Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Specific strength
Ratio of strength to mass for a material

The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pam3/kg, or N⋅m/kg, which is dimensionally equivalent to m2/s2, though the latter form is rarely used. Specific strength has the same units as specific energy, and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force.

Another way to describe specific strength is breaking length, also known as self support length: the maximum length of a vertical column of the material (assuming a fixed cross-section) that could suspend its own weight when supported only at the top. For this measurement, the definition of weight is the force of gravity at the Earth's surface (standard gravity, 9.80665 m/s2) applying to the entire length of the material, not diminishing with height. This usage is more common with certain specialty fiber or textile applications.

The materials with the highest specific strengths are typically fibers such as carbon fiber, glass fiber and various polymers, and these are frequently used to make composite materials (e.g. carbon fiber-epoxy). These materials and others such as titanium, aluminium, magnesium and high strength steel alloys are widely used in aerospace and other applications where weight savings are worth the higher material cost.

Note that strength and stiffness are distinct. Both are important in design of efficient and safe structures.

We don't have any images related to Specific strength yet.
We don't have any YouTube videos related to Specific strength yet.
We don't have any PDF documents related to Specific strength yet.
We don't have any Books related to Specific strength yet.

Calculations of breaking length

L = T s / ρ g {\displaystyle L={\frac {T_{s}/\rho }{\mathbf {g} }}}

where L {\displaystyle L} is the length, T s {\displaystyle T_{s}} is the tensile strength, ρ {\displaystyle \rho } is the density and g {\displaystyle \mathbf {g} } is the acceleration due to gravity ( ≈ 9.8 {\displaystyle \approx 9.8} m/s 2 {\displaystyle ^{2}} )

Examples

Specific tensile strength of various materials
MaterialTensile strength (MPa)Density (g/cm3)Specific strength (kN·m/kg)Breaking length (km)Source
Concrete2–52.305.220.44
Polyoxymethylene; POM691.42494.951
Rubber150.9216.31.66
Copper2208.9224.72.51
Polypropylene; PP25–400.9028–442.8–4.52
(Poly)acrylonitrile-butadiene-styrene; ABS41–451.0539–433
Polyethylene terephthalate; polyester; PET801.3–1.457–624
Piano wire; ASTM 228 Steel1590–33407.8204–4285
Polylactic acid; polylactide; PLA531.24436
Low carbon steel (AISI 1010)3657.8746.44.737
Stainless steel (304)5058.0063.16.48
Maraging steel (18Ni(350))24508.2298.7829.79
Brass5808.5567.86.9110
Nylon781.1369.07.0411
Titanium3444.51767.7512
CrMo Steel (4130)560–6707.8571–857.27–8.701314
Aluminium alloy (6061-T6)3102.7011511.7015
Oak900.78–0.69115–13012–1316
Inconel (X-750)12508.2815115.417
Magnesium alloy2751.7415816.118
Aluminium alloy (7075-T6)5722.8120420.819
Pine wood (American eastern white)780.3522322.720
Titanium alloy (Beta C)12504.8126026.521
Bainite25007.8732132.422
Reversibly Assembled Cellular Composite Materials0.0730.007210,13910352324
Self-Reprogrammable Mechanical Metamaterials0.011170.01031,08411125
Balsa730.1452153.226
Carbon–epoxy composite12401.5878580.027
Spider silk14001.311,069109
Silicon carbide fiber34403.161,08811028
Miralon carbon nanotube yarn C-series13750.7–0.91,10011229
Glass fiber34002.601,30713330
Basalt fiber48402.701,79018331
1 μm iron whiskers140007.871,80018332
Vectran29001.402,07121133
Carbon fiber (AS4)43001.752,45725034
Kevlar36201.442,51425635
Dyneema (UHMWPE)36000.973,71137836
Zylon58001.543,76638437
Carbon fiber (Toray T1100G)70001.793,91139938
Carbon nanotube (see note below)620000.037–1.3446,268–N/A4716–N/A3940
Colossal carbon tube69000.11659,483606641
Graphene1305002.09062,453636642
Fundamental limit9×10139.2×101243

The data of this table is from best cases, and has been established for giving a rough figure.

Note: Multiwalled carbon nanotubes have the highest tensile strength of any material yet measured, with labs producing them at a tensile strength of 63 GPa,44 still well below their theoretical limit of 300 GPa. The first nanotube ropes (20 mm long) whose tensile strength was published (in 2000) had a strength of 3.6 GPa, still well below their theoretical limit.45 The density is different depending on the manufacturing method, and the lowest value is 0.037 or 0.55 (solid).46

The 'Yuri' and space tethers

The International Space Elevator Consortium uses the "Yuri" as a name for the SI units describing specific strength. Specific strength is of fundamental importance in the description of space elevator cable materials. One Yuri is conceived to be the SI unit for yield stress (or breaking stress) per unit of density of a material under tension. One Yuri equals 1 Pa⋅m3/kg or 1 Nm/kg, which is the breaking/yielding force per linear density of the cable under tension.4748 A functional Earth space elevator would require a tether of 30–80 megaYuri (corresponding to 3100–8200 km of breaking length).49

Fundamental limit on specific strength

The null energy condition places a fundamental limit on the specific strength of any material.50 The specific strength is bounded to be no greater than c2 ≈ 9×1013 kNm/kg, where c is the speed of light. This limit is achieved by electric and magnetic field lines, QCD flux tubes, and the fundamental strings hypothesized by string theory.

Tenacity (textile strength)

Tenacity is the customary measure of strength of a fiber or yarn. It is usually defined as the ultimate (breaking) force of the fiber (in gram-force units) divided by the denier. Because denier is a measure of the linear density, the tenacity works out to be not a measure of force per unit area, but rather a quasi-dimensionless measure analogous to specific strength.51 A tenacity of 1 {\displaystyle 1} corresponds to: 1 g ⋅ 9.80665 m s − 2 1 g / 9000 m = 9.80665 m s − 2 1 / 9000 m = 9.80665 m s − 2 9000 m = 88259.85 m 2 s − 2 {\displaystyle {\frac {1{\rm {\,g}}\cdot 9.80665{\rm {\,ms^{-2}}}}{1{\rm {\,g}}/9000{\rm {\,m}}}}={\frac {9.80665{\rm {\,ms^{-2}}}}{1/9000{\rm {\,m}}}}=9.80665{\rm {\,ms^{-2}}}\,9000{\rm {\,m}}=88259.85{\rm {\,m^{2}s^{-2}}}} Mostly Tenacity expressed in report as cN/tex.

See also

References

  1. "Acetal Polyoxymethylene Homopolymer - POM". AZoM.com. August 30, 2001. Archived from the original on July 22, 2020. Retrieved July 22, 2020. https://www.azom.com/article.aspx?ArticleID=762

  2. "Polypropylene - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. Archived from the original on 2018-08-07. Retrieved 2017-04-24. http://www.goodfellow.com/E/Polypropylene.html

  3. "Polyacrylonitrile-butadiene-styrene - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. Archived from the original on 2018-12-20. Retrieved 2018-07-29. http://www.goodfellow.com/E/Polyacrylonitrile-butadiene-styrene.html

  4. "Polyethylene terephthalate - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. Archived from the original on 2019-04-17. Retrieved 2018-07-29. http://www.goodfellow.com/E/Polyethylene-terephthalate.html

  5. "ASTM A228 Steel (UNS K08500)". www.matweb.com. Archived from the original on 2019-01-19. Retrieved 2019-01-17. http://www.matweb.com/search/datasheet_print.aspx?matguid=4bcaab41d4eb43b3824d9de31c2c6849

  6. "Polylactic acid - Biopolymer - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. Archived from the original on 2018-07-29. Retrieved 2018-07-29. http://www.goodfellow.com/E/Polylactic-acid-Biopolymer.html

  7. "AISI 1010 Steel, cold drawn". matweb.com. Archived from the original on 2018-04-18. Retrieved 2015-10-20. http://www.matweb.com/search/datasheetText.aspx?bassnum=M1010A

  8. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2018-10-01. Retrieved 2015-10-20. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ304A

  9. "SSA Corp Maraging Data Sheet". matmatch.com/learn/material/maraging-steel. https://matmatch.com/learn/material/maraging-steel

  10. "Properties of Copper Alloys". roymech.co.uk. Archived from the original on 2019-03-30. Retrieved 2006-04-17. http://www.roymech.co.uk/Useful_Tables/Matter/Copper_Alloys.html

  11. "Polyamide - Nylon 6 - online catalogue source - supplier of research materials in small quantities - Goodfellow". www.goodfellow.com. Archived from the original on 2019-04-17. Retrieved 2017-04-24. http://www.goodfellow.com/E/Polyamide-Nylon-6.html

  12. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2019-03-22. Retrieved 2016-11-14. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTU020

  13. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2019-04-06. Retrieved 2016-08-18. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=m4130r

  14. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2012-03-15. Retrieved 2016-08-18. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=M4130A

  15. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2018-10-22. Retrieved 2016-08-18. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6

  16. "Environmental data: Oak wood". Archived from the original on 9 October 2007. Retrieved 2006-04-17.{{cite web}}: CS1 maint: bot: original URL status unknown (link) https://web.archive.org/web/20071009144917/http://www.io.tudelft.nl/research/dfs/idemat/Onl_db/Id192p.htm

  17. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2018-10-04. Retrieved 2015-10-20. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=NINC35

  18. "eFunda: Typical Properties of Magnesium Alloys". www.efunda.com. Archived from the original on 2020-01-30. Retrieved 2021-10-01. https://www.efunda.com/Materials/alloys/magnesium/properties.cfm

  19. "ASM Material Data Sheet". asm.matweb.com. Archived from the original on 2018-10-16. Retrieved 2015-10-20. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6

  20. "American Eastern White Pine Wood". www.matweb.com. Archived from the original on 2019-12-08. Retrieved 2019-12-08. http://www.matweb.com/search/datasheet_print.aspx?matguid=1bec7114d2524b63826044c3cc6c344c

  21. "AZo Materials Data Sheet". azom.com. 11 February 2003. Archived from the original on 2017-06-23. Retrieved 2016-11-14. http://www.azom.com/article.aspx?ArticleID=1843

  22. 52nd Hatfield Memorial Lecture: "Large Chunks of Very Strong Steel" by H. K. D. H. Bhadeshia 2005. on archive.is https://web.archive.org/web/20060828062831/http://www.msm.cam.ac.uk/phase-trans/2005/chunk.html

  23. "Toylike blocks make lightweight, strong structures". 2013-08-16. Retrieved 2024-03-21. https://www.sciencenews.org/article/toylike-blocks-make-lightweight-strong-structures

  24. Schaedler, Tobias A.; Jacobsen, Alan J.; Carter, Wiliam B. (2013-09-13). "Toward Lighter, Stiffer Materials". Science. 341 (6151): 1181–1182. Bibcode:2013Sci...341.1181S. doi:10.1126/science.1243996. ISSN 0036-8075. PMID 24031005. https://www.science.org/doi/10.1126/science.1243996

  25. Krywko, Jacek (2024-02-08). "Building robots for "Zero Mass" space exploration". Ars Technica. Retrieved 2024-03-21. https://arstechnica.com/science/2024/02/building-robots-for-zero-mass-space-exploration/

  26. "MatWeb – The Online Materials Information Resource". matweb.com. Archived from the original on 2015-04-02. Retrieved 2009-06-29. http://www.matweb.com/search/DataSheet.aspx?MatGUID=368427cdadb34b10a66b55c264d49c23

  27. McGRAW-HILL ENCYCLOPEDIA OF Science & Technology, 8th Edition, (c)1997, vol. 1 p 375

  28. "Specialty Materials, Inc SCS Silicon Carbide Fibers". Archived from the original on 2018-04-04. Retrieved 2006-04-17. http://www.specmaterials.com/silicarbsite.htm

  29. NanoComp Technologies Inc. "Miralon Yarn" (PDF). Archived (PDF) from the original on 2018-12-20. Retrieved 2018-12-19. https://cdn2.hubspot.net/hubfs/339583/Offers/Miralon_Yarn.pdf

  30. "Vectran". Vectran Fiber, Inc. Archived from the original on 2019-07-08. Retrieved 2017-06-12. http://www.vectranfiber.com/properties/tensile-properties/

  31. "RWcarbon.com – The Source for BMW & Mercedes Carbon Fiber Aero Parts". rwcarbon.com. Archived from the original on 2019-05-03. Retrieved 2021-10-01. http://www.rwcarbon.com

  32. 52nd Hatfield Memorial Lecture: "Large Chunks of Very Strong Steel" by H. K. D. H. Bhadeshia 2005. on archive.is https://web.archive.org/web/20060828062831/http://www.msm.cam.ac.uk/phase-trans/2005/chunk.html

  33. "Vectran". Vectran Fiber, Inc. Archived from the original on 2019-07-08. Retrieved 2017-06-12. http://www.vectranfiber.com/properties/tensile-properties/

  34. "Vectran". Vectran Fiber, Inc. Archived from the original on 2019-07-08. Retrieved 2017-06-12. http://www.vectranfiber.com/properties/tensile-properties/

  35. "Network Group for Composites in Construction: Introduction to Fibre Reinforced Polymer Composites". Archived from the original on January 18, 2006. Retrieved 2006-04-17.{{cite web}}: CS1 maint: bot: original URL status unknown (link) https://web.archive.org/web/20060118112908/http://www.ngcc.org.uk/info/ch1.html

  36. "Dyneema Fact sheet". DSM. 1 January 2008. Archived from the original on 8 August 2019. Retrieved 23 May 2016. http://www.dsm.com/products/dyneema/en_GB/home.html

  37. Toyobo Co., Ltd. "ザイロン®(PBO 繊維)技術資料 (2005)" (PDF). Archived from the original (free download PDF) on 2012-04-26. https://web.archive.org/web/20120426001116/http://www.toyobo.co.jp/seihin/kc/pbo/technical.pdf

  38. Toray Composites Materials America, Co., Ltd. "T1100S, INTERMEDIATE MODULUS CARBON FIBER" (free download PDF). Archived (PDF) from the original on 2021-07-13. Retrieved 2021-06-29.{{cite web}}: CS1 maint: multiple names: authors list (link) https://www.torayca.com/en/download/pdf/torayca_t1100g.pdf

  39. Yu, Min-Feng; Lourie, Oleg; Dyer, Mark J.; Moloni, Katerina; Kelly, Thomas F.; Ruoff, Rodney S. (28 January 2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load" (PDF). Science. 287 (5453): 637–640. Bibcode:2000Sci...287..637Y. doi:10.1126/science.287.5453.637. PMID 10649994. S2CID 10758240. Archived from the original (PDF) on 4 March 2011. https://web.archive.org/web/20110304124625/http://www.bimat.org/assets/pdf/00_287yu.pdf

  40. K.Hata (2007). "From highly efficient impurity-free CNT synthesis to DWNT forests, CNT solids, and super-capacitors" (PDF). In Razeghi, Manijeh; Brown, Gail J (eds.). From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors. Quantum Sensing and Nanophotonic Devices IV. Vol. 6479. pp. 64791L. doi:10.1117/12.716279. S2CID 136421231. Archived from the original on 2014-12-14. Retrieved 2009-12-02. https://web.archive.org/web/20141214201915/http://www.nanocarbon.jp/english/research/image/review.pdf

  41. Peng, H.; Chen, D.; et al., Huang J.Y.; et al. (2008). "Strong and Ductile Colossal Carbon Tubes with Walls of Rectangular Macropores". Phys. Rev. Lett. 101 (14): 145501. Bibcode:2008PhRvL.101n5501P. doi:10.1103/PhysRevLett.101.145501. PMID 18851539. /wiki/Bibcode_(identifier)

  42. "2010 Nobel Physics Laureates" (PDF). nobelprize.org. Archived (PDF) from the original on 2018-07-01. Retrieved 2019-03-28. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010.pdf

  43. Brown, Adam R. (2013). "Tensile Strength and the Mining of Black Holes". Physical Review Letters. 111 (21): 211301. arXiv:1207.3342. Bibcode:2013PhRvL.111u1301B. doi:10.1103/PhysRevLett.111.211301. PMID 24313473. S2CID 16394667. /wiki/ArXiv_(identifier)

  44. Yu, Min-Feng; Lourie, Oleg; Dyer, Mark J.; Moloni, Katerina; Kelly, Thomas F.; Ruoff, Rodney S. (28 January 2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load" (PDF). Science. 287 (5453): 637–640. Bibcode:2000Sci...287..637Y. doi:10.1126/science.287.5453.637. PMID 10649994. S2CID 10758240. Archived from the original (PDF) on 4 March 2011. https://web.archive.org/web/20110304124625/http://www.bimat.org/assets/pdf/00_287yu.pdf

  45. Li, F.; Cheng, H. M.; Bai, S.; Su, G.; Dresselhaus, M. S. (2000). "Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes". Applied Physics Letters. 77 (20): 3161–3163. Bibcode:2000ApPhL..77.3161L. doi:10.1063/1.1324984. /wiki/Mildred_Dresselhaus

  46. K.Hata (2007). "From highly efficient impurity-free CNT synthesis to DWNT forests, CNT solids, and super-capacitors" (PDF). In Razeghi, Manijeh; Brown, Gail J (eds.). From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors. Quantum Sensing and Nanophotonic Devices IV. Vol. 6479. pp. 64791L. doi:10.1117/12.716279. S2CID 136421231. Archived from the original on 2014-12-14. Retrieved 2009-12-02. https://web.archive.org/web/20141214201915/http://www.nanocarbon.jp/english/research/image/review.pdf

  47. "Strong Tether Challenge 2013" (PDF). Archived from the original (PDF) on 2016-01-14. https://web.archive.org/web/20160114223616/http://www.isec.org/images/StrongTetherChallenge/2013/Handbook-ts2013.rev0.pdf

  48. "Terminology". isec.org. Archived from the original on 2012-05-27. https://web.archive.org/web/20120527065913/http://www.isec.org/sec/index.php/about-the-space-elevator/terminology#MegaYuri

  49. "Specific Strength in Yuris". keithcu.com. Archived from the original on 2019-02-09. Retrieved 2012-06-02. http://keithcu.com/wiki/index.php/Specific_Strength_in_Yuris

  50. Brown, Adam R. (2013). "Tensile Strength and the Mining of Black Holes". Physical Review Letters. 111 (21): 211301. arXiv:1207.3342. Bibcode:2013PhRvL.111u1301B. doi:10.1103/PhysRevLett.111.211301. PMID 24313473. S2CID 16394667. /wiki/ArXiv_(identifier)

  51. Rodriguez, Ferdinand (1989). Principles of Polymer Systems (3rd ed.). New York: Hemisphere Publishing. p. 282. ISBN 9780891161769. OCLC 19122722. 9780891161769