Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Samarium monochalcogenides
Compounds containing one samarium and one chalcogen atom

Samarium monochalcogenides are chemical compounds with the composition SmX, where Sm stands for the lanthanide element samarium and X denotes any one of three chalcogen elements, sulfur, selenium or tellurium, resulting in the compounds SmS, SmSe or SmTe. In these compounds, samarium formally exhibits oxidation state +2, whereas it usually assumes the +3 state, resulting in chalcogenides with the chemical formula Sm2X3.

We don't have any images related to Samarium monochalcogenides yet.
We don't have any YouTube videos related to Samarium monochalcogenides yet.
We don't have any PDF documents related to Samarium monochalcogenides yet.
We don't have any Books related to Samarium monochalcogenides yet.
We don't have any archived web articles related to Samarium monochalcogenides yet.

Synthesis

Single crystals or polycrystals of samarium monochalcogenides can be obtained by reacting the metal with sulfur, selenium or tellurium vapors at high temperature.1 Thin films can be obtained by magnetron sputtering2 or electron beam physical vapor deposition, that is bombardment of samarium metal target with electrons in and appropriate gas atmosphere (e.g. hydrogen disulfide for SmS).3

Properties

FormulaLattice constantnm4ResistivityOhm·cmBand gapeV
SmS0.5970.001–0.010.15
SmSe0.620~30000.45
SmTe0.6594~10000.65

Samarium monochalcogenides are black semiconducting solids with rock-salt cubic crystal structure. Application of moderate hydrostatic pressure converts them into metals. Whereas the transition is continuous and occurs at about 45 and 60 kbar in SmSe and SmTe, respectively, it is abrupt in SmS and requires only 6.5 kbar. Similar effect is observed in monochalcogenides of another lanthanide, thulium.5 This results in spectacular change in color from black to golden yellow when scratching or mechanically polishing SmS.67 The transition does not change the crystal structure, but there is a sharp decrease (about 15%)8 in the crystal volume. A hysteresis is observed, that is when the pressure is released, SmS returns to semiconducting state at much lower pressure of about 0.5 kbar.9

Not only color and electrical conductivity, but also other properties change in samarium monochalcogenides with increasing pressure. Their metallic behavior results from the decreasing band gap, which amounts at zero pressure to 0.15, 0.45 and 0.65 eV in SmS, SmSe and SmTe, respectively.1011 At the transition pressure (6.5 kbar in SmS) the gap is still finite and the low resistivity originates from thermally activated generation of carriers across a narrow band gap. The gap collapses at about 20 kbar when SmS becomes a true metal. At this pressure, the material also changes from paramagnetic to a magnetic state.12

The semiconductor-metal transition in samarium monochalcogenides requires application of pressure or presence of intrinsic stress, for example in thin films, and the reverse changes occur upon release of this stress. Such release can be triggered by various means, such as heating to about 200 °C13 or irradiation with a pulsed, high-intensity laser beam.1415

Potential applications

The change in electrical resistivity in samarium monochalcogenides can be used in a pressure sensor or in a memory device triggered between a low-resistance and high-resistance state by external pressure,16 and such devices are being developed commercially.17 Samarium monosulfide also generates electric voltage upon moderate heating to about 150 °C that can be applied in thermoelectric power converters.18

References

  1. Jayaraman, A.; Narayanamurti, V.; Bucher, E.; Maines, R. (1970). "Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure". Physical Review Letters. 25 (20): 1430. Bibcode:1970PhRvL..25.1430J. doi:10.1103/PhysRevLett.25.1430. /wiki/Bibcode_(identifier)

  2. Kitagawa, R.; Takebe, H.; Morinaga, K. (2003). "Photoinduced phase transition of metallic SmS thin films by a femtosecond laser". Applied Physics Letters. 82 (21): 3641. Bibcode:2003ApPhL..82.3641K. doi:10.1063/1.1577824. /wiki/Bibcode_(identifier)

  3. Rogers, E; Smet, P F; Dorenbos, P; Poelman, D; Van Der Kolk, E (2010). "The thermally induced metal–semiconducting phase transition of samarium monosulfide (SmS) thin films" (free download). Journal of Physics: Condensed Matter. 22 (1): 015005. Bibcode:2010JPCM...22a5005R. doi:10.1088/0953-8984/22/1/015005. PMID 21386220. S2CID 17888041. http://resolver.tudelft.nl/uuid:334e8cda-c308-4ce0-a070-76af3c754a8b

  4. Jayaraman, A.; Narayanamurti, V.; Bucher, E.; Maines, R. (1970). "Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure". Physical Review Letters. 25 (20): 1430. Bibcode:1970PhRvL..25.1430J. doi:10.1103/PhysRevLett.25.1430. /wiki/Bibcode_(identifier)

  5. K. H. J. Buschow Concise encyclopedia of magnetic and superconducting materials, Elsevier, 2005 ISBN 0-08-044586-1 p. 318 https://books.google.com/books?id=N9mvytGEBtwC&pg=PA318

  6. Rogers, E; Smet, P F; Dorenbos, P; Poelman, D; Van Der Kolk, E (2010). "The thermally induced metal–semiconducting phase transition of samarium monosulfide (SmS) thin films" (free download). Journal of Physics: Condensed Matter. 22 (1): 015005. Bibcode:2010JPCM...22a5005R. doi:10.1088/0953-8984/22/1/015005. PMID 21386220. S2CID 17888041. http://resolver.tudelft.nl/uuid:334e8cda-c308-4ce0-a070-76af3c754a8b

  7. Emsley, John (2001). "Samarium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. p. 374. ISBN 978-0-19-850340-8. 978-0-19-850340-8

  8. Eric Beaurepaire (Ed.) Magnetism: a synchrotron radiation approach, Springer, 2006 ISBN 3-540-33241-3 p. 393 https://books.google.com/books?id=rGDCn4lqmdsC&pg=PA393

  9. Jayaraman, A.; Narayanamurti, V.; Bucher, E.; Maines, R. (1970). "Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure". Physical Review Letters. 25 (20): 1430. Bibcode:1970PhRvL..25.1430J. doi:10.1103/PhysRevLett.25.1430. /wiki/Bibcode_(identifier)

  10. Jayaraman, A.; Narayanamurti, V.; Bucher, E.; Maines, R. (1970). "Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure". Physical Review Letters. 25 (20): 1430. Bibcode:1970PhRvL..25.1430J. doi:10.1103/PhysRevLett.25.1430. /wiki/Bibcode_(identifier)

  11. K. H. J. Buschow Concise encyclopedia of magnetic and superconducting materials, Elsevier, 2005 ISBN 0-08-044586-1 p. 318 https://books.google.com/books?id=N9mvytGEBtwC&pg=PA318

  12. Eric Beaurepaire (Ed.) Magnetism: a synchrotron radiation approach, Springer, 2006 ISBN 3-540-33241-3 p. 393 https://books.google.com/books?id=rGDCn4lqmdsC&pg=PA393

  13. Rogers, E; Smet, P F; Dorenbos, P; Poelman, D; Van Der Kolk, E (2010). "The thermally induced metal–semiconducting phase transition of samarium monosulfide (SmS) thin films" (free download). Journal of Physics: Condensed Matter. 22 (1): 015005. Bibcode:2010JPCM...22a5005R. doi:10.1088/0953-8984/22/1/015005. PMID 21386220. S2CID 17888041. http://resolver.tudelft.nl/uuid:334e8cda-c308-4ce0-a070-76af3c754a8b

  14. Kitagawa, R.; Takebe, H.; Morinaga, K. (2003). "Photoinduced phase transition of metallic SmS thin films by a femtosecond laser". Applied Physics Letters. 82 (21): 3641. Bibcode:2003ApPhL..82.3641K. doi:10.1063/1.1577824. /wiki/Bibcode_(identifier)

  15. De Tomasi, F (2002). "Laser irradiation effects on the resistance of SmS films". Thin Solid Films. 413 (1–2): 171–176. Bibcode:2002TSF...413..171D. doi:10.1016/S0040-6090(02)00235-3. /wiki/Bibcode_(identifier)

  16. Elmegreen, Bruce G. et al. Piezo-driven non-volatile memory cell with hysteretic resistance US patent application 12/234100, 09/19/2008 http://www.freepatentsonline.com/y2010/0073997.html

  17. SmS Tenzo Archived 2012-03-15 at the Wayback Machine http://www.tenzo-sms.ru/en/about

  18. Kaminskii, V. V.; Solov’ev, S. M.; Golubkov, A. V. (2002). "Electromotive Force Generation in Homogeneously Heated Semiconducting Samarium Monosulfide". Technical Physics Letters. 28 (3): 229. Bibcode:2002TePhL..28..229K. doi:10.1134/1.1467284. S2CID 122463906. Archived from the original on 2012-03-15. other articles on this topic Archived 2012-03-15 at the Wayback Machine https://web.archive.org/web/20120315180549/http://www.tenzo-sms.ru/en/articles/5