Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Rank factorization

In mathematics, given a field F {\displaystyle \mathbb {F} } , non-negative integers m , n {\displaystyle m,n} , and a matrix A ∈ F m × n {\displaystyle A\in \mathbb {F} ^{m\times n}} , a rank decomposition or rank factorization of A is a factorization of A of the form A = CF, where C ∈ F m × r {\displaystyle C\in \mathbb {F} ^{m\times r}} and F ∈ F r × n {\displaystyle F\in \mathbb {F} ^{r\times n}} , where r = rank ⁡ A {\displaystyle r=\operatorname {rank} A} is the rank of A {\displaystyle A} .

We don't have any images related to Rank factorization yet.
We don't have any YouTube videos related to Rank factorization yet.
We don't have any PDF documents related to Rank factorization yet.
We don't have any Books related to Rank factorization yet.
We don't have any archived web articles related to Rank factorization yet.

Existence

Every finite-dimensional matrix has a rank decomposition: Let A {\textstyle A} be an m × n {\textstyle m\times n} matrix whose column rank is r {\textstyle r} . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} . Let c 1 , c 2 , … , c r {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}} be any basis for the column space of A {\textstyle A} and place them as column vectors to form the m × r {\textstyle m\times r} matrix C = [ c 1 c 2 ⋯ c r ] {\textstyle C={\begin{bmatrix}\mathbf {c} _{1}&\mathbf {c} _{2}&\cdots &\mathbf {c} _{r}\end{bmatrix}}} . Therefore, every column vector of A {\textstyle A} is a linear combination of the columns of C {\textstyle C} . To be precise, if A = [ a 1 a 2 ⋯ a n ] {\textstyle A={\begin{bmatrix}\mathbf {a} _{1}&\mathbf {a} _{2}&\cdots &\mathbf {a} _{n}\end{bmatrix}}} is an m × n {\textstyle m\times n} matrix with a j {\textstyle \mathbf {a} _{j}} as the j {\textstyle j} -th column, then

a j = f 1 j c 1 + f 2 j c 2 + ⋯ + f r j c r , {\displaystyle \mathbf {a} _{j}=f_{1j}\mathbf {c} _{1}+f_{2j}\mathbf {c} _{2}+\cdots +f_{rj}\mathbf {c} _{r},}

where f i j {\textstyle f_{ij}} 's are the scalar coefficients of a j {\textstyle \mathbf {a} _{j}} in terms of the basis c 1 , c 2 , … , c r {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}} . This implies that A = C F {\textstyle A=CF} , where f i j {\textstyle f_{ij}} is the ( i , j ) {\textstyle (i,j)} -th element of F {\textstyle F} .

Non-uniqueness

If A = C 1 F 1 {\textstyle A=C_{1}F_{1}} is a rank factorization, taking C 2 = C 1 R {\textstyle C_{2}=C_{1}R} and F 2 = R − 1 F 1 {\textstyle F_{2}=R^{-1}F_{1}} gives another rank factorization for any invertible matrix R {\textstyle R} of compatible dimensions.

Conversely, if A = F 1 G 1 = F 2 G 2 {\textstyle A=F_{1}G_{1}=F_{2}G_{2}} are two rank factorizations of A {\textstyle A} , then there exists an invertible matrix R {\textstyle R} such that F 1 = F 2 R {\textstyle F_{1}=F_{2}R} and G 1 = R − 1 G 2 {\textstyle G_{1}=R^{-1}G_{2}} .1

Construction

Rank factorization from reduced row echelon forms

In practice, we can construct one specific rank factorization as follows: we can compute B {\textstyle B} , the reduced row echelon form of A {\textstyle A} . Then C {\textstyle C} is obtained by removing from A {\textstyle A} all non-pivot columns (which can be determined by looking for columns in B {\textstyle B} which do not contain a pivot), and F {\textstyle F} is obtained by eliminating any all-zero rows of B {\textstyle B} .

Note: For a full-rank square matrix (i.e. when n = m = r {\textstyle n=m=r} ), this procedure will yield the trivial result C = A {\textstyle C=A} and F = B = I n {\textstyle F=B=I_{n}} (the n × n {\textstyle n\times n} identity matrix).

Example

Consider the matrix

A = [ 1 3 1 4 2 7 3 9 1 5 3 1 1 2 0 8 ] ∼ [ 1 0 − 2 0 0 1 1 0 0 0 0 1 0 0 0 0 ] = B . {\displaystyle A={\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}\sim {\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\\0&0&0&0\end{bmatrix}}=B{\text{.}}}

B {\textstyle B} is in reduced echelon form.

Then C {\textstyle C} is obtained by removing the third column of A {\textstyle A} , the only one which is not a pivot column, and F {\textstyle F} by getting rid of the last row of zeroes from B {\textstyle B} , so

C = [ 1 3 4 2 7 9 1 5 1 1 2 8 ] , F = [ 1 0 − 2 0 0 1 1 0 0 0 0 1 ] . {\displaystyle C={\begin{bmatrix}1&3&4\\2&7&9\\1&5&1\\1&2&8\end{bmatrix}}{\text{,}}\qquad F={\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\end{bmatrix}}{\text{.}}}

It is straightforward to check that

A = [ 1 3 1 4 2 7 3 9 1 5 3 1 1 2 0 8 ] = [ 1 3 4 2 7 9 1 5 1 1 2 8 ] [ 1 0 − 2 0 0 1 1 0 0 0 0 1 ] = C F . {\displaystyle A={\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}={\begin{bmatrix}1&3&4\\2&7&9\\1&5&1\\1&2&8\end{bmatrix}}{\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\end{bmatrix}}=CF{\text{.}}}

Proof

Let P {\textstyle P} be an n × n {\textstyle n\times n} permutation matrix such that A P = ( C , D ) {\textstyle AP=(C,D)} in block partitioned form, where the columns of C {\textstyle C} are the r {\textstyle r} pivot columns of A {\textstyle A} . Every column of D {\textstyle D} is a linear combination of the columns of C {\textstyle C} , so there is a matrix G {\textstyle G} such that D = C G {\textstyle D=CG} , where the columns of G {\textstyle G} contain the coefficients of each of those linear combinations. So A P = ( C , C G ) = C ( I r , G ) {\textstyle AP=(C,CG)=C(I_{r},G)} , I r {\textstyle I_{r}} being the r × r {\textstyle r\times r} identity matrix. We will show now that ( I r , G ) = F P {\textstyle (I_{r},G)=FP} .

Transforming A {\textstyle A} into its reduced row echelon form B {\textstyle B} amounts to left-multiplying by a matrix E {\textstyle E} which is a product of elementary matrices, so E A P = B P = E C ( I r , G ) {\textstyle EAP=BP=EC(I_{r},G)} , where E C = ( I r 0 ) {\textstyle EC={\begin{pmatrix}I_{r}\\0\end{pmatrix}}} . We then can write B P = ( I r G 0 0 ) {\textstyle BP={\begin{pmatrix}I_{r}&G\\0&0\end{pmatrix}}} , which allows us to identify ( I r , G ) = F P {\textstyle (I_{r},G)=FP} , i.e. the nonzero r {\textstyle r} rows of the reduced echelon form, with the same permutation on the columns as we did for A {\textstyle A} . We thus have A P = C F P {\textstyle AP=CFP} , and since P {\textstyle P} is invertible this implies A = C F {\textstyle A=CF} , and the proof is complete.

Singular value decomposition

If F ∈ { R , C } , {\displaystyle \mathbb {F} \in \{\mathbb {R} ,\mathbb {C} \},} then one can also construct a full-rank factorization of A {\textstyle A} via a singular value decomposition

A = U Σ V ∗ = [ U 1 U 2 ] [ Σ r 0 0 0 ] [ V 1 ∗ V 2 ∗ ] = U 1 ( Σ r V 1 ∗ ) . {\displaystyle A=U\Sigma V^{*}={\begin{bmatrix}U_{1}&U_{2}\end{bmatrix}}{\begin{bmatrix}\Sigma _{r}&0\\0&0\end{bmatrix}}{\begin{bmatrix}V_{1}^{*}\\V_{2}^{*}\end{bmatrix}}=U_{1}\left(\Sigma _{r}V_{1}^{*}\right).}

Since U 1 {\textstyle U_{1}} is a full-column-rank matrix and Σ r V 1 ∗ {\textstyle \Sigma _{r}V_{1}^{*}} is a full-row-rank matrix, we can take C = U 1 {\textstyle C=U_{1}} and F = Σ r V 1 ∗ {\textstyle F=\Sigma _{r}V_{1}^{*}} .

Consequences

rank(A) = rank(AT)

See also: Proofs that column rank = row rank

An immediate consequence of rank factorization is that the rank of A {\textstyle A} is equal to the rank of its transpose A T {\textstyle A^{\textsf {T}}} . Since the columns of A {\textstyle A} are the rows of A T {\textstyle A^{\textsf {T}}} , the column rank of A {\textstyle A} equals its row rank.2

Proof: To see why this is true, let us first define rank to mean column rank. Since A = C F {\textstyle A=CF} , it follows that A T = F T C T {\textstyle A^{\textsf {T}}=F^{\textsf {T}}C^{\textsf {T}}} . From the definition of matrix multiplication, this means that each column of A T {\textstyle A^{\textsf {T}}} is a linear combination of the columns of F T {\textstyle F^{\textsf {T}}} . Therefore, the column space of A T {\textstyle A^{\textsf {T}}} is contained within the column space of F T {\textstyle F^{\textsf {T}}} and, hence, rank ⁡ ( A T ) ≤ rank ⁡ ( F T ) {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(F^{\textsf {T}}\right)} .

Now, F T {\textstyle F^{\textsf {T}}} is n × r {\textstyle n\times r} , so there are r {\textstyle r} columns in F T {\textstyle F^{\textsf {T}}} and, hence, rank ⁡ ( A T ) ≤ r = rank ⁡ ( A ) {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq r=\operatorname {rank} \left(A\right)} . This proves that rank ⁡ ( A T ) ≤ rank ⁡ ( A ) {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)} .

Now apply the result to A T {\textstyle A^{\textsf {T}}} to obtain the reverse inequality: since ( A T ) T = A {\textstyle \left(A^{\textsf {T}}\right)^{\textsf {T}}=A} , we can write rank ⁡ ( A ) = rank ⁡ ( ( A T ) T ) ≤ rank ⁡ ( A T ) {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(\left(A^{\textsf {T}}\right)^{\textsf {T}}\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)} . This proves rank ⁡ ( A ) ≤ rank ⁡ ( A T ) {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)} .

We have, therefore, proved rank ⁡ ( A T ) ≤ rank ⁡ ( A ) {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)} and rank ⁡ ( A ) ≤ rank ⁡ ( A T ) {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)} , so rank ⁡ ( A ) = rank ⁡ ( A T ) {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(A^{\textsf {T}}\right)} .

Notes

  • Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388
  • Lay, David C. (2005), Linear Algebra and its Applications (3rd ed.), Addison Wesley, ISBN 978-0-201-70970-4
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations, Johns Hopkins Studies in Mathematical Sciences (3rd ed.), The Johns Hopkins University Press, ISBN 978-0-8018-5414-9
  • Stewart, Gilbert W. (1998), Matrix Algorithms. I. Basic Decompositions, SIAM, ISBN 978-0-89871-414-2
  • Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882.

References

  1. Piziak, R.; Odell, P. L. (1 June 1999). "Full Rank Factorization of Matrices". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882. /wiki/Doi_(identifier)

  2. Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388 978-1420095388