter M, Barkin RL, Hryhorczuk DO (1989). "Clinical Features and Management of Intoxication Due to Hallucinogenic Drugs". Medical Toxicology and Adverse Drug Experience. 4 (5). Springer Science and Business Media LLC: 324–350. doi:10.1007/bf03259916. ISSN 0113-5244. PMID 2682130. /wiki/Doi_(identifier)

  250. Halpern JH, Suzuki J, Huertas PE, Passie T (2010). "Hallucinogens". Addiction Medicine. New York, NY: Springer New York. pp. 1083–1098. doi:10.1007/978-1-4419-0338-9_54. ISBN 978-1-4419-0337-2. 978-1-4419-0337-2

  251. Gartner HT, Wan HZ, Simmons RE, Sollee DR, Sheikh S (November 2024). "Psychedelic mushroom-containing chocolate exposures: Case series". Am J Emerg Med. 85: 208–213. doi:10.1016/j.ajem.2024.09.038. PMID 39288500. /wiki/Doi_(identifier)

  252. Lima G, Soares C, Teixeira M, Castelo-Branco M (December 2024). "Psychedelic research, assisted therapy and the role of the anaesthetist: A review and insights for experimental and clinical practices". Br J Clin Pharmacol. 90 (12): 3119–3134. doi:10.1111/bcp.16264. PMID 39380091. /wiki/Doi_(identifier)

  253. Nicholas CR, Banks MI, Lennertz RC, Wenthur CJ, Krause BM, Riedner BA, et al. (September 2024). "Co-administration of midazolam and psilocybin: differential effects on subjective quality versus memory of the psychedelic experience". Transl Psychiatry. 14 (1): 372. doi:10.1038/s41398-024-03059-8. PMC 11393325. PMID 39266503. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393325

  254. Barnett BS, Vest MF, Delatte MS, King Iv F, Mauney EE, Coulson AJ, et al. (January 2025). "Practical considerations in the establishment of psychedelic research programs". Psychopharmacology (Berl). 242 (1): 27–43. doi:10.1007/s00213-024-06722-6. PMC 11742797. PMID 39627438. Furthermore, benzodiazepines might attenuate the antidepressant effects of psychedelics (Hibicke et al. 2024). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742797

  255. Hibicke M, Billac G, Nichols CD (March 2024). "Preadministration of Lorazepam Reduces Efficacy and Longevity of Antidepressant-Like Effect from a Psychedelic". Psychedelic Med (New Rochelle). 2 (1): 10–14. doi:10.1089/psymed.2023.0037. PMC 11658646. PMID 40051761. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658646

  256. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  257. Egger K, Aicher HD, Cumming P, Scheidegger M (10 September 2024). "Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors". Cellular and Molecular Life Sciences. 81 (1). Springer Science and Business Media LLC: 395. doi:10.1007/s00018-024-05353-6. ISSN 1420-682X. PMC 11387584. PMID 39254764. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387584

  258. Shen HW, Jiang XL, Winter JC, Yu AM (October 2010). "Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions". Curr Drug Metab. 11 (8): 659–666. doi:10.2174/138920010794233495. PMC 3028383. PMID 20942780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028383

  259. Egger K, Aicher HD, Cumming P, Scheidegger M (10 September 2024). "Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors". Cellular and Molecular Life Sciences. 81 (1). Springer Science and Business Media LLC: 395. doi:10.1007/s00018-024-05353-6. ISSN 1420-682X. PMC 11387584. PMID 39254764. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387584

  260. Egger K, Aicher HD, Cumming P, Scheidegger M (10 September 2024). "Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors". Cellular and Molecular Life Sciences. 81 (1). Springer Science and Business Media LLC: 395. doi:10.1007/s00018-024-05353-6. ISSN 1420-682X. PMC 11387584. PMID 39254764. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387584

  261. Dean BV, Stellpflug SJ, Burnett AM, Engebretsen KM (June 2013). "2C or not 2C: phenethylamine designer drug review". J Med Toxicol. 9 (2): 172–178. doi:10.1007/s13181-013-0295-x. PMC 3657019. PMID 23494844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657019

  262. Theobald DS, Maurer HH (January 2007). "Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series)". Biochem Pharmacol. 73 (2): 287–297. doi:10.1016/j.bcp.2006.09.022. PMID 17067556. /wiki/Doi_(identifier)

  263. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  264. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  265. Dean BV, Stellpflug SJ, Burnett AM, Engebretsen KM (June 2013). "2C or not 2C: phenethylamine designer drug review". J Med Toxicol. 9 (2): 172–178. doi:10.1007/s13181-013-0295-x. PMC 3657019. PMID 23494844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657019

  266. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  267. Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, et al. (2024). "In vitro and in vivo metabolism of psilocybin's active metabolite psilocin". Front Pharmacol. 15: 1391689. doi:10.3389/fphar.2024.1391689. PMC 11089204. PMID 38741590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089204

  268. Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME (April 2023). "Pharmacokinetics and Pharmacodynamics of Oral Psilocybin Administration in Healthy Participants". Clin Pharmacol Ther. 113 (4): 822–831. doi:10.1002/cpt.2821. PMID 36507738. https://www.researchgate.net/publication/366214647

  269. Tylš F, Páleníček T, Horáček J (March 2014). "Psilocybin - summary of knowledge and new perspectives". Eur Neuropsychopharmacol. 24 (3): 342–356. doi:10.1016/j.euroneuro.2013.12.006. PMID 24444771. https://www.researchgate.net/publication/259517753

  270. Dodd S, Norman TR, Eyre HA, Stahl SM, Phillips A, Carvalho AF, et al. (August 2023). "Psilocybin in neuropsychiatry: a review of its pharmacology, safety, and efficacy" (PDF). CNS Spectr. 28 (4): 416–426. doi:10.1017/S1092852922000888. PMID 35811423. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AA1FB4F49C14BA3F398238D6E5A3947A/S1092852922000888a.pdf/div-class-title-psilocybin-in-neuropsychiatry-a-review-of-its-pharmacology-safety-and-efficacy-div.pdf

  271. Hasler F, Bourquin D, Brenneisen R, Bär T, Vollenweider FX (June 1997). "Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man". Pharm Acta Helv. 72 (3): 175–184. doi:10.1016/s0031-6865(97)00014-9. PMID 9204776. /wiki/Doi_(identifier)

  272. Fradet M, Kelly CM, Donnelly AJ, Suppes T (December 2024). "Psilocybin and hallucinogenic mushrooms". CNS Spectr. 29 (6): 611–632. doi:10.1017/S1092852924002487. PMID 39789676. /wiki/Doi_(identifier)

  273. Barnett BS, Koons CJ, Van den Eynde V, Gillman PK, Bodkin JA (June 2024). "Hypertensive Emergency Secondary to Combining Psilocybin Mushrooms, Extended Release Dextroamphetamine-Amphetamine, and Tranylcypromine". J Psychoactive Drugs: 1–7. doi:10.1080/02791072.2024.2368617. PMID 38903003. https://doi.org/10.1080%2F02791072.2024.2368617

  274. Vojtĕchovský M, Hort V, Safratová V (October 1968). "[Influence of MAO inhibitors on psilocybine induced psychosis]". Act Nerv Super (Praha) (in Czech). 10 (3): 278–279. PMID 5702524. /wiki/PMID_(identifier)

  275. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  276. Becker AM, Humbert-Droz M, Mueller L, Jelušić A, Tolev A, Straumann I, et al. (February 2025). "Acute Effects and Pharmacokinetics of LSD after Paroxetine or Placebo Pre-Administration in a Randomized, Double-Blind, Cross-Over Phase I Trial". Clin Pharmacol Ther. 117 (6): 1784–1792. doi:10.1002/cpt.3618. PMC 12087691. PMID 40022427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087691

  277. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  278. Becker AM, Humbert-Droz M, Mueller L, Jelušić A, Tolev A, Straumann I, et al. (February 2025). "Acute Effects and Pharmacokinetics of LSD after Paroxetine or Placebo Pre-Administration in a Randomized, Double-Blind, Cross-Over Phase I Trial". Clin Pharmacol Ther. 117 (6): 1784–1792. doi:10.1002/cpt.3618. PMC 12087691. PMID 40022427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087691

  279. Becker AM, Humbert-Droz M, Mueller L, Jelušić A, Tolev A, Straumann I, et al. (February 2025). "Acute Effects and Pharmacokinetics of LSD after Paroxetine or Placebo Pre-Administration in a Randomized, Double-Blind, Cross-Over Phase I Trial". Clin Pharmacol Ther. 117 (6): 1784–1792. doi:10.1002/cpt.3618. PMC 12087691. PMID 40022427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087691

  280. Becker AM, Humbert-Droz M, Mueller L, Jelušić A, Tolev A, Straumann I, et al. (February 2025). "Acute Effects and Pharmacokinetics of LSD after Paroxetine or Placebo Pre-Administration in a Randomized, Double-Blind, Cross-Over Phase I Trial". Clin Pharmacol Ther. 117 (6): 1784–1792. doi:10.1002/cpt.3618. PMC 12087691. PMID 40022427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087691

  281. Halman A, Kong G, Sarris J, Perkins D (January 2024). "Drug-drug interactions involving classic psychedelics: A systematic review". J Psychopharmacol. 38 (1): 3–18. doi:10.1177/02698811231211219. PMC 10851641. PMID 37982394. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851641

  282. Vizeli P, Straumann I, Holze F, Schmid Y, Dolder PC, Liechti ME (May 2021). "Genetic influence of CYP2D6 on pharmacokinetics and acute subjective effects of LSD in a pooled analysis". Sci Rep. 11 (1): 10851. Bibcode:2021NatSR..1110851V. doi:10.1038/s41598-021-90343-y. PMC 8149637. PMID 34035391. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149637

  283. Bijl D (October 2004). "The serotonin syndrome". Neth J Med. 62 (9): 309–13. PMID 15635814. Mechanisms of serotonergic drugs implicated in serotonin syndrome... Stimulation of serotonin receptors... LSD /wiki/PMID_(identifier)

  284. "AMT". DrugWise.org.uk. 2016-01-03. Retrieved 2019-11-18. https://www.drugwise.org.uk/amt/

  285. Alpha-methyltryptamine (AMT) – Critical Review Report (PDF) (Report). World Health Organisation – Expert Committee on Drug Dependence (published 2014-06-20). 20 June 2014. Retrieved 2019-11-18. https://legal-high-inhaltsstoffe.de/sites/default/files/uploads/amt.pdf

  286. Boyer EW, Shannon M (March 2005). "The serotonin syndrome" (PDF). The New England Journal of Medicine. 352 (11): 1112–20. doi:10.1056/NEJMra041867. PMID 15784664. Archived (PDF) from the original on 2013-06-18. /wiki/Michael_Shannon_(pediatrician)

  287. Fradet M, Kelly CM, Donnelly AJ, Suppes T (December 2024). "Psilocybin and hallucinogenic mushrooms". CNS Spectr. 29 (6): 611–632. doi:10.1017/S1092852924002487. PMID 39789676. /wiki/Doi_(identifier)

  288. Holze F, Liechti ME, Müller F (July 2024). "Pharmacological Properties of Psychedelics with a Special Focus on Potential Harms". Current Topics in Behavioral Neurosciences. Curr Top Behav Neurosci. doi:10.1007/7854_2024_510. PMID 39080236. /wiki/Doi_(identifier)

  289. Nayak SM, Gukasyan N, Barrett FS, Erowid E, Erowid F, Griffiths RR (September 2021). "Classic Psychedelic Coadministration with Lithium, but Not Lamotrigine, is Associated with Seizures: An Analysis of Online Psychedelic Experience Reports" (PDF). Pharmacopsychiatry. 54 (5): 240–245. doi:10.1055/a-1524-2794. PMID 34348413. https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-1524-2794.pdf

  290. Fradet M, Kelly CM, Donnelly AJ, Suppes T (December 2024). "Psilocybin and hallucinogenic mushrooms". CNS Spectr. 29 (6): 611–632. doi:10.1017/S1092852924002487. PMID 39789676. /wiki/Doi_(identifier)

  291. Holze F, Liechti ME, Müller F (July 2024). "Pharmacological Properties of Psychedelics with a Special Focus on Potential Harms". Current Topics in Behavioral Neurosciences. Curr Top Behav Neurosci. doi:10.1007/7854_2024_510. PMID 39080236. /wiki/Doi_(identifier)

  292. Nayak SM, Gukasyan N, Barrett FS, Erowid E, Erowid F, Griffiths RR (September 2021). "Classic Psychedelic Coadministration with Lithium, but Not Lamotrigine, is Associated with Seizures: An Analysis of Online Psychedelic Experience Reports" (PDF). Pharmacopsychiatry. 54 (5): 240–245. doi:10.1055/a-1524-2794. PMID 34348413. https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-1524-2794.pdf

  293. Fradet M, Kelly CM, Donnelly AJ, Suppes T (December 2024). "Psilocybin and hallucinogenic mushrooms". CNS Spectr. 29 (6): 611–632. doi:10.1017/S1092852924002487. PMID 39789676. /wiki/Doi_(identifier)

  294. Nayak SM, Gukasyan N, Barrett FS, Erowid E, Erowid F, Griffiths RR (September 2021). "Classic Psychedelic Coadministration with Lithium, but Not Lamotrigine, is Associated with Seizures: An Analysis of Online Psychedelic Experience Reports" (PDF). Pharmacopsychiatry. 54 (5): 240–245. doi:10.1055/a-1524-2794. PMID 34348413. https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-1524-2794.pdf

  295. Holze F, Singh N, Liechti ME, D'Souza DC (May 2024). "Serotonergic Psychedelics: A Comparative Review of Efficacy, Safety, Pharmacokinetics, and Binding Profile". Biol Psychiatry Cogn Neurosci Neuroimaging. 9 (5): 472–489. doi:10.1016/j.bpsc.2024.01.007. PMID 38301886. https://doi.org/10.1016%2Fj.bpsc.2024.01.007

  296. Ray TS (February 2010). "Psychedelics and the human receptorome". PLOS ONE. 5 (2): e9019. Bibcode:2010PLoSO...5.9019R. doi:10.1371/journal.pone.0009019. PMC 2814854. PMID 20126400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814854

  297. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  298. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  299. Halberstadt AL, Nichols DE (2020). "Serotonin and serotonin receptors in hallucinogen action". Handbook of Behavioral Neuroscience. Vol. 31. Elsevier. pp. 843–863. doi:10.1016/b978-0-444-64125-0.00043-8. ISBN 978-0-444-64125-0. ISSN 1569-7339. 978-0-444-64125-0

  300. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  301. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  302. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  303. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  304. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  305. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  306. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  307. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  308. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  309. Roth BL, Gumpper RH (May 2023). "Psychedelics as Transformative Therapeutics". Am J Psychiatry. 180 (5): 340–347. doi:10.1176/appi.ajp.20230172. PMID 37122272. https://cdr.lib.unc.edu/downloads/37720q20d

  310. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  311. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  312. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  313. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  314. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  315. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  316. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  317. Kozlenkov A, González-Maeso J (2013). "Animal Models and Hallucinogenic Drugs". The Neuroscience of Hallucinations. New York, NY: Springer New York. pp. 253–277. doi:10.1007/978-1-4614-4121-2_14. ISBN 978-1-4614-4120-5. 978-1-4614-4120-5

  318. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  319. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  320. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  321. Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD (May 2020). "Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species". Neuropharmacology. 167: 107933. doi:10.1016/j.neuropharm.2019.107933. PMC 9191653. PMID 31917152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191653

  322. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  323. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  324. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  325. Glennon RA, Dukat M (June 2024). "1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review". ACS Pharmacology & Translational Science. 7 (6): 1722–1745. doi:10.1021/acsptsci.4c00157. PMC 11184610. PMID 38898956. Although the specific signaling cascades mediating the HTR have not been conclusively identified, Gq and β-arrestin2 have been implicated. Recent studies with different existing and novel agents, including DOI, found that the HTR was correlated with Gq efficacy but not with β-arrestin2 recruitment.114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184610

  326. Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB (March 2024). "The mechanistic divide in psychedelic neuroscience: An unbridgeable gap?". Neurotherapeutics. 21 (2): e00322. doi:10.1016/j.neurot.2024.e00322. PMC 10963929. PMID 38278658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963929

  327. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  328. Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB (March 2024). "The mechanistic divide in psychedelic neuroscience: An unbridgeable gap?". Neurotherapeutics. 21 (2): e00322. doi:10.1016/j.neurot.2024.e00322. PMC 10963929. PMID 38278658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963929

  329. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  330. Glennon RA, Dukat M (June 2024). "1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review". ACS Pharmacology & Translational Science. 7 (6): 1722–1745. doi:10.1021/acsptsci.4c00157. PMC 11184610. PMID 38898956. Although the specific signaling cascades mediating the HTR have not been conclusively identified, Gq and β-arrestin2 have been implicated. Recent studies with different existing and novel agents, including DOI, found that the HTR was correlated with Gq efficacy but not with β-arrestin2 recruitment.114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184610

  331. Gumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)". Br J Pharmacol. doi:10.1111/bph.17361. PMID 39354889. /wiki/Doi_(identifier)

  332. Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB (March 2024). "The mechanistic divide in psychedelic neuroscience: An unbridgeable gap?". Neurotherapeutics. 21 (2): e00322. doi:10.1016/j.neurot.2024.e00322. PMC 10963929. PMID 38278658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963929

  333. Glennon RA, Dukat M (June 2024). "1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review". ACS Pharmacology & Translational Science. 7 (6): 1722–1745. doi:10.1021/acsptsci.4c00157. PMC 11184610. PMID 38898956. Although the specific signaling cascades mediating the HTR have not been conclusively identified, Gq and β-arrestin2 have been implicated. Recent studies with different existing and novel agents, including DOI, found that the HTR was correlated with Gq efficacy but not with β-arrestin2 recruitment.114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184610

  334. Gumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)". Br J Pharmacol. doi:10.1111/bph.17361. PMID 39354889. /wiki/Doi_(identifier)

  335. Chisamore N, Kaczmarek E, Le GH, Wong S, Orsini DK, Mansur R, et al. (26 April 2024). "Neurobiology of the Antidepressant Effects of Serotonergic Psychedelics: A Narrative Review". Current Treatment Options in Psychiatry. 11 (2). Springer Science and Business Media LLC: 90–105. doi:10.1007/s40501-024-00319-8. ISSN 2196-3061. /wiki/Doi_(identifier)

  336. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724237

  337. Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB (March 2024). "The mechanistic divide in psychedelic neuroscience: An unbridgeable gap?". Neurotherapeutics. 21 (2): e00322. doi:10.1016/j.neurot.2024.e00322. PMC 10963929. PMID 38278658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963929

  338. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724237

  339. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  340. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  341. Gumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)". Br J Pharmacol. doi:10.1111/bph.17361. PMID 39354889. /wiki/Doi_(identifier)

  342. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724237

  343. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  344. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724237

  345. Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH (March 2024). "Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited". ACS Pharmacol Transl Sci. 7 (3): 641–653. doi:10.1021/acsptsci.3c00192. PMC 10928901. PMID 38481684. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928901

  346. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. (March 2023). "A non-hallucinogenic LSD analog with therapeutic potential for mood disorders". Cell Rep. 42 (3): 112203. doi:10.1016/j.celrep.2023.112203. PMC 10112881. PMID 36884348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112881

  347. Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ, Bonniwell EM, et al. (January 2023). "Pharmacological Mechanism of the Non-hallucinogenic 5-HT2A Agonist Ariadne and Analogs". ACS Chemical Neuroscience. 14 (1): 119–135. doi:10.1021/acschemneuro.2c00597. PMC 10147382. PMID 36521179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147382

  348. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  349. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724237

  350. Davis R, Dutheil SS, Zhang L, Lehmann E, Awadallah N, Yao W, et al. (December 2023). "ACNP 62nd Annual Meeting: Poster Abstracts P251 - P500: P358. Discovery and Characterization of ITI-1549, a Novel Non-Hallucinogenic Psychedelic for the Treatment of Neuropsychiatric Disorders". Neuropsychopharmacology. 48 (Suppl 1): 211–354 (272–273). doi:10.1038/s41386-023-01756-4. PMC 10729596. PMID 38040810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729596

  351. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  352. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  353. Marek GJ (2018). "Interactions of Hallucinogens with the Glutamatergic System: Permissive Network Effects Mediated Through Cortical Layer V Pyramidal Neurons". Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 107–135. doi:10.1007/7854_2017_480. ISBN 978-3-662-55878-2. PMID 28831734. 978-3-662-55878-2

  354. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  355. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  356. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  357. Salinsky LM, Merritt CR, Zamora JC, Giacomini JL, Anastasio NC, Cunningham KA (2023). "μ-opioid receptor agonists and psychedelics: pharmacological opportunities and challenges". Front Pharmacol. 14: 1239159. doi:10.3389/fphar.2023.1239159. PMC 10598667. PMID 37886127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598667

  358. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  359. Halberstadt AL, Geyer MA (2018). "Effect of Hallucinogens on Unconditioned Behavior". Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 159–199. doi:10.1007/7854_2016_466. ISBN 978-3-662-55878-2. PMC 5787039. PMID 28224459. [...] the 5-HT releasing drugs fenfluramine and p-chloroamphetamine (PCA) do produce a robust HTR (Singleton and Marsden 1981; Darmani 1998a). Fenfluramine and PCA are thought to act indirectly, by increasing carrier-mediated release of 5-HT, because the response can be blocked by inhibition of the 5-HT transporter (Balsara et al. 1986; Darmani 1998a) or by depletion of 5-HT (Singleton and Marsden 1981; Balsara et al. 1986). [...] Because indirect 5-HT agonists such as fenfluramine, PCA, and 5-HTP are not hallucinogenic (Van Praag et al. 1971; Brauer et al. 1996; Turner et al. 2006), their effects on HTR can potentially be classified as false-positive responses. 978-3-662-55878-2

  360. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  361. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  362. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  363. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  364. Aqil M, Roseman L (February 2023). "More than meets the eye: The role of sensory dimensions in psychedelic brain dynamics, experience, and therapeutics". Neuropharmacology. 223: 109300. doi:10.1016/j.neuropharm.2022.109300. PMID 36334767. /wiki/Doi_(identifier)

  365. Császár-Nagy N, Kapócs G, Bókkon I (July 2019). "Classic psychedelics: the special role of the visual system". Rev Neurosci. 30 (6): 651–669. doi:10.1515/revneuro-2018-0092. PMID 30939118. /wiki/Doi_(identifier)

  366. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (March 2002). "What geometric visual hallucinations tell us about the visual cortex". Neural Comput. 14 (3): 473–491. doi:10.1162/089976602317250861. PMID 11860679. /wiki/Doi_(identifier)

  367. Kwan AC, Olson DE, Preller KH, Roth BL (November 2022). "The neural basis of psychedelic action" (PDF). Nat Neurosci. 25 (11): 1407–1419. doi:10.1038/s41593-022-01177-4. PMC 9641582. PMID 36280799. https://alexkwanlab.org/wp-content/uploads/2022/11/kwanNatNeurosci2022.pdf

  368. Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, et al. (April 2022). "Models of psychedelic drug action: modulation of cortical-subcortical circuits". Brain. 145 (2): 441–456. doi:10.1093/brain/awab406. PMC 9014750. PMID 34897383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014750

  369. Rieser NM, Schmidt TT, Preller KH (July 2024). Neurobiological Correlates of Psychedelic Experiences and Psychedelic-Associated Adverse Effects. Current Topics in Behavioral Neurosciences. doi:10.1007/7854_2024_507. PMID 39080245. /wiki/Doi_(identifier)

  370. Halberstadt AL, Geyer MA (2018). "Effect of Hallucinogens on Unconditioned Behavior". Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 159–199. doi:10.1007/7854_2016_466. ISBN 978-3-662-55878-2. PMC 5787039. PMID 28224459. [...] the 5-HT releasing drugs fenfluramine and p-chloroamphetamine (PCA) do produce a robust HTR (Singleton and Marsden 1981; Darmani 1998a). Fenfluramine and PCA are thought to act indirectly, by increasing carrier-mediated release of 5-HT, because the response can be blocked by inhibition of the 5-HT transporter (Balsara et al. 1986; Darmani 1998a) or by depletion of 5-HT (Singleton and Marsden 1981; Balsara et al. 1986). [...] Because indirect 5-HT agonists such as fenfluramine, PCA, and 5-HTP are not hallucinogenic (Van Praag et al. 1971; Brauer et al. 1996; Turner et al. 2006), their effects on HTR can potentially be classified as false-positive responses. 978-3-662-55878-2

  371. Sapienza J (13 October 2023). "The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?". Psychoactives. 2 (4): 287–293. doi:10.3390/psychoactives2040018. ISSN 2813-1851. https://doi.org/10.3390%2Fpsychoactives2040018

  372. Wojtas A, Gołembiowska K (December 2023). "Molecular and Medical Aspects of Psychedelics". Int J Mol Sci. 25 (1): 241. doi:10.3390/ijms25010241. PMC 10778977. PMID 38203411. While some false positives have been identified, such as fenfluramine, p-chloroamphetamine, and 5-hydroxytryptophan, the test predominantly exhibits specificity for 5-HT2A receptor agonists [15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778977

  373. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  374. Sapienza J (13 October 2023). "The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?". Psychoactives. 2 (4): 287–293. doi:10.3390/psychoactives2040018. ISSN 2813-1851. https://doi.org/10.3390%2Fpsychoactives2040018

  375. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  376. Sapienza J (13 October 2023). "The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?". Psychoactives. 2 (4): 287–293. doi:10.3390/psychoactives2040018. ISSN 2813-1851. https://doi.org/10.3390%2Fpsychoactives2040018

  377. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  378. Sapienza J (13 October 2023). "The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?". Psychoactives. 2 (4): 287–293. doi:10.3390/psychoactives2040018. ISSN 2813-1851. https://doi.org/10.3390%2Fpsychoactives2040018

  379. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  380. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  381. Schmid CL, Bohn LM (2018). "βArrestins: Ligand-Directed Regulators of 5-HT2A Receptor Trafficking and Signaling Events". 5-HT2A Receptors in the Central Nervous System. Cham: Springer International Publishing. pp. 31–55. doi:10.1007/978-3-319-70474-6_2. ISBN 978-3-319-70472-2. 978-3-319-70472-2

  382. Kozlenkov A, González-Maeso J (2013). "Animal Models and Hallucinogenic Drugs". The Neuroscience of Hallucinations. New York, NY: Springer New York. pp. 253–277. doi:10.1007/978-1-4614-4121-2_14. ISBN 978-1-4614-4120-5. 978-1-4614-4120-5

  383. Halberstadt AL, Geyer MA (2018). "Effect of Hallucinogens on Unconditioned Behavior". Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 159–199. doi:10.1007/7854_2016_466. ISBN 978-3-662-55878-2. PMC 5787039. PMID 28224459. [...] the 5-HT releasing drugs fenfluramine and p-chloroamphetamine (PCA) do produce a robust HTR (Singleton and Marsden 1981; Darmani 1998a). Fenfluramine and PCA are thought to act indirectly, by increasing carrier-mediated release of 5-HT, because the response can be blocked by inhibition of the 5-HT transporter (Balsara et al. 1986; Darmani 1998a) or by depletion of 5-HT (Singleton and Marsden 1981; Balsara et al. 1986). [...] Because indirect 5-HT agonists such as fenfluramine, PCA, and 5-HTP are not hallucinogenic (Van Praag et al. 1971; Brauer et al. 1996; Turner et al. 2006), their effects on HTR can potentially be classified as false-positive responses. 978-3-662-55878-2

  384. Schmid CL, Bohn LM (October 2010). "Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a β-arrestin2/Src/Akt signaling complex in vivo". J Neurosci. 30 (40): 13513–24. doi:10.1523/JNEUROSCI.1665-10.2010. PMC 3001293. PMID 20926677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001293

  385. Sapienza J (13 October 2023). "The Key Role of Intracellular 5-HT2A Receptors: A Turning Point in Psychedelic Research?". Psychoactives. 2 (4): 287–293. doi:10.3390/psychoactives2040018. ISSN 2813-1851. https://doi.org/10.3390%2Fpsychoactives2040018

  386. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. (February 2023). "Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors". Science. 379 (6633): 700–706. Bibcode:2023Sci...379..700V. doi:10.1126/science.adf0435. PMC 10108900. PMID 36795823. In addition to promoting psychedelic-induced structural neuroplasticity, the intracellular population of 5-HT2ARs might also contribute to the hallucinogenic effects of psychedelics. When we administered a serotonin-releasing agent to wild type mice, we did not observe a HTR. However, the same drug was able to induce a HTR in mice expressing SERT on cortical neurons of the mPFC—a brain region known to be essential for the HTR (49). Thus, activation of intracellular cortical 5-HT2ARs may play a role in the subjective effects of psychedelics. This hypothesis is further supported by previous work demonstrating that a high dose of the serotonin precursor 5-hydroxytryptophan (5-HTP) induces a HTR in WT mice, which can be blocked by an N-methyltransferase inhibitor that prevents the metabolism of 5-HTP to N-methyltryptamines (50). Inhibition of N-methyltransferase failed to block the HTR induced by 5-MeO-DMT (50). Taken together, this work emphasizes that accessing intracellular 5-HT2ARs is important for 5-HT2AR agonists to produce a HTR. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108900

  387. Olson DE (2018). "Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics". J Exp Neurosci. 12: 1179069518800508. doi:10.1177/1179069518800508. PMC 6149016. PMID 30262987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149016

  388. Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE (2021). "Psychedelics and Other Psychoplastogens for Treating Mental Illness". Front Psychiatry. 12: 727117. doi:10.3389/fpsyt.2021.727117. PMC 8520991. PMID 34671279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520991

  389. Olson DE (February 2022). "Biochemical Mechanisms Underlying Psychedelic-Induced Neuroplasticity". Biochemistry. 61 (3): 127–136. doi:10.1021/acs.biochem.1c00812. PMC 9004607. PMID 35060714. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004607

  390. Hatzipantelis CJ, Olson DE (February 2024). "The Effects of Psychedelics on Neuronal Physiology". Annu Rev Physiol. 86: 27–47. doi:10.1146/annurev-physiol-042022-020923. PMC 10922499. PMID 37931171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922499

  391. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  392. Husain MI, Ledwos N, Fellows E, Baer J, Rosenblat JD, Blumberger DM, et al. (2022). "Serotonergic psychedelics for depression: What do we know about neurobiological mechanisms of action?". Front Psychiatry. 13: 1076459. doi:10.3389/fpsyt.2022.1076459. PMC 9950579. PMID 36844032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950579

  393. Chisamore N, Kaczmarek E, Le GH, Wong S, Orsini DK, Mansur R, et al. (26 April 2024). "Neurobiology of the Antidepressant Effects of Serotonergic Psychedelics: A Narrative Review". Current Treatment Options in Psychiatry. 11 (2). Springer Science and Business Media LLC: 90–105. doi:10.1007/s40501-024-00319-8. ISSN 2196-3061. /wiki/Doi_(identifier)

  394. Feulner L, Sermchaiwong T, Rodland N, Galarneau D (2023). "Efficacy and Safety of Psychedelics in Treating Anxiety Disorders". Ochsner J. 23 (4): 315–328. doi:10.31486/toj.23.0076. PMC 10741816. PMID 38143548. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741816

  395. Werle I, Bertoglio LJ (December 2024). "Psychedelics: A review of their effects on recalled aversive memories and fear/anxiety expression in rodents". Neurosci Biobehav Rev. 167: 105899. doi:10.1016/j.neubiorev.2024.105899. PMID 39305969. /wiki/Doi_(identifier)

  396. Markopoulos A, Inserra A, De Gregorio D, Gobbi G (2021). "Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder". Front Pharmacol. 12: 749068. doi:10.3389/fphar.2021.749068. PMC 8846292. PMID 35177979. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846292

  397. Bhatt KV, Weissman CR (February 2024). "The effect of psilocybin on empathy and prosocial behavior: a proposed mechanism for enduring antidepressant effects". npj Ment Health Res. 3 (1): 7. doi:10.1038/s44184-023-00053-8. PMC 10955966. PMID 38609500. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955966

  398. Kupferberg A, Hasler G (2024). "From antidepressants and psychotherapy to oxytocin, vagus nerve stimulation, ketamine and psychedelics: how established and novel treatments can improve social functioning in major depression". Front Psychiatry. 15: 1372650. doi:10.3389/fpsyt.2024.1372650. PMC 11513289. PMID 39469469. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513289

  399. Delgado PL, Moreno FA (1998). "Hallucinogens, serotonin and obsessive-compulsive disorder". J Psychoactive Drugs. 30 (4): 359–366. doi:10.1080/02791072.1998.10399711. PMID 9924841. /wiki/Doi_(identifier)

  400. Ehrmann K, Allen JJ, Moreno FA (2022). "Psilocybin for the Treatment of Obsessive-Compulsive Disorders". Disruptive Psychopharmacology. Current Topics in Behavioral Neurosciences. Vol. 56. pp. 247–259. doi:10.1007/7854_2021_279. ISBN 978-3-031-12183-8. PMID 34784024. 978-3-031-12183-8

  401. Collins HM (November 2024). "Psychedelics for the Treatment of Obsessive Compulsive Disorder: Efficacy and Proposed Mechanisms". Int J Neuropsychopharmacol. 27 (12). doi:10.1093/ijnp/pyae057. PMC 11635828. PMID 39611453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635828

  402. Szafoni S, Gręblowski P, Grabowska K, Więckiewicz G (2024). "Unlocking the healing power of psilocybin: an overview of the role of psilocybin therapy in major depressive disorder, obsessive-compulsive disorder and substance use disorder". Front Psychiatry. 15: 1406888. doi:10.3389/fpsyt.2024.1406888. PMC 11196758. PMID 38919636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196758

  403. Owe-Larsson M, Kamińska K, Buchalska B, Mirowska-Guzel D, Cudnoch-Jędrzejewska A (October 2024). "Psilocybin in pharmacotherapy of obsessive-compulsive disorder". Pharmacol Rep. 76 (5): 911–925. doi:10.1007/s43440-024-00633-1. PMC 11387457. PMID 39088105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387457

  404. Urban MM, Stingl MR, Meinhardt MW (2023). "Mini-review: The neurobiology of treating substance use disorders with classical psychedelics". Front Neurosci. 17: 1156319. doi:10.3389/fnins.2023.1156319. PMC 10149865. PMID 37139521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149865

  405. Vamvakopoulou IA, Nutt DJ (2024). "Psychedelics: From Cave Art to 21st-Century Medicine for Addiction". Eur Addict Res. 30 (5): 302–320. doi:10.1159/000540062. PMC 11527458. PMID 39321788. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527458

  406. Gomez-Escolar A, Folch-Sanchez D, Stefaniuk J, Swithenbank Z, Nisa A, Braddick F, et al. (October 2024). "Current Perspectives on the Clinical Research and Medicalization of Psychedelic Drugs for Addiction Treatments: Safety, Efficacy, Limitations and Challenges". CNS Drugs. 38 (10): 771–789. doi:10.1007/s40263-024-01101-3. PMID 39033264. /wiki/Doi_(identifier)

  407. Valdez T, Patel V, Senesombath N, Hatahet-Donovan Z, Hornick M (November 2024). "Therapeutic Potential of Psychedelic Compounds for Substance Use Disorders". Pharmaceuticals. 17 (11): 1484. doi:10.3390/ph17111484. PMC 11597566. PMID 39598395. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597566

  408. Nichols DE, Johnson MW, Nichols CD (February 2017). "Psychedelics as Medicines: An Emerging New Paradigm". Clin Pharmacol Ther. 101 (2): 209–219. doi:10.1002/cpt.557. PMID 28019026. /wiki/Doi_(identifier)

  409. Flanagan TW, Nichols CD (2022). "Psychedelics and Anti-inflammatory Activity in Animal Models". Disruptive Psychopharmacology. Current Topics in Behavioral Neurosciences. Vol. 56. pp. 229–245. doi:10.1007/7854_2022_367. ISBN 978-3-031-12183-8. PMID 35546383. 978-3-031-12183-8

  410. Nichols CD (November 2022). "Psychedelics as potent anti-inflammatory therapeutics". Neuropharmacology. 219: 109232. doi:10.1016/j.neuropharm.2022.109232. PMID 36007854. https://doi.org/10.1016%2Fj.neuropharm.2022.109232

  411. Thompson C, Szabo A (December 2020). "Psychedelics as a novel approach to treating autoimmune conditions". Immunol Lett. 228: 45–54. doi:10.1016/j.imlet.2020.10.001. hdl:10852/80687. PMID 33035575. /wiki/Doi_(identifier)

  412. Low ZX, Ng WS, Lim ES, Goh BH, Kumari Y (September 2024). "The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies". Prog Neuropsychopharmacol Biol Psychiatry. 136: 111139. doi:10.1016/j.pnpbp.2024.111139. PMID 39251080. https://doi.org/10.1016%2Fj.pnpbp.2024.111139

  413. Castellanos JP, Woolley C, Bruno KA, Zeidan F, Halberstadt A, Furnish T (July 2020). "Chronic pain and psychedelics: a review and proposed mechanism of action". Reg Anesth Pain Med. 45 (7): 486–494. doi:10.1136/rapm-2020-101273. PMID 32371500. /wiki/Doi_(identifier)

  414. Zia FZ, Baumann MH, Belouin SJ, Dworkin RH, Ghauri MH, Hendricks PS, et al. (August 2023). "Are psychedelic medicines the reset for chronic pain? Preliminary findings and research needs". Neuropharmacology. 233: 109528. doi:10.1016/j.neuropharm.2023.109528. PMID 37015315. https://doi.org/10.1016%2Fj.neuropharm.2023.109528

  415. Goel A, Rai Y, Sivadas S, Diep C, Clarke H, Shanthanna H, et al. (October 2023). "Use of Psychedelics for Pain: A Scoping Review". Anesthesiology. 139 (4): 523–536. doi:10.1097/ALN.0000000000004673. PMID 37698433. /wiki/Doi_(identifier)

  416. Schindler EA (2022). "Psychedelics in the Treatment of Headache and Chronic Pain Disorders". Disruptive Psychopharmacology. Current Topics in Behavioral Neurosciences. Vol. 56. pp. 261–285. doi:10.1007/7854_2022_365. ISBN 978-3-031-12183-8. PMID 35546382. 978-3-031-12183-8

  417. Schindler EA, Hendricks PS (2023). "Adapting psychedelic medicine for headache and chronic pain disorders". Expert Rev Neurother. 23 (10): 867–882. doi:10.1080/14737175.2023.2246655. PMID 37652000. /wiki/Doi_(identifier)

  418. Schindler EA (September 2023). "The Potential of Psychedelics for the Treatment of Episodic Migraine". Curr Pain Headache Rep. 27 (9): 489–495. doi:10.1007/s11916-023-01145-y. PMID 37540398. /wiki/Doi_(identifier)

  419. Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID 38033123. /wiki/Doi_(identifier)

  420. Atiq MA, Baker MR, Voort JL, Vargas MV, Choi DS (May 2024). "Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties". Psychopharmacology (Berl). doi:10.1007/s00213-024-06599-5. PMID 38743110. https://doi.org/10.1007%2Fs00213-024-06599-5

  421. Schmitz GP, Roth BL (July 2023). "G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics". Am J Physiol Cell Physiol. 325 (1): C17 – C28. doi:10.1152/ajpcell.00397.2022. PMC 10281788. PMID 37067459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281788

  422. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  423. Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, et al. (November 2023). "Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action". J Neurosci. 43 (45): 7472–7482. doi:10.1523/JNEUROSCI.1384-23.2023. PMC 10634557. PMID 37940583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634557

  424. Brunello CA, Cannarozzo C, Castrén E (November 2024). "Rethinking the role of TRKB in the action of antidepressants and psychedelics". Trends Neurosci. 47 (11): 865–874. doi:10.1016/j.tins.2024.08.011. PMID 39304417. https://doi.org/10.1016%2Fj.tins.2024.08.011

  425. Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, et al. (November 2023). "Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action". J Neurosci. 43 (45): 7472–7482. doi:10.1523/JNEUROSCI.1384-23.2023. PMC 10634557. PMID 37940583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634557

  426. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. (June 2023). "Psychedelics promote plasticity by directly binding to BDNF receptor TrkB". Nat Neurosci. 26 (6): 1032–1041. doi:10.1038/s41593-023-01316-5. PMC 10244169. PMID 37280397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244169

  427. Fordyce BA, Roth BL (February 2024). "Making Sense of Psychedelics in the CNS". Int J Neuropsychopharmacol. 27 (2). doi:10.1093/ijnp/pyae007. PMC 10888522. PMID 38289825. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888522

  428. Hatzipantelis CJ, Olson DE (February 2024). "The Effects of Psychedelics on Neuronal Physiology". Annu Rev Physiol. 86: 27–47. doi:10.1146/annurev-physiol-042022-020923. PMC 10922499. PMID 37931171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922499

  429. Olson DE (February 2022). "Biochemical Mechanisms Underlying Psychedelic-Induced Neuroplasticity". Biochemistry. 61 (3): 127–136. doi:10.1021/acs.biochem.1c00812. PMC 9004607. PMID 35060714. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004607

  430. Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, et al. (November 2023). "Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action". J Neurosci. 43 (45): 7472–7482. doi:10.1523/JNEUROSCI.1384-23.2023. PMC 10634557. PMID 37940583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634557

  431. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  432. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  433. Dourron HM, Nichols CD, Simonsson O, Bradley M, Carhart-Harris R, Hendricks PS (December 2023). "5-MeO-DMT: An atypical psychedelic with unique pharmacology, phenomenology & risk?". Psychopharmacology (Berl). doi:10.1007/s00213-023-06517-1. PMID 38072874. /wiki/Doi_(identifier)

  434. Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN 978-0-85608-011-1. OCLC 2176880. OL 4850660M. 978-0-85608-011-1

  435. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  436. Gumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)". Br J Pharmacol. doi:10.1111/bph.17361. PMID 39354889. /wiki/Doi_(identifier)

  437. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  438. Araújo AM, Carvalho F, Bastos Md, Guedes de Pinho P, Carvalho M (2015). "The hallucinogenic world of tryptamines: an updated review". Archives of Toxicology. 89 (8): 1151–1173. Bibcode:2015ArTox..89.1151A. doi:10.1007/s00204-015-1513-x. ISSN 0340-5761. PMID 25877327. /wiki/Bibcode_(identifier)

  439. Shulgin AT (2003). "Basic Pharmacology and Effects". In Laing RR (ed.). Hallucinogens: A Forensic Drug Handbook. Forensic Drug Handbook Series. Elsevier Science. pp. 67–137. ISBN 978-0-12-433951-4. Retrieved 1 February 2025. 978-0-12-433951-4

  440. Jacob P, Shulgin AT (1994). "Structure-activity relationships of the classic hallucinogens and their analogs" (PDF). NIDA Res Monogr. 146: 74–91. PMID 8742795. https://archives.nida.nih.gov/sites/default/files/monograph146.pdf#page=79

  441. Nagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain". Eur J Pharmacol. 559 (2–3): 132–137. doi:10.1016/j.ejphar.2006.11.075. PMID 17223101. /wiki/Doi_(identifier)

  442. Eshleman AJ, Forster MJ, Wolfrum KM, Johnson RA, Janowsky A, Gatch MB (March 2014). "Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function". Psychopharmacology (Berl). 231 (5): 875–888. doi:10.1007/s00213-013-3303-6. PMC 3945162. PMID 24142203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945162

  443. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  444. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  445. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  446. Glennon RA, Dukat M (2 May 2023). "Quipazine: Classical hallucinogen? Novel psychedelic?". Australian Journal of Chemistry. 76 (5): 288–298. doi:10.1071/CH22256. ISSN 0004-9425. /wiki/Doi_(identifier)

  447. de la Fuente Revenga M, Shah UH, Nassehi N, Jaster AM, Hemanth P, Sierra S, et al. (March 2021). "Psychedelic-like Properties of Quipazine and Its Structural Analogues in Mice". ACS Chem Neurosci. 12 (5): 831–844. doi:10.1021/acschemneuro.0c00291. PMC 7933111. PMID 33400504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933111

  448. Zareifopoulos N, Lagadinou M, Karela A, Pouliasi F, Economou I, Tsigkou A, et al. (October 2020). "Efavirenz as a psychotropic drug". Eur Rev Med Pharmacol Sci. 24 (20): 10729–10735. doi:10.26355/eurrev_202010_23433. PMID 33155233. /wiki/Doi_(identifier)

  449. Zareifopoulos N, Lagadinou M, Karela A, Kyriakopoulou O, Velissaris D (August 2020). "Neuropsychiatric Effects of Antiviral Drugs". Cureus. 12 (8): e9536. doi:10.7759/cureus.9536. PMC 7465925. PMID 32905132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465925

  450. Dalwadi DA, Kim S, Amdani SM, Chen Z, Huang RQ, Schetz JA (August 2016). "Molecular mechanisms of serotonergic action of the HIV-1 antiretroviral efavirenz". Pharmacol Res. 110: 10–24. doi:10.1016/j.phrs.2016.04.028. PMC 4914440. PMID 27157251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914440

  451. Gatch MB, Kozlenkov A, Huang RQ, Yang W, Nguyen JD, González-Maeso J, et al. (November 2013). "The HIV antiretroviral drug efavirenz has LSD-like properties". Neuropsychopharmacology. 38 (12): 2373–2384. doi:10.1038/npp.2013.135. PMC 3799056. PMID 23702798. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799056

  452. Hamilton Morris (10 April 2014). "Getting High on HIV Medication". Hamilton's Pharmacopeia [web series]. Episode S09. Vice Media. [Web article]. /wiki/Hamilton_Morris

  453. Mangner TJ (1978). Potential Psychotomimetic Antagonists. N,N-diethyl-1-methyl-3-aryl-1,2,5,6-tetrahydropyridine-5-carboxamides (Ph.D. thesis). University of Michigan. doi:10.7302/11268. Archived from the original on 30 March 2025. https://web.archive.org/web/20250330031605/https://media.proquest.com/media/hms/ORIG/2/9yQxJ?cit%3Aauth=MANGNER%2C+THOMAS+JOSEPH&cit%3Atitle=POTENTIAL+PSYCHOTOMIMETIC+ANTAGONISTS.+N%2CN+...&cit%3Apub=ProQuest+Dissertations+and+Theses&cit%3Avol=&cit%3Aiss=&cit%3Apg=&cit%3Adate=1978&ic=true&cit%3Aprod=ProQuest+Dissertations+%26+Theses+Global&_a=ChgyMDI1MDMzMDAzMDAzNTMxOTo3ODkyMzgSBjEwNjkyNRoKT05FX1NFQVJDSCILNzYuMTc0LjAuNTcqBTE4NzUwMgkzMDI5MDU4NjE6DURvY3VtZW50SW1hZ2VCATBSBk9ubGluZVoCRlRiA1BGVGoAcgB6AIIBJVAtMTAxMDI2OC0xMDA1MS1DVVNUT01FUi1udWxsLTcwOTY2NDmSAQZPbmxpbmXKAW9Nb3ppbGxhLzUuMCAoV2luZG93cyBOVCAxMC4wOyBXaW42NDsgeDY0KSBBcHBsZVdlYktpdC81MzcuMzYgKEtIVE1MLCBsaWtlIEdlY2tvKSBDaHJvbWUvMTM0LjAuMC4wIFNhZmFyaS81MzcuMzbSARZEaXNzZXJ0YXRpb25zICYgVGhlc2VzmgIHUHJlUGFpZKoCK09TOkVNUy1NZWRpYUxpbmtzU2VydmljZS1nZXRNZWRpYVVybEZvckl0ZW3KAhNEaXNzZXJ0YXRpb24vVGhlc2lz0gIBWfICAPoCAU6CAwNXZWKKAxxDSUQ6MjAyNTAzMzAwMzAwMzUzMTk6NTcyNjc1&_s=QP3F3liRMGFAbHtX3wDWE8eO1gs%3D

  454. Nichols DE (May 1973). Potential Psychotomimetics: Bromomethoxyamphetamines and Structural Congeners of Lysergic Acid (Thesis). University of Iowa. p. 23. OCLC 1194694085. /wiki/David_E._Nichols

  455. Autorizēties savā kontā (March 2017). "Par aizlieguma noteikšanu vielai NDTDI un tās saturošiem izstrādājumiem" [On the prohibition of the substance NDTDI and products containing it]. LIKUMI.LV (in Latvian). Retrieved 20 March 2025. https://likumi.lv/ta/id/289200

  456. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  457. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  458. Carod-Artal FJ (2015). "Hallucinogenic drugs in pre-Columbian Mesoamerican cultures". Neurologia. 30 (1): 42–49. doi:10.1016/j.nrl.2011.07.003. PMID 21893367. /wiki/Doi_(identifier)

  459. Simms D (21 December 2022). "The History of Psychedelics: Our Connection to Consciousness & Mind-Altering Substances Throughout Time". Tripsitter. Retrieved 4 April 2025. https://tripsitter.com/the-history-of-psychedelics/

  460. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  461. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  462. Carod-Artal FJ (2015). "Hallucinogenic drugs in pre-Columbian Mesoamerican cultures". Neurologia. 30 (1): 42–49. doi:10.1016/j.nrl.2011.07.003. PMID 21893367. /wiki/Doi_(identifier)

  463. Simms D (21 December 2022). "The History of Psychedelics: Our Connection to Consciousness & Mind-Altering Substances Throughout Time". Tripsitter. Retrieved 4 April 2025. https://tripsitter.com/the-history-of-psychedelics/

  464. Valencic, I. (1994). Has the Mystery of the Eleusinian Mysteries been solved. Yearbook for Ethnomedicine and the Study of Consciousness, 3, 325–336. https://www.druglibrary.org/schaffer/lsd/valencic.htm https://www.druglibrary.org/schaffer/lsd/valencic.htm

  465. Wasson RG, Hofmann A, Ruck CA (25 November 2008). The Road to Eleusis: Unveiling the Secret of the Mysteries. North Atlantic Books. ISBN 978-1-55643-752-6. 978-1-55643-752-6

  466. Simms D (21 December 2022). "The History of Psychedelics: Our Connection to Consciousness & Mind-Altering Substances Throughout Time". Tripsitter. Retrieved 4 April 2025. https://tripsitter.com/the-history-of-psychedelics/

  467. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  468. Simms D (21 December 2022). "The History of Psychedelics: Our Connection to Consciousness & Mind-Altering Substances Throughout Time". Tripsitter. Retrieved 4 April 2025. https://tripsitter.com/the-history-of-psychedelics/

  469. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  470. McKenna D, Riba J (2018). "New World Tryptamine Hallucinogens and the Neuroscience of Ayahuasca". Behavioral Neurobiology of Psychedelic Drugs. Curr Top Behav Neurosci. Vol. 36. pp. 283–311. doi:10.1007/7854_2016_472. ISBN 978-3-662-55878-2. PMID 28401525. S2CID 4398627. 978-3-662-55878-2

  471. Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN 978-0-85608-011-1. OCLC 2176880. OL 4850660M. 978-0-85608-011-1

  472. Fish MS, Horning EC (July 1956). "Studies on hallucinogenic snuffs". J Nerv Ment Dis. 124 (1): 33–37. doi:10.1097/00005053-195607000-00004. PMID 13416916. /wiki/Doi_(identifier)

  473. Holmstedt B, Lindgren JE (1967). "Chemical Constituents and Pharmacology of South American Snuffs". In Efron DH, Holmstedt B, Kline NS (eds.). Ethnopharmacologic Search for Psychoactive Drugs, Proceedings of a Symposium held in San Francisco, California, January 28-30, 1967. Raven Press. pp. 339–373. ISBN 978-0-89004-047-8. OCLC 14498182. The first written account of the action of the American intoxicating snuffs is that by Friar Ramon Pane on cohoba, published first in 1511 and quoted in detail by Wassén (this volume). Ramon Pane's observation of symptoms is revealing: [...] This undoubtedly constitutes the first written account of the psychotomimetic effects of the tryptamines, [...] 978-0-89004-047-8

  474. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  475. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  476. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  477. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  478. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  479. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  480. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  481. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  482. Briggs JR (8 April 1887). ""Muscale Buttons" – Physiological Effects - Personal Experience". The Medical Register: 267–268. Archived from the original on 5 April 2025. https://web.archive.org/web/20250405031456/https://bibliography.maps.org/resources/download/12878

  483. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  484. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  485. Briggs JR (8 April 1887). ""Muscale Buttons" – Physiological Effects - Personal Experience". The Medical Register: 267–268. Archived from the original on 5 April 2025. https://web.archive.org/web/20250405031456/https://bibliography.maps.org/resources/download/12878

  486. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  487. Briggs JR (8 April 1887). ""Muscale Buttons" – Physiological Effects - Personal Experience". The Medical Register: 267–268. Archived from the original on 5 April 2025. https://web.archive.org/web/20250405031456/https://bibliography.maps.org/resources/download/12878

  488. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  489. Briggs JR (8 April 1887). ""Muscale Buttons" – Physiological Effects - Personal Experience". The Medical Register: 267–268. Archived from the original on 5 April 2025. https://web.archive.org/web/20250405031456/https://bibliography.maps.org/resources/download/12878

  490. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  491. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  492. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  493. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  494. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  495. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  496. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  497. Mitchell SW (December 1896). "Remarks on the Effects of Anhelonium Lewinii (the Mescal Button)". Br Med J. 2 (1875): 1625–1629. doi:10.1136/bmj.2.1875.1625. PMC 2511273. PMID 20756623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2511273

  498. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  499. Dawson A (30 January 2024). "Peyote". Oxford Research Encyclopedia of Latin American History. Oxford University Press. doi:10.1093/acrefore/9780199366439.013.1139. ISBN 978-0-19-936643-9. 978-0-19-936643-9

  500. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  501. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  502. Havelock Ellis (January 1898). "Mescal: A New Artificial Paradise". The Contemporary Review. 73: 130–141. /wiki/Havelock_Ellis

  503. Daniel M. Perrine (2001). "Visions of the Night Western Medicine Meets Peyote 1887-1899". The Heffter Review of Psychedelic Research. 2: 6–52. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=78c291287af64d13ef9fbc348b9353226f9b047a

  504. Dawson AS (4 September 2018). "1887: Dr. John Briggs Eats Some Peyote". The Peyote Effect: From the Inquisition to the War on Drugs (PDF). University of California Press. pp. 11–22. doi:10.1525/california/9780520285422.003.0002. ISBN 978-0-520-28542-2. 978-0-520-28542-2

  505. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  506. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  507. Heffter A (1898). "Ueber Pellote: Beiträge zur chemischen und pharmakologischen Kenntniss der Cacteen Zweite Mittheilung" [About Pellote: Contributions to the chemical and pharmacological knowledge of cacti, second communication] (PDF). Archiv für Experimentelle Pathologie und Pharmakologie (in German). 40 (5–6): 385–429. doi:10.1007/BF01825267. ISSN 0028-1298. Retrieved 5 April 2025. https://zenodo.org/records/2003381/files/article.pdf

  508. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  509. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  510. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  511. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  512. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  513. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  514. Beringer K (1927). Der Meskalinrausch: seine Geschichte und Erscheinungsweise [Mescaline Intoxication: Its History and Manifestation] (in German). https://books.google.com/books?id=bKIyn-JitfIC

  515. Jay M (18 June 2019). Mescaline: A Global History of the First Psychedelic. Yale University Press. pp. 62, 65, 67, 85, 91–92, 98–100, 131–132, 135, 138. ISBN 978-0-300-23107-6. 978-0-300-23107-6

  516. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  517. Klüver H (1928). Mescal: The ʻdivine' Plant and Its Psychological Effects. K. Paul, Trench, Trubner & Company Limited. https://books.google.com/books?id=oZYaAAAAIAAJ

  518. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  519. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  520. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  521. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  522. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  523. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  524. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  525. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  526. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  527. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  528. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  529. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  530. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  531. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  532. Schultes, R. E. (1939). The identifications of teonanácatl, a narcotic basidiomycete of the Aztecs. Botanical Museum Leaflets, Harvard University, 7, 37–55.

  533. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  534. Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN 978-0-85608-011-1. OCLC 2176880. OL 4850660M. 978-0-85608-011-1

  535. Smith S, Timmis GM (1932). "98. The alkaloids of ergot. Part III. Ergine, a new base obtained by the degradation of ergotoxine and ergotinine". Journal of the Chemical Society (Resumed): 763–766. doi:10.1039/jr9320000763. ISSN 0368-1769. https://xlink.rsc.org/?DOI=jr9320000763

  536. Smith S, Timmis GM (1936). "311. The alkaloids of ergot. Part VII. isoErgine and isolysergic acids". Journal of the Chemical Society (Resumed): 1440. doi:10.1039/jr9360001440. ISSN 0368-1769. /wiki/Doi_(identifier)

  537. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  538. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  539. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  540. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  541. Belouin SJ, Henningfield JE (November 2018). "Psychedelics: Where we are now, why we got here, what we must do". Neuropharmacology. 142: 7–19. doi:10.1016/j.neuropharm.2018.02.018. PMID 29476779. https://doi.org/10.1016%2Fj.neuropharm.2018.02.018

  542. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  543. Gach J (2008). "Biological Psychiatry in the Nineteenth and Twentieth Centuries". History of Psychiatry and Medical Psychology (PDF). Boston, MA: Springer US. pp. 381–418. doi:10.1007/978-0-387-34708-0_12. ISBN 978-0-387-34707-3. Archived from the original (PDF) on 19 March 2025. In 1938 the Swiss chemist Albert Hofmann produced lysergic acid diethylamide (LSD)—the first, and most prominent, of these chemically synthesized agents—in the course of a systematic investigation of partially synthetic amides of lysergic acid in the Sandoz Pharmaceutical Laboratories in Basel (Hofmann 1970). [Taking] LSD by accident in 1943, Hofmann discovered its psychoactivity. He then experimented with it on himself and found that it produced a peculiar restlessness, extreme activity of the imagination, and an uninterrupted stream of images. Hofmann did not publish the results of his experiment, though he became quite famous later. Hofmann and Arthur Stoll, the head of the Sandoz pharmaceutical laboratory in Basle, published the first paper on the synthesis of LSD in 1943, while Stoll went on to publish the first paper on the effects of lysergic diethylamide acid in 1947. [...] Stoll, Arthur and Hofmann, Albert. 1943. Partialsynthese von Alkaloiden vom Typus des Ergobasins. Helv. Chim. Acta 26:944. Stoll, Arthur. 1947. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Neurol. Psychiat. 60:279. [The first paper on the hallucinogenic effect of LSD.] 978-0-387-34707-3

  544. Stoll A, Hofmann A (3 May 1943). "Partialsynthese von Alkaloiden vom Typus des Ergobasins. (6. Mitteilung über Mutterkornalkaloide)" [Partial synthesis of ergobasine-type alkaloids. (6th report on ergot alkaloids)]. Helvetica Chimica Acta. 26 (3): 944–965. doi:10.1002/hlca.19430260326. ISSN 0018-019X. /wiki/Doi_(identifier)

  545. Stoll WA (1947). "11. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe" [11. Lysergic Acid Diethylamide, a Hallucinogen From the Ergot Group]. Schweizer Archiv für Neurologie und Psychiatrie. 60: 279–323. ISSN 0258-7661. Archived from the original on 1 April 2025. https://web.archive.org/web/20250401005831/https://bibliography.maps.org/resources/download/16963

  546. Stoll W (1949). "Ein neues, in sehr kleinen Mengen wirksames Phantastikum" [A New Phantasticum, Effective in Very Tiny Amounts]. Schweizer Archiv für Neurologie und Psychiatrie. 64: 483–484. ISSN 0258-7661. Archived from the original on 1 April 2025. https://web.archive.org/web/20250401012040/https://bibliography.maps.org/resources/download/16676

  547. Nichols DE (October 2018). "Dark Classics in Chemical Neuroscience: Lysergic Acid Diethylamide (LSD)". ACS Chem Neurosci. 9 (10): 2331–2343. doi:10.1021/acschemneuro.8b00043. PMID 29461039. /wiki/Doi_(identifier)

  548. Bonson KR (February 2018). "Regulation of human research with LSD in the United States (1949-1987)". Psychopharmacology (Berl). 235 (2): 591–604. doi:10.1007/s00213-017-4777-4. PMID 29147729. /wiki/Doi_(identifier)

  549. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  550. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  551. Szára S (December 2007). "DMT at fifty". Neuropsychopharmacol Hung. 9 (4): 201–205. PMID 18510265. /wiki/PMID_(identifier)

  552. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  553. Szara S (November 1956). "Dimethyltryptamin: its metabolism in man; the relation to its psychotic effect to the serotonin metabolism". Experientia. 12 (11): 441–442. doi:10.1007/BF02157378. PMID 13384414. /wiki/Doi_(identifier)

  554. Szara I, Sai-Halasz A, Boszormenyi Z (1958). "Dimethyltryptamine als neues Psychotikum" [Dimethyltryptamine as a new psychotic agent]. Acta Physiol Acad Sci Hung (in German). 11 (Suppl): 78–79. PMID 13469470. /wiki/PMID_(identifier)

  555. Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN 978-0-85608-011-1. OCLC 2176880. OL 4850660M. 978-0-85608-011-1

  556. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  557. Abram Hoffer, Humphrey Osmond (1967). "Chapter II A d-Lysergic Acid Diethylamide". The Hallucinogens. Elsevier. pp. 83–236. doi:10.1016/B978-1-4832-3296-6.50005-7. ISBN 978-1-4832-3296-6. LCCN 66030086. OCLC 332437. OL 35255701M. 978-1-4832-3296-6

  558. Hofmann A (1963). "The Active Principles of the Seeds of Rivea Corymbosa and Ipomoea Violacea". Botanical Museum Leaflets, Harvard University. 20 (6). Harvard University Herbaria: 194–212. doi:10.5962/p.168542. ISSN 0006-8098. JSTOR 41762231. Archived from the original on 28 March 2025. https://web.archive.org/web/20250328174012/https://bibliography.maps.org/resources/download/13684

  559. Hofmann A, Tscherter H (1960). "Isolierung von Lysergsäure-Alkaloiden aus der mexikanischen Zauberdroge Ololiuqui (Rivea corymbosa (L.) Hall. f.)" [Isolation of lysergic acid alkaloids from the Mexican magic drug Ololiuqui (Rivea corymbosa (L.) Hall. f.)] (PDF). Experientia (in German). 16 (9): 414. doi:10.1007/BF02178840. ISSN 0014-4754. PMID 13715089. Retrieved 28 March 2025. https://link.springer.com/content/pdf/10.1007/BF02178840.pdf

  560. Brimblecombe RW, Pinder RM (1975). "Indolealkylamines and Related Compounds". Hallucinogenic Agents. Bristol: Wright-Scientechnica. pp. 98–144. ISBN 978-0-85608-011-1. OCLC 2176880. OL 4850660M. 978-0-85608-011-1

  561. Hofmann A (1963). "The Active Principles of the Seeds of Rivea Corymbosa and Ipomoea Violacea". Botanical Museum Leaflets, Harvard University. 20 (6). Harvard University Herbaria: 194–212. doi:10.5962/p.168542. ISSN 0006-8098. JSTOR 41762231. Archived from the original on 28 March 2025. https://web.archive.org/web/20250328174012/https://bibliography.maps.org/resources/download/13684

  562. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  563. Mangini M (2024). "Unseen Women in Psychedelic History". Journal of Humanistic Psychology. 64 (4): 635–652. doi:10.1177/00221678211029186. ISSN 0022-1678. /wiki/Doi_(identifier)

  564. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  565. Mangini M (2024). "Unseen Women in Psychedelic History". Journal of Humanistic Psychology. 64 (4): 635–652. doi:10.1177/00221678211029186. ISSN 0022-1678. /wiki/Doi_(identifier)

  566. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  567. Mangini M (2024). "Unseen Women in Psychedelic History". Journal of Humanistic Psychology. 64 (4): 635–652. doi:10.1177/00221678211029186. ISSN 0022-1678. /wiki/Doi_(identifier)

  568. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  569. Mangini M (2024). "Unseen Women in Psychedelic History". Journal of Humanistic Psychology. 64 (4): 635–652. doi:10.1177/00221678211029186. ISSN 0022-1678. /wiki/Doi_(identifier)

  570. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  571. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  572. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  573. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  574. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  575. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  576. Nichols DE (October 2020). "Psilocybin: from ancient magic to modern medicine". J Antibiot (Tokyo). 73 (10): 679–686. doi:10.1038/s41429-020-0311-8. PMID 32398764. Total psilocybin and psilocin levels in species known to be used recreationally varied from 0.1% to nearly 2% by dry weight [8]. The medium oral dose of psilocybin is 4–8 mg, which elicits the same symptoms as the consumption of about 2 g of dried Psilocybe Mexicana [9]. https://www.researchgate.net/publication/341321407

  577. Lyttle T, Goldstein D, Gartz J (1996). "Bufo toads and bufotenine: fact and fiction surrounding an alleged psychedelic". J Psychoactive Drugs. 28 (3): 267–290. doi:10.1080/02791072.1996.10472488. PMID 8895112. /wiki/Doi_(identifier)

  578. Bochner, R., & Goyffon, M. (2007). L’œuvre scientifique de Césaire Phisalix (1852-1906), découvreur du sérum antivenimeux. Bull Soc Herp Fr, 123, 15-46. https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/L%20oeuvre%20scientifique%20de%20Cesaire%20Phisalix%20(1852--1906)%20decouvreur%20du%20serum%20antivenimeux.pdf https://www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/L%20oeuvre%20scientifique%20de%20Cesaire%20Phisalix%20(1852--1906)%20decouvreur%20du%20serum%20antivenimeux.pdf

  579. Phisalix C, Bertrand G (1893) Toxicité comparée du sang et du venin de crapaud commun, considérée au point de vue de la sécrétion interne des glandes cutanées de cet animal. C R Soc Biol 45:477–479. https://scholar.google.com/scholar?cluster=14905926340091797397 https://scholar.google.com/scholar?cluster=14905926340091797397

  580. Lyttle T, Goldstein D, Gartz J (1996). "Bufo toads and bufotenine: fact and fiction surrounding an alleged psychedelic". J Psychoactive Drugs. 28 (3): 267–290. doi:10.1080/02791072.1996.10472488. PMID 8895112. /wiki/Doi_(identifier)

  581. Lyttle T, Goldstein D, Gartz J (1996). "Bufo toads and bufotenine: fact and fiction surrounding an alleged psychedelic". J Psychoactive Drugs. 28 (3): 267–290. doi:10.1080/02791072.1996.10472488. PMID 8895112. /wiki/Doi_(identifier)

  582. McBride MC (2000). "Bufotenine: toward an understanding of possible psychoactive mechanisms". Journal of Psychoactive Drugs. 32 (3): 321–331. doi:10.1080/02791072.2000.10400456. PMID 11061684. /wiki/Doi_(identifier)

  583. Shen HW, Jiang XL, Winter JC, Yu AM (October 2010). "Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions". Curr Drug Metab. 11 (8): 659–666. doi:10.2174/138920010794233495. PMC 3028383. PMID 20942780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028383

  584. Lyttle T, Goldstein D, Gartz J (1996). "Bufo toads and bufotenine: fact and fiction surrounding an alleged psychedelic". J Psychoactive Drugs. 28 (3): 267–290. doi:10.1080/02791072.1996.10472488. PMID 8895112. /wiki/Doi_(identifier)

  585. McBride MC (2000). "Bufotenine: toward an understanding of possible psychoactive mechanisms". Journal of Psychoactive Drugs. 32 (3): 321–331. doi:10.1080/02791072.2000.10400456. PMID 11061684. /wiki/Doi_(identifier)

  586. Shen HW, Jiang XL, Winter JC, Yu AM (October 2010). "Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions". Curr Drug Metab. 11 (8): 659–666. doi:10.2174/138920010794233495. PMC 3028383. PMID 20942780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028383

  587. Shen HW, Jiang XL, Winter JC, Yu AM (October 2010). "Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions". Curr Drug Metab. 11 (8): 659–666. doi:10.2174/138920010794233495. PMC 3028383. PMID 20942780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028383

  588. Ott J (2001). "Shamanic-Snuff Psychonautica: Pharmañopo: Bufotenine—Psychonautics". Shamanic Snuffs or Entheogenic Errhines. Entheobotanica. pp. 99–116 (105–112, 114–115). ISBN 978-1-888755-02-2. OCLC 56061312. Retrieved 24 January 2025. 978-1-888755-02-2

  589. Ott J (2001). "Pharmañopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine". Journal of Psychoactive Drugs. 33 (3): 273–281. doi:10.1080/02791072.2001.10400574. PMID 11718320. S2CID 5877023. /wiki/Jonathan_Ott

  590. Delgrasso A (17 February 2024). "Defining 5-MeO-DMT in Historical and Cultural Contexts". World Futures. 80 (2): 174–197. doi:10.1080/02604027.2024.2330255. ISSN 0260-4027. /wiki/Doi_(identifier)

  591. Ermakova AO, Dunbar F, Rucker J, Johnson MW (March 2022). "A narrative synthesis of research with 5-MeO-DMT". J Psychopharmacol. 36 (3): 273–294. doi:10.1177/02698811211050543. PMC 8902691. PMID 34666554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902691

  592. Ermakova AO, Dunbar F, Rucker J, Johnson MW (March 2022). "A narrative synthesis of research with 5-MeO-DMT". J Psychopharmacol. 36 (3): 273–294. doi:10.1177/02698811211050543. PMC 8902691. PMID 34666554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902691

  593. Ermakova AO, Dunbar F, Rucker J, Johnson MW (March 2022). "A narrative synthesis of research with 5-MeO-DMT". J Psychopharmacol. 36 (3): 273–294. doi:10.1177/02698811211050543. PMC 8902691. PMID 34666554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902691

  594. Delgrasso A (17 February 2024). "Defining 5-MeO-DMT in Historical and Cultural Contexts". World Futures. 80 (2): 174–197. doi:10.1080/02604027.2024.2330255. ISSN 0260-4027. /wiki/Doi_(identifier)

  595. Delgrasso A (17 February 2024). "Defining 5-MeO-DMT in Historical and Cultural Contexts". World Futures. 80 (2): 174–197. doi:10.1080/02604027.2024.2330255. ISSN 0260-4027. /wiki/Doi_(identifier)

  596. Ermakova AO, Dunbar F, Rucker J, Johnson MW (March 2022). "A narrative synthesis of research with 5-MeO-DMT". J Psychopharmacol. 36 (3): 273–294. doi:10.1177/02698811211050543. PMC 8902691. PMID 34666554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902691

  597. Erspamer V, Vitali T, Roseghini M, Cei JM (July 1967). "5-Methoxy- and 5-hydroxyindoles in the skin of Bufo alvarius". Biochem Pharmacol. 16 (7): 1149–1164. doi:10.1016/0006-2952(67)90147-5. PMID 6053590. http://sedici.unlp.edu.ar/handle/10915/88423

  598. Siebert A (8 January 2021). "Hamilton Morris On Mistakes, 5-MeO-DMT And Preserving Psychedelic Toads". Forbes. Retrieved 4 April 2025. https://www.forbes.com/sites/amandasiebert/2021/01/08/hamilton-morris-on-mistakes-5-meo-dmt-and-preserving-psychedelic-toads/

  599. Weil AT, Davis W (January 1994). "Bufo alvarius: a potent hallucinogen of animal origin". J Ethnopharmacol. 41 (1–2): 1–8. doi:10.1016/0378-8741(94)90051-5. PMID 8170151. /wiki/Doi_(identifier)

  600. Ermakova AO, Dunbar F, Rucker J, Johnson MW (March 2022). "A narrative synthesis of research with 5-MeO-DMT". J Psychopharmacol. 36 (3): 273–294. doi:10.1177/02698811211050543. PMC 8902691. PMID 34666554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902691

  601. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  602. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  603. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  604. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  605. Webb A (2023). "Nested hermeneutics: Mind at Large as a curated trope of psychedelic experience". Interdisciplinary Science Reviews. 48 (5): 768–787. Bibcode:2023ISRv...48..768W. doi:10.1080/03080188.2023.2249208. ISSN 0308-0188. https://doi.org/10.1080%2F03080188.2023.2249208

  606. Swanson LR (2018). "Unifying Theories of Psychedelic Drug Effects". Front Pharmacol. 9: 172. doi:10.3389/fphar.2018.00172. PMC 5853825. PMID 29568270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853825

  607. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  608. Lukasiewicz K, Baker JJ, Zuo Y, Lu J (2021). "Serotonergic Psychedelics in Neural Plasticity". Front Mol Neurosci. 14: 748359. doi:10.3389/fnmol.2021.748359. PMC 8545892. PMID 34712118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545892

  609. Swanson LR (2018). "Unifying Theories of Psychedelic Drug Effects". Front Pharmacol. 9: 172. doi:10.3389/fphar.2018.00172. PMC 5853825. PMID 29568270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853825

  610. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  611. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  612. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  613. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  614. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  615. McKenna T (1999). "[Chapter 14:] A Brief History of Psychedelics". Food of the Gods: The Search for the Original Tree of Knowledge : a Radical History of Plants, Drugs and Human Evolution (PDF). Rider. pp. 223–245. ISBN 978-0-7126-7038-8. 978-0-7126-7038-8

  616. Passie T, Benzenhöfer U (January 2018). "MDA, MDMA, and other "mescaline-like" substances in the US military's search for a truth drug (1940s to 1960s)" (PDF). Drug Test Anal. 10 (1): 72–80. doi:10.1002/dta.2292. PMID 28851034. https://psychedelic-science.org/fileadmin/user_upload/10_Passie_Benzenho__fer_MDMA_and_the_military_DTA_2017_Kopie.pdf

  617. Smith DE, Raswyck GE, Davidson LD (2014). "From Hofmann to the Haight Ashbury, and into the future: the past and potential of lysergic acid diethlyamide". J Psychoactive Drugs. 46 (1): 3–10. doi:10.1080/02791072.2014.873684. PMID 24830180. /wiki/Doi_(identifier)

  618. "The First MDA trip and the measurement of 'mystical experience' after MDA, LSD, and Psilocybin". Psychedelic research. 18 July 2008. Archived from the original on 13 July 2012. https://archive.today/20120713055811/http://psychedelicresearch.org/?p=45

  619. Benzenhöfer U, Passie T (August 2010). "Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin". Addiction. 105 (8): 1355–61. doi:10.1111/j.1360-0443.2010.02948.x. PMID 20653618. /wiki/Doi_(identifier)

  620. Gordon A. Alles (1959). "Some Relations Between Chemical Structure and Physiological Action of Mescaline and Related Compounds / Structure and Action of Phenethylamines". In Abramson HA (ed.). Neuropharmacology: Transactions of the Fourth Conference, September 25, 26, and 27, 1957, Princeton, N. J. New York: Josiah Macy Foundation. pp. 181–268. OCLC 9802642. Archived from the original on 21 March 2025. /wiki/Gordon_A._Alles

  621. Gordon A. Alles (1959). "Subjective Reactions to Phenethylamine Hallucinogens". A Pharmacologic Approach to the Study of the Mind. Springfield: CC Thomas. pp. 238–250 (241–246). ISBN 978-0-398-04254-7. {{cite book}}: ISBN / Date incompatibility (help) 978-0-398-04254-7

  622. Peretz DI, Smythies JR, Gibson WC (April 1955). "A new hallucinogen: 3,4,5-trimethoxyphenyl-beta-aminopropane with notes on the stroboscopic phenomenon". J Ment Sci. 101 (423): 317–329. doi:10.1192/bjp.101.423.317. PMID 13243046. /wiki/Doi_(identifier)

  623. Shulgin AT, Bunnell S, Sargent T (1961). "The Psychotomimetic Properties of 3,4,5-Trimethoxyamphetamine". Nature. 189 (4769): 1011–1012. Bibcode:1961Natur.189.1011S. doi:10.1038/1891011a0. ISSN 0028-0836. /wiki/Bibcode_(identifier)

  624. Hey P (1947). "The synthesis of a new homologue of mescaline". Q J Pharm Pharmacol. 20 (2): 129–134. PMID 20260568. Archived from the original on 19 July 2019. https://web.archive.org/web/20190719130050/https://www.thevespiary.org/rhodium/Rhodium/chemistry/tma.hey.html

  625. Shulgin AT (1978). "Psychotomimetic Drugs: Structure-Activity Relationships". In Iversen LL, Iversen SD, Snyder SH (eds.). Stimulants. Boston, MA: Springer US. pp. 243–333. doi:10.1007/978-1-4757-0510-2_6. ISBN 978-1-4757-0512-6. 978-1-4757-0512-6

  626. Shulgin AT (1978). "Psychotomimetic Drugs: Structure-Activity Relationships". In Iversen LL, Iversen SD, Snyder SH (eds.). Stimulants. Boston, MA: Springer US. pp. 243–333. doi:10.1007/978-1-4757-0510-2_6. ISBN 978-1-4757-0512-6. 978-1-4757-0512-6

  627. Jansen, MPJM (1931). "β-2: 4: 5-Trimethoxyphenylethylamine, an isomer of mescaline". Recueil des Travaux Chimiques des Pays-Bas. 50 (4): 291–312. doi:10.1002/recl.19310500403. Retrieved 22 November 2022. https://onlinelibrary.wiley.com/doi/10.1002/recl.19310500403

  628. Passie T, Guss J, Krähenmann R (2022). "Lower-dose psycholytic therapy - A neglected approach". Front Psychiatry. 13: 1020505. doi:10.3389/fpsyt.2022.1020505. PMC 9755513. PMID 36532196. Around 1960, Sandoz developed two short-acting derivatives of psilocybin, codenamed CZ-74 (4-HO-DET, 4-hydroxy-N,N-diethyltryptamine) and CEY-19 (ethocybin, 4-phosphoryloxy-N,N-diethyltryptamine) (37), which were used in psycholytic therapy [e.g. (34, 38, 39)]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755513

  629. Boszormenyi Z, Der P, Nagy T (January 1959). "Observations on the psychotogenic effect of N-N diethyltryptamine, a new tryptamine derivative". J Ment Sci. 105 (438): 171–181. doi:10.1192/bjp.105.438.171. PMID 13641966. /wiki/Doi_(identifier)

  630. Leuner H, Baer G (1965). "Two new short-acting hallucinogens of the psilocybin group". Neuropsychopharmacology. 4: 471–474. Archived from the original on 2025-04-22. https://web.archive.org/web/20250422014123/https://bibliography.maps.org/resources/download/19910

  631. Barceloux DG (9 March 2012). "Tryptamine Designer Drugs". Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. Wiley. pp. 193–199. doi:10.1002/9781118105955.ch11. ISBN 978-0-471-72760-6. During the early 1960s, α-ethyltryptamine [(AET)] (Monase®, Upjohn Company) was marketed in the United States as an antidepressant and stimulant, but the drug was removed shortly after introduction because of the occurrence of serious blood disorders. [...] [α-Methyltryptamine (AMT)] (Indopan) was marketed in the Soviet Union during the 1960s as an antidepressant. 978-0-471-72760-6

  632. Glennon RA, Dukat MG (December 2023). "α-Ethyltryptamine: A Ratiocinatory Review of a Forgotten Antidepressant". ACS Pharmacology & Translational Science. 6 (12): 1780–1789. doi:10.1021/acsptsci.3c00139. PMC 10714429. PMID 38093842. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714429

  633. Oeri HE (May 2021). "Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy". Journal of Psychopharmacology. 35 (5): 512–536. doi:10.1177/0269881120920420. PMC 8155739. PMID 32909493. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155739

  634. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  635. Romero D (September 5, 1995). "Sasha Shulgin, Psychedelic Chemist". Los Angeles Times. Archived from the original on March 26, 2007. Retrieved July 8, 2006. http://www.erowid.org/culture/characters/shulgin_alexander/shulgin_alexander_interview1.shtml

  636. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  637. Romero D (September 5, 1995). "Sasha Shulgin, Psychedelic Chemist". Los Angeles Times. Archived from the original on March 26, 2007. Retrieved July 8, 2006. http://www.erowid.org/culture/characters/shulgin_alexander/shulgin_alexander_interview1.shtml

  638. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  639. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  640. Baggott MJ (1 October 2023). "Learning about STP: A Forgotten Psychedelic from the Summer of Love" (PDF). History of Pharmacy and Pharmaceuticals. 65 (1): 93–116. doi:10.3368/hopp.65.1.93. ISSN 2694-3034. Retrieved 26 January 2025. The Grateful Dead learned they could use small amounts as a stimulant, an effect they used extensively during the recording of the album Aoxomoxoa in 1968 and 1969.143 The use of lower doses of DOM echoed DOET's "psychic energizer" effects and may be the first documented use of subpsychedelic doses of a psychedelic for cognitive enhancement, a practice that is now called microdosing.144 https://hopp.uwpress.org/content/wphopp/65/1/93.full.pdf

  641. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  642. Dunlap LE, Andrews AM, Olson DE (October 2018). "Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine". ACS Chem Neurosci. 9 (10): 2408–2427. doi:10.1021/acschemneuro.8b00155. PMC 6197894. PMID 30001118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197894

  643. Benzenhöfer U, Passie T (August 2010). "Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin". Addiction. 105 (8): 1355–61. doi:10.1111/j.1360-0443.2010.02948.x. PMID 20653618. /wiki/Doi_(identifier)

  644. Passie T (29 June 2023). The History of MDMA. Oxford University Press. pp. 6–16, 18, 27, 29, 32, 40. doi:10.1093/oso/9780198867364.001.0001. ISBN 978-0-19-886736-4. 978-0-19-886736-4

  645. Bernschneider-Reif S, Oxler F, Freudenmann RW (November 2006). "The origin of MDMA ("ecstasy")--separating the facts from the myth". Pharmazie. 61 (11): 966–972. PMID 17152992. /wiki/PMID_(identifier)

  646. Benzenhöfer U, Passie T (August 2010). "Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin". Addiction. 105 (8): 1355–61. doi:10.1111/j.1360-0443.2010.02948.x. PMID 20653618. /wiki/Doi_(identifier)

  647. Passie T (29 June 2023). The History of MDMA. Oxford University Press. pp. 6–16, 18, 27, 29, 32, 40. doi:10.1093/oso/9780198867364.001.0001. ISBN 978-0-19-886736-4. 978-0-19-886736-4

  648. Bernschneider-Reif S, Oxler F, Freudenmann RW (November 2006). "The origin of MDMA ("ecstasy")--separating the facts from the myth". Pharmazie. 61 (11): 966–972. PMID 17152992. /wiki/PMID_(identifier)

  649. Benzenhöfer U, Passie T (August 2010). "Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin". Addiction. 105 (8): 1355–61. doi:10.1111/j.1360-0443.2010.02948.x. PMID 20653618. /wiki/Doi_(identifier)

  650. Walker SR, Pullella GA, Piggott MJ, Duggan PJ (5 July 2023). "Introduction to the chemistry and pharmacology of psychedelic drugs". Australian Journal of Chemistry. 76 (5): 236–257. doi:10.1071/CH23050. ISSN 0004-9425. Retrieved 4 April 2025. https://www.publish.csiro.au/ch/pdf/CH23050

  651. Emerson A, Ponté L, Jerome L, Doblin R (2014). "History and future of the Multidisciplinary Association for Psychedelic Studies (MAPS)". J Psychoactive Drugs. 46 (1): 27–36. doi:10.1080/02791072.2014.877321. PMID 24830183. /wiki/Doi_(identifier)

  652. Emerson A, Ponté L, Jerome L, Doblin R (2014). "History and future of the Multidisciplinary Association for Psychedelic Studies (MAPS)". J Psychoactive Drugs. 46 (1): 27–36. doi:10.1080/02791072.2014.877321. PMID 24830183. /wiki/Doi_(identifier)

  653. Hamilton Morris (8 February 2021). "Ultra LSD". Hamilton's Pharmacopeia. Season 3. Episode 6. Vice Media. Event occurs at 19:41–22:17. Viceland. [Morris:] David Nichols has synthesized more psychedelic compounds than almost any other chemist in history. Maybe the most. He's made enormous contributions to the pharmacological understanding of how psychedelics act in the brain. And he's a real legend among anyone who cares about the science surrounding psychedelics. /wiki/Hamilton_Morris

  654. Nichols DE (2022). "Entactogens: How the Name for a Novel Class of Psychoactive Agents Originated". Front Psychiatry. 13: 863088. doi:10.3389/fpsyt.2022.863088. PMC 8990025. PMID 35401275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990025

  655. Baumeister D, Tojo LM, Tracy DK (April 2015). "Legal highs: staying on top of the flood of novel psychoactive substances". Ther Adv Psychopharmacol. 5 (2): 97–132. doi:10.1177/2045125314559539. PMC 4521440. PMID 26240749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521440

  656. Passie T, Brandt SD (2018). "Self-Experiments with Psychoactive Substances: A Historical Perspective" (PDF). Handb Exp Pharmacol. Handbook of Experimental Pharmacology. 252: 69–110. doi:10.1007/164_2018_177. ISBN 978-3-030-10560-0. PMID 30478735. One follower of Shulgin's research can be seen in the Swiss chemist Daniel Trachsel, who published various contributions on many new psychoactive substances and their effects (Trachsel 2011, 2012; Trachsel et al. 2013). Experimental results about their psychoactive effects are included, but the author distanced himself from any [self-experiments (SEs)] (Trachsel 2011, p. 12). 978-3-030-10560-0

  657. Hamilton Morris (27 November 2021). "PODCAST 34: A Four Hour Interview with Dr. David E Nichols". The Hamilton Morris Podcast (Podcast). Patreon. Retrieved 30 January 2025. /wiki/Hamilton_Morris

  658. Heim R, Elz S (March 2000). "39. Novel Extremely Potent Partial 5-HT2A-Receptor Agonists: Successful Application of a New Structure-Activity Concept". Arch. Pharm. Pharm. Med. Chem. 333 (Suppl 1): 1–40 (18). ISSN 0365-6233. Archived from the original on 20 March 2025. https://web.archive.org/web/20250320195942/https://bitnest.netfirms.com/external/Arch.Pharm.Pharm.Med.Chem/333.S1.18

  659. Pertz HH, Heim R, Elz S (2000). "B 1.11. N-Benzylated phenylethanamines are highly potent partial agonists at 5-HT2A receptors". Arch. Pharm. Pharm. Med. Chem. 333 (Suppl 2): 1–84 (30). Archived from the original on 20 March 2025. https://web.archive.org/web/20250320194355/https://bitnest.netfirms.com/external/Arch.Pharm.Pharm.Med.Chem/333.S2.30

  660. Heim R (25 March 2003). "Synthese und Pharmakologie potenter 5-HT2A-Rezeptoragonisten mit N-2-Methoxybenzyl-Partialstruktur. Entwicklung eines neuen Struktur-Wirkungskonzepts" [Synthesis and pharmacology of potent 5-HT2A receptor agonists with an N-2-methoxybenzyl partial structure. Development of a new structure-activity concept.] (in German). diss.fu-berlin.de. Archived from the original on 2012-04-16. Retrieved 2013-05-10. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000001221

  661. Wood DM, Sedefov R, Cunningham A, Dargan PI (February 2015). "Prevalence of use and acute toxicity associated with the use of NBOMe drugs". Clin Toxicol (Phila). 53 (2): 85–92. doi:10.3109/15563650.2015.1004179. PMID 25658166. /wiki/Doi_(identifier)

  662. Morgans J (8 February 2017). "NBOMe in Australia: Everything We Know About the Drug and Why it's Killing People". VICE. Retrieved 4 April 2025. https://www.vice.com/en/article/nbome-in-australia-everything-we-know-about-what-it-is-and-why-its-killing-people/

  663. Lawn W, Barratt M, Williams M, Horne A, Winstock A (August 2014). "The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample". J Psychopharmacol. 28 (8): 780–788. doi:10.1177/0269881114523866. hdl:1959.4/unsworks_73366. PMID 24569095. /wiki/Doi_(identifier)

  664. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  665. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  666. McCorvy JD, Roth BL (June 2015). "Structure and function of serotonin G protein-coupled receptors". Pharmacol Ther. 150: 129–142. doi:10.1016/j.pharmthera.2015.01.009. PMC 4414735. PMID 25601315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735

  667. Rapport MM, Green AA, Page IH (December 1948). "Serum vasoconstrictor, serotonin; isolation and characterization". J Biol Chem. 176 (3): 1243–1251. doi:10.1016/S0021-9258(18)57137-4. PMID 18100415. https://doi.org/10.1016%2FS0021-9258%2818%2957137-4

  668. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  669. McCorvy JD, Roth BL (June 2015). "Structure and function of serotonin G protein-coupled receptors". Pharmacol Ther. 150: 129–142. doi:10.1016/j.pharmthera.2015.01.009. PMC 4414735. PMID 25601315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735

  670. Twarog BM, Page IH (October 1953). "Serotonin content of some mammalian tissues and urine and a method for its determination". Am J Physiol. 175 (1): 157–161. doi:10.1152/ajplegacy.1953.175.1.157. PMID 13114371. /wiki/Doi_(identifier)

  671. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  672. McCorvy JD, Roth BL (June 2015). "Structure and function of serotonin G protein-coupled receptors". Pharmacol Ther. 150: 129–142. doi:10.1016/j.pharmthera.2015.01.009. PMC 4414735. PMID 25601315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735

  673. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  674. McCorvy JD, Roth BL (June 2015). "Structure and function of serotonin G protein-coupled receptors". Pharmacol Ther. 150: 129–142. doi:10.1016/j.pharmthera.2015.01.009. PMC 4414735. PMID 25601315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735

  675. Glennon RA (23 October 1992). "Animal Models for Assessing Hallucinogenic Agents". Animal Models of Drug Addiction. Vol. 24. New Jersey: Humana Press. pp. 345–382. doi:10.1385/0-89603-217-5:345. ISBN 978-0-89603-217-0. 978-0-89603-217-0

  676. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  677. Corne SJ, Pickering RW, Warner BT (February 1963). "A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine". Br J Pharmacol Chemother. 20 (1): 106–120. doi:10.1111/j.1476-5381.1963.tb01302.x. PMC 1703746. PMID 14023050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1703746

  678. Browne RG, Ho BT (1975). "Role of serotonin in the discriminative stimulus properties of mescaline". Pharmacol Biochem Behav. 3 (3): 429–435. doi:10.1016/0091-3057(75)90052-0. PMID 125425. /wiki/Doi_(identifier)

  679. Winter JC (April 1975). "Blockade of the stimulus properties of mescaline by a serotonin antagonist". Arch Int Pharmacodyn Ther. 214 (2): 250–253. PMID 1156033. /wiki/PMID_(identifier)

  680. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  681. McCorvy JD, Roth BL (June 2015). "Structure and function of serotonin G protein-coupled receptors". Pharmacol Ther. 150: 129–142. doi:10.1016/j.pharmthera.2015.01.009. PMC 4414735. PMID 25601315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735

  682. Peroutka SJ, Snyder SH (November 1979). "Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol". Mol Pharmacol. 16 (3): 687–699. doi:10.1016/S0026-895X(25)13812-1. PMID 530254. /wiki/Doi_(identifier)

  683. Glennon RA (23 October 1992). "Animal Models for Assessing Hallucinogenic Agents". Animal Models of Drug Addiction. Vol. 24. New Jersey: Humana Press. pp. 345–382. doi:10.1385/0-89603-217-5:345. ISBN 978-0-89603-217-0. 978-0-89603-217-0

  684. Halberstadt AL (January 2015). "Recent advances in the neuropsychopharmacology of serotonergic hallucinogens". Behav Brain Res. 277: 99–120. doi:10.1016/j.bbr.2014.07.016. PMC 4642895. PMID 25036425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642895

  685. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  686. Fordyce BA, Roth BL (February 2024). "Making Sense of Psychedelics in the CNS". Int J Neuropsychopharmacol. 27 (2). doi:10.1093/ijnp/pyae007. PMC 10888522. PMID 38289825. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888522

  687. López-Giménez JF, González-Maeso J (2017). "Behavioral Neurobiology of Psychedelic Drugs: Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways". Current Topics in Behavioral Neurosciences. 36. Berlin, Heidelberg: Springer Berlin Heidelberg: 45–73. doi:10.1007/7854_2017_478. ISBN 978-3-662-55878-2. PMC 5756147. PMID 28677096. 978-3-662-55878-2

  688. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  689. Branchek T, Adham N, Macchi M, Kao HT, Hartig PR (November 1990). "[3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor". Mol Pharmacol. 38 (5): 604–609. doi:10.1016/S0026-895X(25)09519-7. PMID 2233697. /wiki/Doi_(identifier)

  690. Nichols DE, Nichols CD (May 2008). "Serotonin receptors". Chem Rev. 108 (5): 1614–1641. doi:10.1021/cr078224o. PMID 18476671. /wiki/Doi_(identifier)

  691. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (December 1998). "Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action". NeuroReport. 9 (17): 3897–3902. doi:10.1097/00001756-199812010-00024. PMID 9875725. /wiki/Doi_(identifier)

  692. Simms D (21 December 2022). "The History of Psychedelics: Our Connection to Consciousness & Mind-Altering Substances Throughout Time". Tripsitter. Retrieved 4 April 2025. https://tripsitter.com/the-history-of-psychedelics/

  693. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Exp Clin Psychopharmacol. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  694. Szára S (December 2007). "DMT at fifty". Neuropsychopharmacol Hung. 9 (4): 201–205. PMID 18510265. /wiki/PMID_(identifier)

  695. Barker SA (2018). "N, N-Dimethyltryptamine (DMT), an Endogenous Hallucinogen: Past, Present, and Future Research to Determine Its Role and Function". Front Neurosci. 12: 536. doi:10.3389/fnins.2018.00536. PMC 6088236. PMID 30127713. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088236

  696. Sessa B (February 2018). "The 21st century psychedelic renaissance: heroic steps forward on the back of an elephant". Psychopharmacology (Berl). 235 (2): 551–560. doi:10.1007/s00213-017-4713-7. PMID 28831571. /wiki/Doi_(identifier)

  697. Rhee TG, Davoudian PA, Sanacora G, Wilkinson ST (December 2023). "Psychedelic renaissance: Revitalized potential therapies for psychiatric disorders". Drug Discov Today. 28 (12): 103818. doi:10.1016/j.drudis.2023.103818. PMID 37925136. /wiki/Doi_(identifier)

  698. Mikos RA (18 October 2022). "Observations on 25 Years of Cannabis Law Reforms and Their Implications for the Psychedelic Renaissance in the United States". Annual Review of Law and Social Science. 18 (1): 155–167. doi:10.1146/annurev-lawsocsci-120621-012645. ISSN 1550-3585. https://doi.org/10.1146%2Fannurev-lawsocsci-120621-012645

  699. Noorani T, Bedi G, Muthukumaraswamy S (October 2023). "Dark loops: contagion effects, consistency and chemosocial matrices in psychedelic-assisted therapy trials". Psychol Med. 53 (13): 5892–5901. doi:10.1017/S0033291723001289. PMC 10520581. PMID 37466178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520581

  700. Bawks J, Gomes F (February 2025). "Bias and Balance in Psychedelic Academia- A Tricky Business". Trends Psychiatry Psychother. doi:10.47626/2237-6089-2024-0990. PMID 40009852. The investigative journalist Michael Pollan brought the topic to public attention with his book How to Change Your Mind in 2018, which was then made into a Netflix documentary in 2022. By 2024, Yao and colleagues8 identified 126 trials spanning the 4 major serotonergic psychedelics; MDMA, LSD, psilocybin and ayahuasca. https://doi.org/10.47626%2F2237-6089-2024-0990

  701. Pollan M (15 May 2018). How to Change Your Mind: What the New Science of Psychedelics Teaches Us About Consciousness, Dying, Addiction, Depression, and Transcendence. Penguin. ISBN 978-0-525-55894-1. Retrieved 13 May 2025. 978-0-525-55894-1

  702. Bawks J, Gomes F (February 2025). "Bias and Balance in Psychedelic Academia- A Tricky Business". Trends Psychiatry Psychother. doi:10.47626/2237-6089-2024-0990. PMID 40009852. The investigative journalist Michael Pollan brought the topic to public attention with his book How to Change Your Mind in 2018, which was then made into a Netflix documentary in 2022. By 2024, Yao and colleagues8 identified 126 trials spanning the 4 major serotonergic psychedelics; MDMA, LSD, psilocybin and ayahuasca. https://doi.org/10.47626%2F2237-6089-2024-0990

  703. Yao Y, Guo D, Lu TS, Liu FL, Huang SH, Diao MQ, et al. (May 2024). "Efficacy and safety of psychedelics for the treatment of mental disorders: A systematic review and meta-analysis". Psychiatry Res. 335: 115886. doi:10.1016/j.psychres.2024.115886. PMID 38574699. /wiki/Doi_(identifier)

  704. Tanne JH (2004-03-20). "Humphry Osmond". BMJ: British Medical Journal. 328 (7441): 713. doi:10.1136/bmj.328.7441.713. ISSN 0959-8138. PMC 381240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC381240

  705. Tanne JH (2004). "Humphrey Osmond". BMJ. 328 (7441): 713. doi:10.1136/bmj.328.7441.713. PMC 381240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC381240

  706. Oxford English Dictionary, 3rd edition, September 2007, s.v., Etymology /wiki/Oxford_English_Dictionary

  707. A. Weil, W. Rosen. (1993), From Chocolate To Morphine: Everything You Need To Know About Mind-Altering Drugs. New York, Houghton Mifflin Company. p. 93

  708. W. Davis (1996), "One River: Explorations and Discoveries in the Amazon Rain Forest". New York, Simon and Schuster, Inc. p. 120.

  709. iia700700.us.archive.org https://archive.org/details/mokshawritingson00aldo

  710. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  711. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  712. Carhart-Harris R, Guy G (2017). "The Therapeutic Potential of Psychedelic Drugs: Past, Present, and Future". Neuropsychopharmacology. 42 (11): 2105–2113. doi:10.1038/npp.2017.84. PMC 5603818. PMID 28443617. /wiki/Guy_Goodwin

  713. Nichols DE (2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. ISSN 0031-6997. PMC 4813425. PMID 26841800. https://pharmrev.aspetjournals.org/content/68/2/264

  714. Nichols DE (2018). Chemistry and Structure-Activity Relationships of Psychedelics. Current Topics in Behavioral Neurosciences. Vol. 36. pp. 1–43. doi:10.1007/7854_2017_475. ISBN 978-3-662-55878-2. PMID 28401524. Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself. 978-3-662-55878-2

  715. DiVito AJ, Leger RF (2020). "Psychedelics as an emerging novel intervention in the treatment of substance use disorder: a review". Molecular Biology Reports. 47 (12): 9791–9799. doi:10.1007/s11033-020-06009-x. PMID 33231817. S2CID 227157734. /wiki/Doi_(identifier)

  716. Marks M, Cohen IG (October 2021). "Psychedelic therapy: a roadmap for wider acceptance and utilization". Nature Medicine. 27 (10): 1669–1671. doi:10.1038/s41591-021-01530-3. PMID 34608331. S2CID 238355863. https://doi.org/10.1038%2Fs41591-021-01530-3

  717. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. (May 2020). "Psychedelics and Psychedelic-Assisted Psychotherapy". The American Journal of Psychiatry. 177 (5): 391–410. doi:10.1176/appi.ajp.2019.19010035. PMID 32098487. S2CID 211524704. /wiki/Doi_(identifier)

  718. Siegel AN, Meshkat S, Benitah K, Lipstiz O, Gill H, Lui LM, et al. (2021). "Registered clinical studies investigating psychedelic drugs for psychiatric disorders". Journal of Psychiatric Research. 139: 71–81. doi:10.1016/j.jpsychires.2021.05.019. PMID 34048997. S2CID 235242044. /wiki/Doi_(identifier)

  719. Andersen KA, Carhart-Harris R, Nutt DJ, Erritzoe D (2020). "Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies". Acta Psychiatrica Scandinavica. 143 (2): 101–118. doi:10.1111/acps.13249. PMID 33125716. S2CID 226217912. /wiki/Doi_(identifier)

  720. Malcolm B, Thomas K (2022). "Serotonin toxicity of serotonergic psychedelics". Psychopharmacology. 239 (6): 1881–1891. doi:10.1007/s00213-021-05876-x. PMID 34251464. S2CID 235796130. /wiki/Doi_(identifier)

  721. Nichols DE (February 2004). "Hallucinogens". Pharmacol Ther. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. PMID 14761703. /wiki/Doi_(identifier)

  722. Hicks M (15 January 2000). Sixties Rock: Garage, Psychedelic, and Other Satisfactions. Chicago, IL: University of Illinois Press. pp. 63–64. ISBN 0-252-06915-3. 0-252-06915-3

  723. Krippner S (2017). "Ecstatic Landscapes: The Manifestation of Psychedelic Art". Journal of Humanistic Psychology. 57 (4): 415–435. doi:10.1177/0022167816671579. S2CID 151517152. /wiki/Doi_(identifier)

  724. Dickins R (2013). "Preparing the Gaia connection: An ecological exposition of psychedelic literature 1954-1963". European Journal of Ecopsychology. 4: 9–18. CiteSeerX 10.1.1.854.6673. Retrieved 7 January 2021. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.854.6673&rep=rep1&type=pdf

  725. Gallagher M (2004). "Tripped Out: The Psychedelic Film and Masculinity". Quarterly Review of Film and Video. 21 (3): 161–171. doi:10.1080/10509200490437817. S2CID 191583864. /wiki/Doi_(identifier)

  726. St John, Graham. "Neotrance and the Psychedelic Festival." Dancecult: Journal of Electronic Dance Music Culture, 1(1) (2009). https://dj.dancecult.net/index.php/dancecult/article/view/270

  727. Hirschfelder A (Jan 14, 2016). "The Trips Festival explained". Experiments in Environment: The Halprin Workshops, 1966–1971. https://experiments.californiahistoricalsociety.org/what-was-the-trips-festival/

  728. Rucker JJ (2015). "Psychedelic drugs should be legally reclassified so that researchers can investigate their therapeutic potential". British Medical Journal. 350: h2902. doi:10.1136/bmj.h2902. PMID 26014506. S2CID 46510541. /wiki/Doi_(identifier)

  729. "U.S.C. Title 21 – FOOD AND DRUGS". www.govinfo.gov. Retrieved 28 February 2022. https://www.govinfo.gov/content/pkg/USCODE-2011-title21/html/USCODE-2011-title21-chap13.htm

  730. Harrington A (2023-11-01). "Mental Health's Stalled (Biological) Revolution: Its Origins, Aftermath & Future Opportunities". Daedalus. 152 (4): 166–185. doi:10.1162/daed_a_02037. ISSN 0011-5266. https://direct.mit.edu/daed/article/152/4/166/118242/Mental-Health-s-Stalled-Biological-Revolution-Its

  731. "Pot Prohibition Continues Collapsing, and Psychedelic Bans Could Be Next". November 9, 2022. https://reason.com/2022/11/09/pot-and-psychedelics-rack-up-wins-at-the-ballot-box/

  732. "New Hampshire Lawmakers File Psilocybin And Broader Drug Decriminalization Bills For 2022". December 29, 2021. https://www.marijuanamoment.net/new-hampshire-lawmakers-file-psilocybin-and-broader-drug-decriminalization-bills-for-2022/

  733. Tuccille J (3 August 2022). "Scofflaws Lead the Way To Legalizing Psychedelic Drugs". Reason. Retrieved 18 January 2023. https://reason.com/2022/08/03/scofflaws-lead-the-way-to-legalizing-psychedelic-drugs/

  734. Tupper KW, Wood E, Yensen R, Johnson MW (2015-10-06). "Psychedelic medicine: a re-emerging therapeutic paradigm". CMAJ: Canadian Medical Association Journal. 187 (14): 1054–1059. doi:10.1503/cmaj.141124. ISSN 0820-3946. PMC 4592297. PMID 26350908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592297

  735. Tupper KW, Wood E, Yensen R, Johnson MW (2015-10-06). "Psychedelic medicine: a re-emerging therapeutic paradigm". CMAJ: Canadian Medical Association Journal. 187 (14): 1054–1059. doi:10.1503/cmaj.141124. ISSN 0820-3946. PMC 4592297. PMID 26350908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592297

  736. Tupper KW, Wood E, Yensen R, Johnson MW (2015-10-06). "Psychedelic medicine: a re-emerging therapeutic paradigm". CMAJ: Canadian Medical Association Journal. 187 (14): 1054–1059. doi:10.1503/cmaj.141124. ISSN 0820-3946. PMC 4592297. PMID 26350908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592297

  737. Garcia-Romeu, Albert, Kersgaard, Brennan, Addy, Peter H. (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–268. doi:10.1037/pha0000084. PMC 5001686. PMID 27454674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001686

  738. Jones K, Srivastave D, Allen J, Roth B, Penzes P (2009). "Psychedelics Promote Structural and Functional Neural Plasticity". Proc Natl Acad Sci U S A. 106 (46): 19575–19580. doi:10.1073/pnas.0905884106. PMC 2780750. PMID 19889983. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780750

  739. Yoshida H, Kanamaru C, Ohtani A, Senzaki K, Shiga T (2011). "Subtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro" (PDF). Neurosci Res. 71 (3): 311–314. doi:10.1016/j.neures.2011.07.1824. hdl:2241/114624. PMID 21802453. S2CID 14178672. https://tsukuba.repo.nii.ac.jp/record/25719/files/NR_71-3.pdf

  740. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. (June 2018). "Psychedelics Promote Structural and Functional Neural Plasticity". Cell Reports. 23 (11): 3170–3182. doi:10.1016/j.celrep.2018.05.022. PMC 6082376. PMID 29898390. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082376

  741. de Vos CM, Mason NL, Kuypers KP (2021). "Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics". Frontiers in Psychiatry. 12: 1575. doi:10.3389/fpsyt.2021.724606. ISSN 1664-0640. PMC 8461007. PMID 34566723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461007

  742. Calder AE, Hasler G (2022-09-19). "Towards an understanding of psychedelic-induced neuroplasticity". Neuropsychopharmacology. 48 (1): 104–112. doi:10.1038/s41386-022-01389-z. ISSN 1740-634X. PMC 9700802. PMID 36123427. S2CID 252381170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700802

  743. Nau F, Miller J, Saravia J, Ahlert T, Yu B, Happel K, et al. (2015). "Serotonin 5-HT₂ receptor activation prevents allergic asthma in a mouse model". American Journal of Physiology. Lung Cellular and Molecular Physiology. 308 (2): 191–198. doi:10.1152/ajplung.00138.2013. PMC 4338939. PMID 25416380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338939

  744. Flanagan T, Sebastian M, Battaglia D, Foster T, Maillet E, Nichols C (2019). "Activation of 5-HT2 Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice". Sci. Rep. 9 (1): 13444–198. Bibcode:2019NatSR...913444F. doi:10.1038/s41598-019-49987-0. PMC 6748996. PMID 31530895. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748996

  745. de Deus JL, Maia JM, Soriano RN, Amorim MR, Branco LG (January 2025). "Psychedelics in neuroinflammation: Mechanisms and therapeutic potential". Prog Neuropsychopharmacol Biol Psychiatry. 137: 111278. doi:10.1016/j.pnpbp.2025.111278. PMID 39892847. /wiki/Doi_(identifier)

  746. Low ZX, Yong SJ, Alrasheed HA, Al-Subaie MF, Al Kaabi NA, Alfaresi M, et al. (February 2025). "Serotonergic psychedelics as potential therapeutics for post-COVID-19 syndrome (or Long COVID): A comprehensive review". Prog Neuropsychopharmacol Biol Psychiatry. 137: 111279. doi:10.1016/j.pnpbp.2025.111279. PMID 39909170. /wiki/Doi_(identifier)