Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Ursescu theorem
A theorem that simultaneously generalizes the closed graph, open mapping, and Banach–Steinhaus theorems.

In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.

We don't have any images related to Ursescu theorem yet.
We don't have any YouTube videos related to Ursescu theorem yet.
We don't have any PDF documents related to Ursescu theorem yet.
We don't have any Books related to Ursescu theorem yet.
We don't have any archived web articles related to Ursescu theorem yet.

Ursescu theorem

The following notation and notions are used, where R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a set-valued function and S {\displaystyle S} is a non-empty subset of a topological vector space X {\displaystyle X} :

  • the affine span of S {\displaystyle S} is denoted by aff ⁡ S {\displaystyle \operatorname {aff} S} and the linear span is denoted by span ⁡ S . {\displaystyle \operatorname {span} S.}
  • S i := aint X ⁡ S {\displaystyle S^{i}:=\operatorname {aint} _{X}S} denotes the algebraic interior of S {\displaystyle S} in X . {\displaystyle X.}
  • i S := aint aff ⁡ ( S − S ) ⁡ S {\displaystyle {}^{i}S:=\operatorname {aint} _{\operatorname {aff} (S-S)}S} denotes the relative algebraic interior of S {\displaystyle S} (i.e. the algebraic interior of S {\displaystyle S} in aff ⁡ ( S − S ) {\displaystyle \operatorname {aff} (S-S)} ).
  • i b S := i S {\displaystyle {}^{ib}S:={}^{i}S} if span ⁡ ( S − s 0 ) {\displaystyle \operatorname {span} \left(S-s_{0}\right)} is barreled for some/every s 0 ∈ S {\displaystyle s_{0}\in S} while i b S := ∅ {\displaystyle {}^{ib}S:=\varnothing } otherwise.
    • If S {\displaystyle S} is convex then it can be shown that for any x ∈ X , {\displaystyle x\in X,} x ∈ i b S {\displaystyle x\in {}^{ib}S} if and only if the cone generated by S − x {\displaystyle S-x} is a barreled linear subspace of X {\displaystyle X} or equivalently, if and only if ∪ n ∈ N n ( S − x ) {\displaystyle \cup _{n\in \mathbb {N} }n(S-x)} is a barreled linear subspace of X {\displaystyle X}
  • The domain of R {\displaystyle {\mathcal {R}}} is Dom ⁡ R := { x ∈ X : R ( x ) ≠ ∅ } . {\displaystyle \operatorname {Dom} {\mathcal {R}}:=\{x\in X:{\mathcal {R}}(x)\neq \varnothing \}.}
  • The image of R {\displaystyle {\mathcal {R}}} is Im ⁡ R := ∪ x ∈ X R ( x ) . {\displaystyle \operatorname {Im} {\mathcal {R}}:=\cup _{x\in X}{\mathcal {R}}(x).} For any subset A ⊆ X , {\displaystyle A\subseteq X,} R ( A ) := ∪ x ∈ A R ( x ) . {\displaystyle {\mathcal {R}}(A):=\cup _{x\in A}{\mathcal {R}}(x).}
  • The graph of R {\displaystyle {\mathcal {R}}} is gr ⁡ R := { ( x , y ) ∈ X × Y : y ∈ R ( x ) } . {\displaystyle \operatorname {gr} {\mathcal {R}}:=\{(x,y)\in X\times Y:y\in {\mathcal {R}}(x)\}.}
  • R {\displaystyle {\mathcal {R}}} is closed (respectively, convex) if the graph of R {\displaystyle {\mathcal {R}}} is closed (resp. convex) in X × Y . {\displaystyle X\times Y.}
    • Note that R {\displaystyle {\mathcal {R}}} is convex if and only if for all x 0 , x 1 ∈ X {\displaystyle x_{0},x_{1}\in X} and all r ∈ [ 0 , 1 ] , {\displaystyle r\in [0,1],} r R ( x 0 ) + ( 1 − r ) R ( x 1 ) ⊆ R ( r x 0 + ( 1 − r ) x 1 ) . {\displaystyle r{\mathcal {R}}\left(x_{0}\right)+(1-r){\mathcal {R}}\left(x_{1}\right)\subseteq {\mathcal {R}}\left(rx_{0}+(1-r)x_{1}\right).}
  • The inverse of R {\displaystyle {\mathcal {R}}} is the set-valued function R − 1 : Y ⇉ X {\displaystyle {\mathcal {R}}^{-1}:Y\rightrightarrows X} defined by R − 1 ( y ) := { x ∈ X : y ∈ R ( x ) } . {\displaystyle {\mathcal {R}}^{-1}(y):=\{x\in X:y\in {\mathcal {R}}(x)\}.} For any subset B ⊆ Y , {\displaystyle B\subseteq Y,} R − 1 ( B ) := ∪ y ∈ B R − 1 ( y ) . {\displaystyle {\mathcal {R}}^{-1}(B):=\cup _{y\in B}{\mathcal {R}}^{-1}(y).}
    • If f : X → Y {\displaystyle f:X\to Y} is a function, then its inverse is the set-valued function f − 1 : Y ⇉ X {\displaystyle f^{-1}:Y\rightrightarrows X} obtained from canonically identifying f {\displaystyle f} with the set-valued function f : X ⇉ Y {\displaystyle f:X\rightrightarrows Y} defined by x ↦ { f ( x ) } . {\displaystyle x\mapsto \{f(x)\}.}
  • int T ⁡ S {\displaystyle \operatorname {int} _{T}S} is the topological interior of S {\displaystyle S} with respect to T , {\displaystyle T,} where S ⊆ T . {\displaystyle S\subseteq T.}
  • rint ⁡ S := int aff ⁡ S ⁡ S {\displaystyle \operatorname {rint} S:=\operatorname {int} _{\operatorname {aff} S}S} is the interior of S {\displaystyle S} with respect to aff ⁡ S . {\displaystyle \operatorname {aff} S.}

Statement

Theorem1 (Ursescu)—Let X {\displaystyle X} be a complete semi-metrizable locally convex topological vector space and R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be a closed convex multifunction with non-empty domain. Assume that span ⁡ ( Im ⁡ R − y ) {\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} is a barrelled space for some/every y ∈ Im ⁡ R . {\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume that y 0 ∈ i ( Im ⁡ R ) {\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and let x 0 ∈ R − 1 ( y 0 ) {\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right)} (so that y 0 ∈ R ( x 0 ) {\displaystyle y_{0}\in {\mathcal {R}}\left(x_{0}\right)} ). Then for every neighborhood U {\displaystyle U} of x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} y 0 {\displaystyle y_{0}} belongs to the relative interior of R ( U ) {\displaystyle {\mathcal {R}}(U)} in aff ⁡ ( Im ⁡ R ) {\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (that is, y 0 ∈ int aff ⁡ ( Im ⁡ R ) ⁡ R ( U ) {\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)} ). In particular, if i b ( Im ⁡ R ) ≠ ∅ {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } then i b ( Im ⁡ R ) = i ( Im ⁡ R ) = rint ⁡ ( Im ⁡ R ) . {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}

Corollaries

Closed graph theorem

Closed graph theorem—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a linear map. Then T {\displaystyle T} is continuous if and only if the graph of T {\displaystyle T} is closed in X × Y . {\displaystyle X\times Y.}

Proof

For the non-trivial direction, assume that the graph of T {\displaystyle T} is closed and let R := T − 1 : Y ⇉ X . {\displaystyle {\mathcal {R}}:=T^{-1}:Y\rightrightarrows X.} It is easy to see that gr ⁡ R {\displaystyle \operatorname {gr} {\mathcal {R}}} is closed and convex and that its image is X . {\displaystyle X.} Given x ∈ X , {\displaystyle x\in X,} ( T x , x ) {\displaystyle (Tx,x)} belongs to Y × X {\displaystyle Y\times X} so that for every open neighborhood V {\displaystyle V} of T x {\displaystyle Tx} in Y , {\displaystyle Y,} R ( V ) = T − 1 ( V ) {\displaystyle {\mathcal {R}}(V)=T^{-1}(V)} is a neighborhood of x {\displaystyle x} in X . {\displaystyle X.} Thus T {\displaystyle T} is continuous at x . {\displaystyle x.} Q.E.D.

Uniform boundedness principle

Uniform boundedness principle—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a bijective linear map. Then T {\displaystyle T} is continuous if and only if T − 1 : Y → X {\displaystyle T^{-1}:Y\to X} is continuous. Furthermore, if T {\displaystyle T} is continuous then T {\displaystyle T} is an isomorphism of Fréchet spaces.

Proof

Apply the closed graph theorem to T {\displaystyle T} and T − 1 . {\displaystyle T^{-1}.} Q.E.D.

Open mapping theorem

Open mapping theorem—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a continuous surjective linear map. Then T is an open map.

Proof

Clearly, T {\displaystyle T} is a closed and convex relation whose image is Y . {\displaystyle Y.} Let U {\displaystyle U} be a non-empty open subset of X , {\displaystyle X,} let y {\displaystyle y} be in T ( U ) , {\displaystyle T(U),} and let x {\displaystyle x} in U {\displaystyle U} be such that y = T x . {\displaystyle y=Tx.} From the Ursescu theorem it follows that T ( U ) {\displaystyle T(U)} is a neighborhood of y . {\displaystyle y.} Q.E.D.

Additional corollaries

The following notation and notions are used for these corollaries, where R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a set-valued function, S {\displaystyle S} is a non-empty subset of a topological vector space X {\displaystyle X} :

  • a convex series with elements of S {\displaystyle S} is a series of the form ∑ i = 1 ∞ r i s i {\textstyle \sum _{i=1}^{\infty }r_{i}s_{i}} where all s i ∈ S {\displaystyle s_{i}\in S} and ∑ i = 1 ∞ r i = 1 {\textstyle \sum _{i=1}^{\infty }r_{i}=1} is a series of non-negative numbers. If ∑ i = 1 ∞ r i s i {\textstyle \sum _{i=1}^{\infty }r_{i}s_{i}} converges then the series is called convergent while if ( s i ) i = 1 ∞ {\displaystyle \left(s_{i}\right)_{i=1}^{\infty }} is bounded then the series is called bounded and b-convex.
  • S {\displaystyle S} is ideally convex if any convergent b-convex series of elements of S {\displaystyle S} has its sum in S . {\displaystyle S.}
  • S {\displaystyle S} is lower ideally convex if there exists a Fréchet space Y {\displaystyle Y} such that S {\displaystyle S} is equal to the projection onto X {\displaystyle X} of some ideally convex subset B of X × Y . {\displaystyle X\times Y.} Every ideally convex set is lower ideally convex.

Corollary—Let X {\displaystyle X} be a barreled first countable space and let C {\displaystyle C} be a subset of X . {\displaystyle X.} Then:

  1. If C {\displaystyle C} is lower ideally convex then C i = int ⁡ C . {\displaystyle C^{i}=\operatorname {int} C.}
  2. If C {\displaystyle C} is ideally convex then C i = int ⁡ C = int ⁡ ( cl ⁡ C ) = ( cl ⁡ C ) i . {\displaystyle C^{i}=\operatorname {int} C=\operatorname {int} \left(\operatorname {cl} C\right)=\left(\operatorname {cl} C\right)^{i}.}

Simons' theorem

Simons' theorem2—Let X {\displaystyle X} and Y {\displaystyle Y} be first countable with X {\displaystyle X} locally convex. Suppose that R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a multimap with non-empty domain that satisfies condition (Hwx) or else assume that X {\displaystyle X} is a Fréchet space and that R {\displaystyle {\mathcal {R}}} is lower ideally convex. Assume that span ⁡ ( Im ⁡ R − y ) {\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} is barreled for some/every y ∈ Im ⁡ R . {\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume that y 0 ∈ i ( Im ⁡ R ) {\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and let x 0 ∈ R − 1 ( y 0 ) . {\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right).} Then for every neighborhood U {\displaystyle U} of x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} y 0 {\displaystyle y_{0}} belongs to the relative interior of R ( U ) {\displaystyle {\mathcal {R}}(U)} in aff ⁡ ( Im ⁡ R ) {\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (i.e. y 0 ∈ int aff ⁡ ( Im ⁡ R ) ⁡ R ( U ) {\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)} ). In particular, if i b ( Im ⁡ R ) ≠ ∅ {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } then i b ( Im ⁡ R ) = i ( Im ⁡ R ) = rint ⁡ ( Im ⁡ R ) . {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}

Robinson–Ursescu theorem

The implication (1) ⟹ {\displaystyle \implies } (2) in the following theorem is known as the Robinson–Ursescu theorem.3

Robinson–Ursescu theorem4—Let ( X , ‖ ⋅ ‖ ) {\displaystyle (X,\|\,\cdot \,\|)} and ( Y , ‖ ⋅ ‖ ) {\displaystyle (Y,\|\,\cdot \,\|)} be normed spaces and R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be a multimap with non-empty domain. Suppose that Y {\displaystyle Y} is a barreled space, the graph of R {\displaystyle {\mathcal {R}}} verifies condition condition (Hwx), and that ( x 0 , y 0 ) ∈ gr ⁡ R . {\displaystyle (x_{0},y_{0})\in \operatorname {gr} {\mathcal {R}}.} Let C X {\displaystyle C_{X}} (resp. C Y {\displaystyle C_{Y}} ) denote the closed unit ball in X {\displaystyle X} (resp. Y {\displaystyle Y} ) (so C X = { x ∈ X : ‖ x ‖ ≤ 1 } {\displaystyle C_{X}=\{x\in X:\|x\|\leq 1\}} ). Then the following are equivalent:

  1. y 0 {\displaystyle y_{0}} belongs to the algebraic interior of Im ⁡ R . {\displaystyle \operatorname {Im} {\mathcal {R}}.}
  2. y 0 ∈ int ⁡ R ( x 0 + C X ) . {\displaystyle y_{0}\in \operatorname {int} {\mathcal {R}}\left(x_{0}+C_{X}\right).}
  3. There exists B > 0 {\displaystyle B>0} such that for all 0 ≤ r ≤ 1 , {\displaystyle 0\leq r\leq 1,} y 0 + B r C Y ⊆ R ( x 0 + r C X ) . {\displaystyle y_{0}+BrC_{Y}\subseteq {\mathcal {R}}\left(x_{0}+rC_{X}\right).}
  4. There exist A > 0 {\displaystyle A>0} and B > 0 {\displaystyle B>0} such that for all x ∈ x 0 + A C X {\displaystyle x\in x_{0}+AC_{X}} and all y ∈ y 0 + A C Y , {\displaystyle y\in y_{0}+AC_{Y},} d ( x , R − 1 ( y ) ) ≤ B ⋅ d ( y , R ( x ) ) . {\displaystyle d\left(x,{\mathcal {R}}^{-1}(y)\right)\leq B\cdot d(y,{\mathcal {R}}(x)).}
  5. There exists B > 0 {\displaystyle B>0} such that for all x ∈ X {\displaystyle x\in X} and all y ∈ y 0 + B C Y , {\displaystyle y\in y_{0}+BC_{Y},} d ( x , R − 1 ( y ) ) ≤ 1 + ‖ x − x 0 ‖ B − ‖ y − y 0 ‖ ⋅ d ( y , R ( x ) ) . {\displaystyle d\left(x,{\mathcal {R}}^{-1}(y)\right)\leq {\frac {1+\left\|x-x_{0}\right\|}{B-\left\|y-y_{0}\right\|}}\cdot d(y,{\mathcal {R}}(x)).}

See also

Notes

References

  1. Zălinescu 2002, p. 23. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934

  2. Zălinescu 2002, p. 22-23. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934

  3. Zălinescu 2002, p. 24. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934

  4. Zălinescu 2002, p. 24. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934