Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Specific modulus
Ratio of stiffness to mass for a material

Specific modulus is a materials property defined as the elastic modulus divided by the mass density, often referred to as the stiffness-to-weight ratio. It is crucial for designing lightweight, stiffness-driven structures such as those in aerospace, where minimizing structural weight while maintaining stiffness is key. Unlike strength, stiffness governs deflection and deformation limits in applications like airplane wings, bridges, and bicycle frames. Although steel is stronger than aluminum, its lower specific modulus leads to more flex in components, making aluminum preferable for stiffness-driven designs. Note that connection details may require attention to strength-related issues such as stress risers. Specific modulus should not be confused with specific strength, which compares strength to density.

We don't have any images related to Specific modulus yet.
We don't have any YouTube videos related to Specific modulus yet.
We don't have any PDF documents related to Specific modulus yet.
We don't have any Books related to Specific modulus yet.
We don't have any archived web articles related to Specific modulus yet.

Applications

Specific stiffness in tension

The use of specific stiffness in tension applications is straightforward. Both stiffness in tension and total mass for a given length are directly proportional to cross-sectional area. Thus performance of a beam in tension will depend on Young's modulus divided by density.

Specific stiffness in buckling and bending

Specific stiffness can be used in the design of beams subject to bending or Euler buckling, since bending and buckling are stiffness-driven. However, the role that density plays changes depending on the problem's constraints.

Beam with fixed dimensions; goal is weight reduction

Examining the formulas for buckling and deflection, we see that the force required to achieve a given deflection or to achieve buckling depends directly on Young's modulus.

Examining the density formula, we see that the mass of a beam depends directly on the density.

Thus if a beam's cross-sectional dimensions are constrained and weight reduction is the primary goal, performance of the beam will depend on Young's modulus divided by density.

Beam with fixed weight; goal is increased stiffness

By contrast, if a beam's weight is fixed, its cross-sectional dimensions are unconstrained, and increased stiffness is the primary goal, the performance of the beam will depend on Young's modulus divided by either density squared or cubed. This is because a beam's overall stiffness, and thus its resistance to Euler buckling when subjected to an axial load and to deflection when subjected to a bending moment, is directly proportional to both the Young's modulus of the beam's material and the second moment of area (area moment of inertia) of the beam.

Comparing the list of area moments of inertia with formulas for area gives the appropriate relationship for beams of various configurations.

Beam's cross-sectional area increases in two dimensions

Consider a beam whose cross-sectional area increases in two dimensions, e.g. a solid round beam or a solid square beam.

By combining the area and density formulas, we can see that the radius of this beam will vary with approximately the inverse of the square of the density for a given mass.

By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the fourth power of the radius.

Thus the second moment of area will vary approximately as the inverse of the density squared, and performance of the beam will depend on Young's modulus divided by density squared.

Beam's cross-sectional area increases in one dimension

Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied.

By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.

By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the third power of the radius or height.

Thus the second moment of area will vary approximately as the inverse of the cube of the density, and performance of the beam will depend on Young's modulus divided by density cubed.

However, caution must be exercised in using this metric. Thin-walled beams are ultimately limited by local buckling and lateral-torsional buckling. These buckling modes depend on material properties other than stiffness and density, so the stiffness-over-density-cubed metric is at best a starting point for analysis. For example, most wood species score better than most metals on this metric, but many metals can be formed into useful beams with much thinner walls than could be achieved with wood, given wood's greater vulnerability to local buckling. The performance of thin-walled beams can also be greatly modified by relatively minor variations in geometry such as flanges and stiffeners.123

Stiffness versus strength in bending

Note that the ultimate strength of a beam in bending depends on the ultimate strength of its material and its section modulus, not its stiffness and second moment of area. Its deflection, however, and thus its resistance to Euler buckling, will depend on these two latter values.

Approximate specific stiffness for various materials

Approximate specific stiffness for various materials. No attempt is made to correct for materials whose stiffness varies with their density.
MaterialYoung's modulus (GPa)Density (g/cm3)Young's modulus per density; specific stiffness (106 m2s−2)Young's modulus per density squared (103 m5kg−1s−2)Young's modulus per density cubed (m8kg−2s−2)Reference
Latex foam, low density, 10% compression45.9×10^−70.069.83×10^−60.0001640.00273
Reversible Assembled Cellular Composite Materials0.01230.00721.7123732,95356
Self Reprogrammable Mechanical Metamaterials0.00111290.01030.10810.51,01878
Latex foam, low density, 40% compression91.8×10^−60.063×10^−50.00050.00833
Latex foam, high density, 10% compression101.3×10^−50.26.5×10^−50.0003250.00162
Latex foam, high density, 40% compression113.8×10^−50.20.000190.000950.00475
Silica aerogel, medium density120.000350.090.003890.04320.48
Rubber (small strain)0.055±0.0451.055±0.145130.059±0.0510.06345±0.056550.0679±0.0621
Expanded polystrene (EPS) foam, low density (1 lb/ft3)140.001370.0160.0865.35334
Silica aerogel, high density150.0240.250.0960.3841.54
Expanded polystrene (EPS) foam, medium density (3 lb/ft3)160.005240.0480.112.347
Low-density polyethylene0.20.925±0.0150.215±0.0050.235±0.0050.255±0.015
PTFE (Teflon)0.52.20.230.100.047
Duocel aluminum foam, 8% density170.1020.2160.4722.1910.1
Extruded polystrene (XPS) foam, medium density (Foamular 400)18190.0137890.02890.4816.5571
Extruded polystrene (XPS) foam, high density (Foamular 1000)20210.025510.04810.5311229
HDPE0.80.95220.840.890.93
Duocel copper foam, 8% density230.7360.7171.031.432
Polypropylene241.2±0.30.91.33±0.331.48±0.371.65±0.41
Polyethylene terephthalate2.35±0.351.4125±0.04251.7±0.31.17±0.230.875±0.225
Nylon3.0±1.01.152.6±0.92.25±0.751.95±0.65
Polystyrene3.25±0.251.053.1±0.22.95±0.252.8±0.2
Biaxially-oriented Polypropylene253.2±1.00.93.56±1.113.95±1.234.39±1.37
Medium-density fibreboard40.75265.37.19.5
Titanium foam, low density275.30.9915.355.45.45
Titanium foam, high density28203.156.352.020.64
Foam glass290.90.127.562.5521
Copper (Cu)1178.94131.50.16
Brass and bronze112.5±12.58.565±0.16513.0±2.01.55±0.250.18±0.03
Zinc (Zn)1087.14152.10.29
Oak wood (along grain)110.76±0.173015.5±3.522.5±9.534.0±20.0
Concrete (under compression)40±102.417±46.95±1.752.9±0.7
Glass-reinforced plastic31323331.65±14.451.818±89.65±4.355.4±2.5
Pine wood8.9630.505±0.1553420±647±26120±89
Balsa, low density (4.4 lb/ft3)351.410.071202803,940
Tungsten (W)40019.25211.10.056
Sitka spruce green3637388.7±0.70.3723.5±264±5172±13
Osmium (Os)55022.59241.10.048
Balsa, medium density (10 lb/ft3)393.860.16324145891
Steel2007.9±0.1525±0.53.2±0.10.41±0.02
Titanium alloys112.5±7.54.525±25.55±0.351.23±0.08
Balsa, high density (16 lb/ft3)406.570.2652594353
Wrought iron200±107.7±0.226±23.35±0.350.445±0.055
Magnesium metal (Mg)451.73826158.6
Sitka spruce dry41424310.4±0.80.426±265±5162±12
Macor machineable glass-ceramic4466.92.5226.5510.538.14
Cordierite45702.626.910.43.98
Glass70±202.6±0.24628±1011.2±4.84.4±2.1
Tooth enamel (largely calcium phosphate)832.84730113.8
E-Glass fiber4849812.6231124.5
Molybdenum (Mo)32910.28323.10.30
Basalt fiber892.733124.5
Zirconia502076.0434.35.670.939
Tungsten carbide (WC)550±10015.834.5±6.52.2±0.40.135±0.025
S-Glass fiber5152892.536145.7
Flax fiber5354555645±341.35±0.1536.65±29.3530±2525±21
single-crystal Yttrium iron garnet (YIG)2005.1757397.51.4
Kevlar 2958 (tensile only59)70.51.44493424
Steatite L-5601382.7150.918.86.93
Mullite611502.853.619.16.83
Dyneema SK25 Ultra-high-molecular-weight polyethylene (tensile only)62520.97545557
Beryllium, 30% porosity63761.358.54534.6
Kevlar 4964 (tensile only65)112.41.44785438
Silicon661852.329793415
Alumina fiber (Al2O3)6768693003.595±0.31584±724±46.76±1.74
Syalon 501 Silicon nitride703404.0184.821.15.27
Sapphire714003.9710125.46.39
Alumina723933.810327.27.16
Carbon fiber reinforced plastic (70:30 fibre:matrix, unidirectional, along grain)731811.61137144
Dyneema SK78/Honeywell Spectra 2000 UHMWPE (tensile only)7475121±110.97125±11128±12132±12
Silicon carbide (SiC)4503.211404414
Beryllium (Be)2871.851558445
Boron fiber764002.541576224
Boron nitride776752.2829613057
Diamond (C)1,2203.533479828
Dupont E130 carbon fiber788962.1541719490
Approximate specific stiffness for various species of wood79
MaterialYoung's modulus (GPa)Density (g/cm3)Young's modulus per density; specific stiffness (106 m2s−2)Young's modulus per density squared (103 m5kg−1s−2)Young's modulus per density cubed (m8kg−2s−2)
Applewood or wild apple (Pyrus malus)8.767150.74511.76815.795921.2026
Ash, black (Fraxinus nigra)11.04230.52620.992939.910575.8755
Ash, blue (quadrangulata)9.649740.60316.002926.538844.0113
Ash, green (Fraxinus pennsylvanica lanceolata)11.47380.61018.809530.835250.5495
Ash, white (Fraxinus americana)12.24850.63819.198330.091447.1651
Aspen (Populus tremuloides)8.217970.40120.493751.1065127.448
Aspen, large tooth (Populus grandidentata)9.767420.41223.707357.5421139.665
Basswood (Tilia glabra or Tilia americanus)10.0910.39825.354463.7045160.061
Beech (Fagus grandifolia or Fagus americana)11.57180.65517.666926.972441.1793
Beech, blue (Carpinus caroliniana)7.37460.71710.285414.34520.007
Birch, gray (Betula populifolia)7.81590.55214.159225.650846.4688
Birch, paper (Betula papyrifera)10.97360.60018.289430.482350.8039
Birch, sweet (Betula lenta)14.90610.71420.876929.239440.9515
Buckeye, yellow (Aesculus octandra)8.129710.38321.226455.4214144.703
Butternut (Juglans cinerea)8.139520.40420.147349.8696123.44
Cedar, eastern red (Juniperus virginiana)6.001670.49212.198524.793750.3938
Cedar, northern white (Thuja occidentalis)5.570180.31517.683156.1368178.212
Cedar, southern white (Chamaecyparis thvoides)6.423360.35218.248251.8414147.277
Cedar, western red (Thuja plicata)8.031650.34423.347867.8715197.301
Cherry, black (Prunus serotina)10.25780.53419.209335.972467.3641
Cherry, wild red (Prunus pennsylvanica)8.747530.42520.582448.4292113.951
Chestnut (Castanea dentata)8.531790.45418.792541.393191.1743
Cottonwood, eastern (Populus deltoides)9.532060.43322.01450.8407117.415
Cypress, southern (Taxodium distichum)9.904720.48220.549242.633288.4506
Dogwood (flowering) (Cornus Florida)10.64020.79613.367116.792821.0965
Douglas fir (coast type) (Pseudotsuga taxifolia)13.30760.51225.991550.764699.1495
Douglas fir (mountain type) (Pseudotsuga taxifolia)9.620320.44621.570248.3637108.439
Ebony, Andaman marble-wood (India) (Diospyros kursii)12.45440.97812.734613.021113.314
Ebony, Ebè marbre (Mauritius, E. Africa) (Diospyros melanida)9.87530.76812.858516.742821.8005
Elm, American (Ulmus americana)9.29670.55416.781130.290754.6764
Elm, rock (Ulmus racemosa or Ulmus thomasi)10.650.65816.185424.597937.3829
Elm, slippery (Ulmus fulva or pubescens)10.2970.56818.128531.916456.1908
Eucalyptus, Karri (W. Australia) (Eucalyptus diversicolor)18.48550.82922.298626.898232.4465
Eucalyptus, Mahogany (New South Wales) (Eucalyptus hemilampra)15.76911.05814.904614.087513.3153
Eucalyptus, West Australian mahogany (Eucalyptus marginata)14.33730.78718.217723.148329.4133
Fir, balsam (Abies balsamea)8.620050.41420.821450.2932121.481
Fir, silver (Abies amabilis)10.5520.41525.426461.2684147.635
Gum, black (Nyssa sylvatica)8.227780.55214.905427.002548.9176
Gum, blue (Eucalyptus globulus)16.50460.79620.734426.048332.7239
Gum, red (Liquidambar styraciflua)10.24790.53019.335836.482668.835
Gum, tupelo (Nyssa aquatica)8.718110.52416.637631.751260.5939
Hemlock eastern (Tsuga canadensis)8.296430.43119.249244.6618103.624
Hemlock, mountain (Tsuga martensiana)7.81590.48016.283133.923270.6733
Hemlock, western (Tsuga heterophylla)9.953750.43223.041153.3359123.463
Hickory, bigleaf shagbark (Hicoria laciniosa)13.09190.80916.182820.003424.7261
Hickory, mockernut (Hicoria alba)15.39640.82018.776122.897727.9241
Hickory, pignut (Hicoria glabra)15.72010.82019.170823.37928.511
Hickory, shagbark (Hicoria ovata)14.95510.83617.888921.398225.596
Hornbeam (Ostrya virginiana)11.75820.76215.430720.250226.5751
Ironwood, black (Rhamnidium ferreum)20.5941.077−1.3017.48±1.6414.97±2.7812.93±3.56
Larch, western (Larix occidentalis)11.65030.58719.847233.811257.6
Locust, black or yellow (Robinia pseudacacia)14.20.70820.056528.328440.0119
Locust honey (Gleditsia triacanthos)11.42470.66617.154325.757238.6744
Magnolia, cucumber (Magnolia acuminata)12.51330.51624.250646.997291.0798
Mahogany (W. Africa) (Khaya ivorensis)10.58140.66815.840423.713135.4987
Mahogany (E. India) (Swietenia macrophylla)8.012030.5414.837127.476150.8817
Mahogany (E. India) (Swietenia mahogani)8.727920.5416.162829.931155.428
Maple, black (Acer nigrum)11.18940.62018.047429.108746.9495
Maple, red (Acer rubrum)11.32670.54620.744837.994269.5865
Maple, silver (Acer saccharinum)7.894350.50615.601530.83360.9347
Maple, sugar (Acer saccharum)12.65060.67618.713927.683240.9515
Oak, black (Quercus velutina)11.30710.66916.901425.263737.7634
Oak, bur (Quercus macrocarpa)7.090210.67110.566615.747623.4688
Oak, canyon live (Quercus chrysolepis)11.26780.83813.446116.045519.1473
Oak, laurel (Quercus Montana)10.92460.67416.208624.048435.6801
Oak, live (Quercus virginiana)13.5430.97713.861814.188114.5221
Oak, post (Quercus stellata or Quercus minor)10.42450.73814.125319.1425.9349
Oak, red (Quercus borealis)12.49370.65719.016228.944144.0549
Oak, swamp chestnut (Quercus Montana (Quercus prinus))12.22890.75616.175821.396528.3023
Oak swamp white (Quercus bicolor or Quercus platanoides)14.18040.79217.904622.606828.5439
Oak, white (Quercus alba)12.26810.71017.27924.336734.277
Paulownia (P. tomentosa)6.8940.27425.160691.8269335.134
Persimmon (Diospyros virginiana)14.1510.77618.235823.499830.2832
Pine, eastern white (Pinus strobus)8.806370.37323.609663.2964169.696
Pine, jack (Pinus banksiana or Pinus divericata)8.512170.46118.464640.053386.8836
Pine, loblolly (Pinus taeda)13.27820.59322.391637.759863.6759
Pine, longleaf (Pinus palustris)14.17060.63822.21134.813554.5665
Pine, pitch (Pinus rigida)9.463420.54217.460232.214459.4361
Pine, red (Pinus resinosa)12.39560.50724.448948.222795.1139
Pine, shortleaf (Pinus echinata)13.18990.58422.585538.673866.2223
Poplar, balsam (Populus balsamifera or Populus candicans)7.021560.33121.213264.0881193.62
Poplar, yellow (Liriodendron tulipifera)10.37540.42724.298456.905133.267
Redwood (Sequoia sempervirens)9.394770.43621.547649.4212113.351
Sassafras (Sassafras uariafolium)7.747250.47316.37934.627873.209
Satinwood (Ceylon) (Chloroxylon swietenia)10.79711.03110.472510.15769.85217
Sourwood (Oxydendrum arboreum)10.62060.59317.9130.202350.9313
Spruce, black (Picea mariana)10.48330.42824.493757.2283133.711
Spruce, red (Picea rubra or Picea rubens)10.50290.41325.430861.5758149.094
Spruce, white (Picea glauca)9.816460.43122.77652.8446122.609
Sycamore (Platanus occidentalis)9.826260.53918.230533.822962.7512
Tamarack (Larix laricina or Larix americana)11.31690.55820.281136.346165.1364
Teak (India) (Tectona grandis)11.71890.589219.889633.756957.2928
Walnut, black (Juglans nigra)11.62090.56220.677736.793165.4682
Willow, black (Salix nigra)5.030810.40812.330430.221674.0726
Specific stiffness of the elements8081
MaterialYoung's modulus (GPa)Density (g/cm3)Young's modulus per density; specific stiffness (106 m2s−2)Young's modulus per density squared (103 m5kg−1s−2)Young's modulus per density cubed (m8kg−2s−2)
Thallium811.80.6750.0570.00481
Cesium1.71.880.9050.4810.256
Arsenic85.731.40.2440.0426
Lead1611.31.410.1240.011
Indium117.311.50.2060.0282
Rubidium2.41.531.571.020.667
Selenium104.822.080.4310.0894
Bismuth329.783.270.3350.0342
Europium185.243.430.6550.125
Ytterbium246.573.650.5560.0846
Barium133.513.71.060.301
Gold7819.34.040.2090.0108
Plutonium9619.84.840.2440.0123
Cerium346.695.080.760.114
Praseodymium376.645.570.8390.126
Cadmium508.655.780.6680.0773
Neodymium417.015.850.8340.119
Hafnium7813.35.860.440.0331
Lanthanum376.156.020.980.159
Promethium467.266.330.8720.12
Thorium7911.76.740.5750.049
Samarium507.356.80.9250.126
Lutetium679.846.810.6920.0703
Terbium568.226.810.8290.101
Tin507.316.840.9360.128
Tellurium436.246.891.10.177
Gadolinium557.96.960.8810.112
Dysprosium618.557.130.8340.0976
Holmium648.797.280.8270.0941
Erbium709.077.720.8520.0939
Platinum16821.47.830.3650.017
Thulium749.327.940.8520.0914
Silver8510.58.10.7720.0736
Antimony556.78.211.230.183
Lithium4.90.5359.1617.132
Palladium1211210.10.8370.0696
Zirconium676.5110.31.580.243
Sodium100.96810.310.711
Uranium20819.110.90.5730.0301
Tantalum18616.611.20.6710.0403
Niobium1058.5712.31.430.167
Calcium201.5512.98.325.37
Yttrium644.4714.33.20.716
Copper1308.9614.51.620.181
Zinc1087.1415.12.120.297
Silicon472.3320.28.663.72
Vanadium1286.1120.93.430.561
Tungsten41119.221.41.110.0576
Rhenium46321221.050.0499
Rhodium27512.422.11.770.143
Nickel2008.9122.52.520.283
Iridium52822.623.41.040.046
Cobalt2098.923.52.640.296
Scandium742.9824.88.312.78
Titanium1164.5125.75.711.27
Magnesium451.7425.914.98.54
Aluminum702.725.99.63.56
Manganese1987.4726.53.550.475
Iron2117.8726.83.40.432
Molybdenum32910.3323.110.303
Ruthenium44712.436.12.920.236
Chromium2797.1938.85.40.751
Beryllium2871.851558445.5

See also

Wikimedia Commons has media related to Specific stiffness.

References

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2011-06-27. Retrieved 2010-11-22.{{cite web}}: CS1 maint: archived copy as title (link) https://web.archive.org/web/20110627003741/http://nptel.iitm.ac.in/courses/IIT-MADRAS/Design_Steel_Structures_II/5_cold_form_steel/3_local_buckling.pdf

  2. "Flange Local Buckling". Archived from the original on 2010-05-27. Retrieved 2010-11-22. https://web.archive.org/web/20100527070319/http://www.bgstructuralengineering.com/BGSCM/BGSCM008/Flexure/BGSCM0080205.htm

  3. Bonanni, David L.; Johnson, Eric R.; Starnes, James H. (31 July 1988). Local buckling and crippling of composite stiffener sections. Nasa-Tm. College of Engineering, Virginia Polytechnic Institute and State University – via National Library of Australia (new catalog). http://catalogue.nla.gov.au/Record/4024828

  4. "A Density — Compression Modulus Relationship For Latex Foam". http://vitaldoc.lgm.gov.my:8060/vital/access/services/Download/vital1:24307/ARTICLE

  5. "Toylike blocks make lightweight, strong structures". 2013-08-16. Retrieved 2024-03-21. https://www.sciencenews.org/article/toylike-blocks-make-lightweight-strong-structures

  6. Schaedler, Tobias A.; Jacobsen, Alan J.; Carter, Wiliam B. (2013-09-13). "Toward Lighter, Stiffer Materials". Science. 341 (6151): 1181–1182. Bibcode:2013Sci...341.1181S. doi:10.1126/science.1243996. ISSN 0036-8075. PMID 24031005. https://www.science.org/doi/10.1126/science.1243996

  7. Coldewey, Devin (2024-01-17). "NASA's robotic, self-assembling structures could be the next phase of space construction". TechCrunch. Retrieved 2024-03-21. https://techcrunch.com/2024/01/17/nasas-robotic-self-assembling-structures-could-be-the-next-phase-of-space-construction/

  8. "Robot Team Builds High-Performance Digital Structure for NASA - NASA". 2024-01-17. Retrieved 2024-03-21. https://www.nasa.gov/general/robot-team-builds-high-performance-digital-structure-for-nasa/

  9. "A Density — Compression Modulus Relationship For Latex Foam". http://vitaldoc.lgm.gov.my:8060/vital/access/services/Download/vital1:24307/ARTICLE

  10. "A Density — Compression Modulus Relationship For Latex Foam". http://vitaldoc.lgm.gov.my:8060/vital/access/services/Download/vital1:24307/ARTICLE

  11. "A Density — Compression Modulus Relationship For Latex Foam". http://vitaldoc.lgm.gov.my:8060/vital/access/services/Download/vital1:24307/ARTICLE

  12. Alaoui, Adil Hafidi; Woignier, Thierry; Scherer, George W.; Phalippou, Jean (2008). "Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel". Journal of Non-Crystalline Solids. 354 (40–41): 4556–4561. Bibcode:2008JNCS..354.4556A. doi:10.1016/j.jnoncrysol.2008.06.014. ISSN 0022-3093. /wiki/Bibcode_(identifier)

  13. "Densities of Solids". www.engineeringtoolbox.com. http://www.engineeringtoolbox.com/density-solids-d_1265.html

  14. "Polystyrene Foam (EPS) Physical Data Sheet". https://www.foambymail.com/polystyrene-foam-sheet.html

  15. Alaoui, Adil Hafidi; Woignier, Thierry; Scherer, George W.; Phalippou, Jean (2008). "Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel". Journal of Non-Crystalline Solids. 354 (40–41): 4556–4561. Bibcode:2008JNCS..354.4556A. doi:10.1016/j.jnoncrysol.2008.06.014. ISSN 0022-3093. /wiki/Bibcode_(identifier)

  16. "Polystyrene Foam (EPS) Physical Data Sheet". https://www.foambymail.com/polystyrene-foam-sheet.html

  17. "Physical Characteristics of Duocel® Aluminum Foam* (8% Nominal Density 6101-T6)". http://ergaerospace.com/materials/duocel-aluminum-foam/

  18. "FOAMULAR® Extruded Polystyrene (XPS) Insulation SI and I-P Units for Selected Properties - Technical Bulletin" (PDF). https://www.foamular.com/assets/0/144/172/174/1fb2fb08-5923-46de-b387-f4bdc3f68d50.pdf

  19. "High Density Extruded Polystyrene Rigid Insulation" (PDF). http://insulation.owenscorning.ca/assets/0/188/1c2c8d2d-4fe5-4038-970c-9028b3af7414.pdf

  20. "FOAMULAR® Extruded Polystyrene (XPS) Insulation SI and I-P Units for Selected Properties - Technical Bulletin" (PDF). https://www.foamular.com/assets/0/144/172/174/1fb2fb08-5923-46de-b387-f4bdc3f68d50.pdf

  21. "High Density Extruded Polystyrene Rigid Insulation" (PDF). http://insulation.owenscorning.ca/assets/0/188/1c2c8d2d-4fe5-4038-970c-9028b3af7414.pdf

  22. "Archived copy". dynalabcorp.com. Archived from the original on 18 November 2003. Retrieved 15 January 2022.{{cite web}}: CS1 maint: archived copy as title (link) https://web.archive.org/web/20031118100625/http://dynalabcorp.com/technical_info_hd_polyethylene.asp

  23. "Physical Characteristics of Duocel® Copper Foam* (8% Nominal Density C10100)". http://ergaerospace.com/materials/duocel-copper-foam/

  24. www.goodfellow.com. "Polypropylene - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. http://www.goodfellow.com/E/Polypropylene.html

  25. www.goodfellow.com. "Polypropylene - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. http://www.goodfellow.com/E/Polypropylene.html

  26. "Material Properties Data: Medium Density Fiberboard (MDF)". Archived from the original on 2011-05-19. Retrieved 2010-11-11. https://web.archive.org/web/20110519140920/http://www.makeitfrom.com/data/?material=MDF

  27. Dunand, D. C. (2004). "Processing of Titanium Foams" (PDF). Advanced Engineering Materials. 6 (6): 369–376. doi:10.1002/adem.200405576. ISSN 1438-1656. S2CID 15118192. http://hotmetals.ms.northwestern.edu/refs/files/AEM04-TiFoamReview.pdf

  28. Dunand, D. C. (2004). "Processing of Titanium Foams" (PDF). Advanced Engineering Materials. 6 (6): 369–376. doi:10.1002/adem.200405576. ISSN 1438-1656. S2CID 15118192. http://hotmetals.ms.northwestern.edu/refs/files/AEM04-TiFoamReview.pdf

  29. "PHYSICAL AND THERMAL PROPERTIES OF FOAMGLAS® ONE™ INSULATION" (PDF). https://www.crossroadsci.com/Portals/0/documents/data_sheets/industrial/foamglas_pipe_insulation.pdf

  30. "Mass, Weight, Density or Specific Gravity of Wood". www.simetric.co.uk. http://www.simetric.co.uk/si_wood.htm

  31. "Polyester Matrix Composite reinforced by glass fibers (Fiberglass) [SubsTech]". www.substech.com. http://www.substech.com/dokuwiki/doku.php?id=polyester_matrix_composite_reinforced_by_glass_fibers_fiberglass

  32. "MatWeb - The Online Materials Information Resource". www.matweb.com. http://www.matweb.com/search/datasheet.aspx?matguid=3f2253a553404b13893830617250b5d8&ckck=1

  33. VROD. "V-Rod fiberglass rebar - Retaining walls". http://www.fiberglassrebar.com/mat_properties.htm

  34. "Mass, Weight, Density or Specific Gravity of Wood". www.simetric.co.uk. http://www.simetric.co.uk/si_wood.htm

  35. Sabate, Borrega; Gibson, Lorna J. (May 2015). "Mechanics of balsa (Ochroma pyramidale) wood". Mechanics of Materials. 84: 75–90. Bibcode:2015MechM..84...75B. doi:10.1016/j.mechmat.2015.01.014. hdl:1721.1/108580. S2CID 54736632. Retrieved 2019-08-09. https://dspace.mit.edu/handle/1721.1/108580

  36. "Touchwood BV - Sitka Spruce". www.sitkaspruce.nl. http://www.sitkaspruce.nl/product_1.html

  37. [1][dead link] http://www.allbusiness.com/education-training/academic-standards-testing-academic/11677688-1.html

  38. "Sitka Spruce". Archived from the original on 2011-07-16. Retrieved 2010-11-11. https://web.archive.org/web/20110716073337/https://fp.auburn.edu/sfws/sfnmc/class/ss.html

  39. Sabate, Borrega; Gibson, Lorna J. (May 2015). "Mechanics of balsa (Ochroma pyramidale) wood". Mechanics of Materials. 84: 75–90. Bibcode:2015MechM..84...75B. doi:10.1016/j.mechmat.2015.01.014. hdl:1721.1/108580. S2CID 54736632. Retrieved 2019-08-09. https://dspace.mit.edu/handle/1721.1/108580

  40. Sabate, Borrega; Gibson, Lorna J. (May 2015). "Mechanics of balsa (Ochroma pyramidale) wood". Mechanics of Materials. 84: 75–90. Bibcode:2015MechM..84...75B. doi:10.1016/j.mechmat.2015.01.014. hdl:1721.1/108580. S2CID 54736632. Retrieved 2019-08-09. https://dspace.mit.edu/handle/1721.1/108580

  41. "Touchwood BV - Sitka Spruce". www.sitkaspruce.nl. http://www.sitkaspruce.nl/product_1.html

  42. [1][dead link] http://www.allbusiness.com/education-training/academic-standards-testing-academic/11677688-1.html

  43. "Sitka Spruce". Archived from the original on 2011-07-16. Retrieved 2010-11-11. https://web.archive.org/web/20110716073337/https://fp.auburn.edu/sfws/sfnmc/class/ss.html

  44. "Archived copy" (PDF). Archived from the original (PDF) on 2015-04-13. Retrieved 2015-04-13.{{cite web}}: CS1 maint: archived copy as title (link) https://web.archive.org/web/20150413161426/http://www.corning.com/assets/0/965/3557/3577/3615/71759a443535431395eb34ebead091cb.pdf

  45. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  46. Storm, Shaye (2004). Elert, Glenn (ed.). "Density of glass". The Physics Factbook. Retrieved 2022-01-24. https://hypertextbook.com/facts/2004/ShayeStorm.shtml

  47. Weatherell, J. A. (1 May 1975). "Composition of Dental Enamel". British Medical Bulletin. 31 (2): 115–119. doi:10.1093/oxfordjournals.bmb.a071263. PMID 1164600. /wiki/Doi_(identifier)

  48. "Reinforcement types". Archived from the original on 2010-12-20. Retrieved 2010-11-11. https://web.archive.org/web/20101220143522/http://www.rapra.net/composites/material-selection/reinforcement-types.asp

  49. "E-Glass Fibre". AZoM.com. 30 August 2001. https://www.azom.com/article.aspx?ArticleID=764

  50. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  51. "Reinforcement types". Archived from the original on 2010-12-20. Retrieved 2010-11-11. https://web.archive.org/web/20101220143522/http://www.rapra.net/composites/material-selection/reinforcement-types.asp

  52. "S-Glass Fibre". AZoM.com. 30 August 2001. https://www.azom.com/article.aspx?ArticleID=769

  53. "Metapress - A Fast Growing Resource for Young Entrepreneurs". 14 December 2017. Archived from the original on 12 March 2012. Retrieved 11 November 2010. https://web.archive.org/web/20120312053152/http://resources.metapress.com/pdf-preview.axd?code=t068n73845p4185r&size=largest

  54. [2] https://archive.today/20130209162803/http://www.wolframalpha.com/entities/common_materials/flax_fiber/x5/z7/3v/

  55. "Microsoft PowerPoint - Ulven Natural Fiber Presentation.ppt" (PDF). Retrieved 2018-08-01. http://www.compositesinnovation.ca/biofibre_workshop/Natural_Fibre_Composites_Development_and_Testing_-_Chad_Ulven.pdf

  56. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-07. Retrieved 2010-11-11.{{cite web}}: CS1 maint: archived copy as title (link) https://web.archive.org/web/20110707093937/http://www.agrofibrecomposites.com/thesisBos.pdf

  57. "YIG properties" (PDF). Archived from the original (PDF) on 2009-02-25. Retrieved 2010-11-11. https://web.archive.org/web/20090225155636/http://www.isowave.com/pdf/materials/Yttrium_Iron_Garnet.pdf

  58. admin. "Kevlar® Properties - Kevlar® Technical Guide - DuPont USA" (PDF). www2.dupont.com. http://www2.dupont.com/Kevlar/en_US/assets/downloads/KEVLAR_Technical_Guide.pdf

  59. Piggott, M. R.; Harris, B. (1980). "Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins". Journal of Materials Science. 15 (10): 2523–2538. Bibcode:1980JMatS..15.2523P. doi:10.1007/BF00550757. S2CID 133594285. /wiki/Bibcode_(identifier)

  60. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  61. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  62. "Home - Dyneema®" (PDF). www.dyneema.com. http://www.dyneema.com/en_US/public/dyneema/downloads/Comprehensive_factsheet_UHMWPE.pdf

  63. Billone, M.C; Donne, M.Dalle; Macaulay-Newcombe, R.G (1995). "Status of beryllium development for fusion applications" (PDF). Fusion Engineering and Design. 27: 179–190. Bibcode:1995FusED..27..179B. doi:10.1016/0920-3796(95)90125-6. ISSN 0920-3796. https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/068/25068644.pdf

  64. admin. "Kevlar® Properties - Kevlar® Technical Guide - DuPont USA" (PDF). www2.dupont.com. http://www2.dupont.com/Kevlar/en_US/assets/downloads/KEVLAR_Technical_Guide.pdf

  65. Piggott, M. R.; Harris, B. (1980). "Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins". Journal of Materials Science. 15 (10): 2523–2538. Bibcode:1980JMatS..15.2523P. doi:10.1007/BF00550757. S2CID 133594285. /wiki/Bibcode_(identifier)

  66. "Physical properties of Silicon (Si)". www.ioffe.ru. http://www.ioffe.ru/SVA/NSM/Semicond/Si

  67. "Alumina (Al2O3) - Physical and Mechanical Properties of Aluminium Oxide Ceramics by Superior Technical Ceramics". www.azom.com. Archived from the original on 21 July 2012. Retrieved 3 February 2022. https://archive.today/20120721025408/http://www.azom.com/Details.asp?ArticleID=5464

  68. "saffil". www.saffil.com. http://www.saffil.com/newwebsite.nsf/0/4FD62D9CDA2A6BFC8025733F004A91CE?OpenDocument&Expand=071E32C6DBA462B38025731000444FA2

  69. "S-Glass Fibre". AZoM.com. 30 August 2001. https://www.azom.com/article.aspx?ArticleID=769

  70. "Physical property data for Syalon 501". 18 October 2017. https://www.syalons.com/materials/silicon-nitride-sialon/syalon-501/

  71. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  72. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  73. "Epoxy Matrix Composite reinforced by 70% carbon fibers [SubsTech]". www.substech.com. http://www.substech.com/dokuwiki/doku.php?id=epoxy_matrix_composite_reinforced_by_70_carbon_fibers

  74. "Home - Dyneema®" (PDF). www.dyneema.com. http://www.dyneema.com/en_US/public/dyneema/downloads/Comprehensive_factsheet_UHMWPE.pdf

  75. "Product info" (PDF). www51.honeywell.com. 2000. http://www51.honeywell.com/sm/afc/common/documents/PP_AFC_Honeywell_spectra_fiber_2000_Product_information_sheet.pdf

  76. "Boron Fiber Properties". www.specmaterials.com. http://www.specmaterials.com/boronfiberproperties.htm

  77. "Ceramic Industry 2013 Material Properties Chart" (PDF). Archived from the original (PDF) on 2016-02-22. Retrieved 2019-08-12. https://web.archive.org/web/20160222023911/http://www.ceramicindustry.com/ext/resources/pdfs/2013-CCD-Material-Charts.pdf

  78. Lavin, J. Gerard; Kogure, Kei; Sines, G. (1995). "Mechanical and physical properties of post-creep, pitch-based carbon filaments". Journal of Materials Science. 30 (9): 2352–2357. Bibcode:1995JMatS..30.2352L. doi:10.1007/BF01184586. S2CID 137212713. /wiki/Bibcode_(identifier)

  79. "Physical Properties of Common Woods". Archived from the original on 2010-06-09. Retrieved 2010-11-22. https://web.archive.org/web/20100609005909/http://www.csudh.edu/oliver/chemdata/woods.htm

  80. "Young Modulus of the elements". https://periodictable.com/Properties/A/YoungModulus.an.html

  81. "Density of the elements". https://periodictable.com/Properties/A/Density.al.html